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Data-driven discovery and extrapolation of parameterized pattern-forming dynamics
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Pattern-forming systems can exhibit a diverse array of complex behaviors as external parameters are varied,
enabling a variety of useful functions in biological and engineered systems. First-principles derivations of
the underlying transitions can be characterized using bifurcation theory on model systems whose governing
equations are known. In contrast, data-driven methods for more complicated and realistic systems whose
governing evolution dynamics are unknown have only recently been developed. Here, we develop a data-driven
approach, the sparse identification for nonlinear dynamics with control parameters (SINDyCP), to discover
dynamics for systems with adjustable control parameters, such as an external driving strength. We demonstrate
the method on systems of varying complexity, ranging from discrete maps to systems of partial differential
equations. To mitigate the impact of measurement noise, we also develop a weak formulation of SINDyCP
and assess its performance on noisy data. We demonstrate applications including the discovery of universal
pattern-formation equations, and their bifurcation dependencies, directly from data accessible from experiments
and the extrapolation of predictions beyond the weakly nonlinear regime near the onset of an instability.
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Data-driven approaches to system identification are un-
dergoing a revolution, spurred by the increasing availability
of computational resources, data, and the development of
novel and reliable machine learning algorithms [1–3]. The
sparse identification of nonlinear dynamics (SINDy) is a
particularly simple and flexible mathematical approach that
leverages efficient sparse optimization algorithms in the auto-
mated discovery of complex system dynamics and governing
equations [4]. In this Letter, we leverage the SINDy model dis-
covery framework to understand parametric dependencies and
underlying bifurcations in pattern-forming systems. Specifi-
cally, we develop SINDY with control parameters (SINDyCP)
to discover such parameterized dynamics.

It has been 30 years since Cross and Hohenberg’s sem-
inal and authoritative review consolidating an exceptionally
large body of work on pattern formation across a broad range
of physical systems [5]. Universal equations determined by
normal forms of canonical bifurcations [6], such as the com-
plex Ginzburg-Landau equation [7], govern the formation
of patterns near the onset of instabilities across scientific
disciplines. Such equations continue to reveal insights into
complex systems, including in the study of, for example,
synchronization, biophysics, active matter, and quantum dy-
namics [8,9].

Despite the success of pattern-formation theory in mod-
eling complex dynamics, ongoing challenges remain in
applying such model equations more broadly. First-principles
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derivations and the computation of normal-form parameters in
terms of physical driving parameters are tedious, costly, and
error prone. Furthermore, the resulting weakly nonlinear mod-
els are only theoretically justified near the onset of instability,
while interesting and important pattern-forming processes of-
ten occur far from the instability threshold. Recent advances in
data-driven system identification are opening new avenues of
research to address these challenges, including a paradigm for
modeling strongly nonlinear regimes beyond the asymptotic
approximations reviewed by Cross and Hohenberg [5].

The SINDy model discovery framework is particularly
well suited to the modern analysis of bifurcations and normal
forms, as it generates interpretable models that have as few
terms as possible, balancing model complexity and descriptive
capability. A variety of extensions of the SINDy approach
have been developed since its introduction. For example,
SINDYc enables the discovery of systems subject to external
control signals [10–12], while PDEFind [13,14] enables the
discovery of spatiotemporal dynamics characterized by par-
tial differential equations (PDEs). Data-driven approaches can
also learn to disambiguate between parametric dependency
and governing equations and discover bifurcations [4,15,16].
Model pattern-formation equations typically encode the ef-
fects of external drive through a number of driving parameters,
which characterize the bifurcation leading to the onset of in-
stability. Several recent works establish system identification
on pattern-forming systems ranging from closure models for
fluid turbulence [17–20] to biochemical reactions and active
matter systems [21–23]. These approaches show promise, but
crucially, they have not demonstrated the ability to extrapolate
by detecting pattern-forming instabilities that may develop
when driving parameters differ from those used in the training
data.
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FIG. 1. Schematic of the SINDyCP approach. Data collected from sample trajectories collected under various driving parameters are
processed to construct a matrix of time derivatives, a feature library �feat of possible governing terms, and a parameter library �par of parametric
dependencies. Sparse regression is applied to the library coefficients ξ to identify a parameterized governing equation.

Our approach is implemented in the open-source PySINDy
repository [24,25], enabling other powerful methods to be
used in conjunction (see Supplemental Material Sec. S1A
[30]). In particular, we develop and assess a weak formulation
[26–29] of SINDyCP, which shows excellent performance on
noisy data. We demonstrate that the method can be easily
and effectively employed to discover accurate parameterized
models from the kind of data available in typical pattern-
formation experiments and that these parameterized models
enable extrapolation beyond the conditions under which they
were developed.

Building the library. Figure 1 illustrates the SINDyCP
approach applied to the spatiotemporal evolution of four tra-
jectories of the complex Ginzburg-Landau equation

Ȧ = A + (1 + ib)∇2A − (1 − ic)|A|2A, (1)

which is described by a complex dependent variable A(x, t ) in
two spatial dimensions x = (x, y). Ginzburg-Landau exhibits
a stunning variety of patterns, depending on the bifurcation
parameters b and c. We generate four trajectories with pa-
rameter values (b, c) = (2.0, 1.0), (2.0,0.75), (0.5,0.5), and
(1.0,0.75), which exhibit differing dynamical phases, corre-
sponding to amplitude turbulence, phase turbulence, stable
waves, and frozen spiral glasses, respectively [7]. Our goal
is to discover the partial differential equation for the real and
imaginary components A = X + iY parameterized by b and c
from time series data.

As with most SINDy algorithms, we first form a matrix of
the input data X, whose columns correspond to the dependent
variables and whose rows correspond to the sample measure-
ments of the dependent variables. In the case of Fig. 1, for
example, X consists of two columns corresponding to the real
and imaginary parts of A and 4NxNyNt rows, where Nx, Ny,
and Nt are the number of sample points in the corresponding
spatiotemporal dimensions; again, there are four trajectories.
We then determine the temporal derivative Ẋ for each sam-
ple point, either through numerical differentiation or through
direct measurements.

In basic SINDy, we define a matrix of library terms � =
�(X) depending on the input data, which includes all possible
terms that may be present in the differential equation that
describes the temporal derivatives. These terms may be built
from polynomial combinations of the dependent variables and

their spatial derivatives, for example, although more general
libraries are possible. In the SINDYc approach, we augment
the library dependence with an external control signal U, i.e.,
� = �(X, U). The library terms are typically determined by
appending the control variables to the dependent variables
and again forming polynomials and derivatives. In the case in
Fig. 1, we can treat the parameters as external control signals,
U = (b, c) and apply SINDYc, but the traditional implemen-
tation of this approach will fail for PDEs, as we show.

SINDYc aims to find a sparse linear combination of the
library terms determined by the vector of coefficients ξ which
minimizes the fit error

ξ ∗ = argmin
ξ

|Ẋ − �(X, U)ξ | + λ|ξ |0, (2)

where sparsity promoting regularizing term λ|ξ |0 penalizes
nonzero coefficients via the L0 norm. Crucially, all SINDy
methods employ sparse regression (with appropriate regular-
ization) to determine a sparse set of nonzero coefficients ξ ∗.
Such sparsity is expected in physically relevant dynamics and
produces parsimonious and interpretable models. Here, we
employ the sequentially thresholded least-squares algorithm
[4], which iteratively eliminates library terms with coefficients
that fall below a threshold hyperparameter.

One challenge that arises when applying the traditional
SINDYc to control parameters in PDEs with existing imple-
mentations such as PySINDy is that the matrix of library terms
� is traditionally formed by computing all polynomial com-
binations of spatial derivatives of the dependent and control
variables. However, since the control parameters are spatially
constant, the spatial derivatives will vanish identically, leading
to a singular matrix �. Such degeneracies lead to poor numer-
ical results on data with control parameters when combining
PDEFind and SINDYc without modification. To overcome
this challenge, we propose constructing a more general library
through products of a feature library �feat (X) and a parameter
library �par (U), as

�(X, U) = �feat (X) ⊗ �par (U), (3)

where the product ⊗ here is defined to give the matrix consist-
ing of all combinations of products of columns between the
libraries, i.e., the ith row of A ⊗ B contains all the products
of the form Ai jBik where j and k span the columns of A and
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B, respectively. By distinguishing the feature and parameter
library dependencies with this SINDyCP approach, we can
construct much more targeted and well-conditioned libraries.

Using a feature library consisting of spatial derivatives
up to third order and polynomials up to third order along
with a linear parameter library, the SINDyCP approach eas-
ily discovers Eq. (1) in Cartesian coordinates, as shown in
Fig. 1. Additional demonstrations of SINDyCP for maps
and ordinary differential equations (ODEs) are available in
the Supplemental Material Sec. S1B, and further details of
the complex Ginzburg-Landau equation (CGLE) integration,
along with an animation illustrating the temporal evolution
of the sample trajectories, are available in the Supplemental
Material Sec. S2 [30].

Amplitude dynamics beyond weakly nonlinear theory.
To illustrate the application of SINDyCP to pattern for-
mation, we implement a numerical demonstration with the
Belousov-Zhabotinksy chemical reaction system. We numeri-
cally integrate the Oregonator model [31],

ĊX = k1CAC2
HCY − k2CHCXCY + k3CACHCX

− 2k4C
2
X + DX ∇2CX , (4a)

ĊY = −k1CAC2
HCY − k2CHCXCY + νk5CBCZ

+ DY ∇2CY , (4b)

ĊZ = 2k3CACHCX − k5CBCZ + DZ∇2CZ , (4c)

which describes the evolution of oscillating chemical concen-
trations CX , CY , and CZ for given supplied concentrations CA,
CB, and CH , and stoichiometric coefficient ν, which depends
on the experimental setup. We vary the concentration of CB

and define a control parameter μ ≡ (CB − Cc
B)/Cc

B, where
Cc

B is the critical value where the Hopf bifurcation occurs.
Section S3A of the Supplemental Material details the Oreg-
onator model, along with a data-driven approach to detect
and characterize the bifurcation point when the model is un-
known [30]. Here, we aim to develop a data-driven extension
of Eq. (1) that incorporates nonlinear parameter dependence
describing the dynamics far from the bifurcation.

We expect the dynamics near a Hopf point to be con-
strained to the two-dimensional center manifold, which
describes the evolution of the complex amplitude dynam-
ics governed by Eq. (1). When the governing equations are
known, the weakly nonlinear theory develops a perturbative
expansion near the Hopf point to express the complex am-
plitude A in terms of the state space given by x ≡ (CX −
Cc

X ,CY − Cc
Y ,CZ − Cc

Z ). This theory follows from a near iden-
tity transformation of the governing equations up to cubic
order, as detailed in the Supplemental Material Sec. S3B [30].

To demonstrate our approach, we develop a data-driven
construction of the amplitude A and its dynamical equa-
tions when the governing equations for the state space are
unknown that is effective even far from the Hopf point. This
approach follows from a SINDyCP fit on time series data for
any two independent measurements of the state space (moti-
vated by previous results [31], we choose to use CX and CZ

here). Because we will employ the normal-form transforma-
tion below, we employ a cubic feature library with polynomial
terms up to third-order and second-order spatial derivatives
and a parameter library with polynomial terms up to second

FIG. 2. Corrections to the weakly nonlinear theory of the Orego-
nator model. (a) R2 score for the parameterized SINDyCP model and
for an unparameterized SINDy fit on test trajectories collected at the
parameter values used to train the model. (b) Corrected normal-form
parameter values relative to the weakly nonlinear values b0 and c0

as a function of the bifurcation parameter μ1/2. (c) Average limit
cycle amplitude A2 vs μ1/2 for the Oregonator model and SINDyCP
fit. The fit correctly exhibits a canard explosion far from the onset
of the instability (insets show CX above and below the explosion,
and an animation of the evolution is available in the Supplemental
Material [30]).

order for the control parameter μ1/2. Furthermore, we employ
implicit SINDy [32] by including first-order temporal deriva-
tives in the feature library. Inverting the resulting implicit
equations results in governing equations that are cubic in the
state variables with coefficients that are rational functions of
the control parameters, enabling the discovery of nonlinear
corrections to parameter dependencies in the weakly nonlin-
ear theory. Finally, by eliminating nonresonant coefficients
using the normal-form transformation for cubic equations,
we discover amplitude dynamics of the form in Eq. (1), but
with normal-form coefficients c(μ) and b(μ) with rational
dependence on the control parameter. Additional details on
the data-driven amplitude construction are available in the
Supplemental Material Sec. S3C [30].

Figure 2(a) shows the R2 score of the model on test trajec-
tories corresponding to the parameter values that the model
was trained on (a value of R2 = 1 means that the fit perfectly
predicts the temporal derivatives of the data). For reference,
we also perform an unparameterized SINDy fit [purple dots in
Fig. 2(a)] on the training trajectory with the smallest μ value,
which produces a model very close to the weakly nonlinear
theory. The SINDyCP fit performs significantly better than the
unparameterized fit, with 1 − R2 nearly an order of magnitude
smaller for the larger μ values.

The normal-form parameters b(μ) and c(μ) agree with the
analytic values derived [33] from the original model as μ→ 0,
but here we are able to discover them directly from data with-
out any knowledge of the governing equations. Furthermore,
as shown in Fig. 2(b), the variation of the parameters becomes
extreme for μ1/2 > 0.35, which we were able to discover via
the implicit version of SINDy. In fact, as shown in Fig. 2(c),
the Oregonator model exhibits a canard explosion (in which
the limit cycle amplitude expands abruptly due to highly
nonlinear effects) [31] around μ1/2 ≈ 0.39, where the weakly
nonlinear theory breaks down. The SINDyCP model reflects
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this breakdown and enables the development new models that
account for it.

Weak formulation. The weak formulation utilizes integra-
tion against compactly supported “test functions” to defined
the SINDy problem. The weak method shows excellent per-
formance for noisy data, owing to its ability to minimize
the need for computing numerical derivatives. Rather than
forming samples (rows in Fig. 1) from spatiotemporal points
for each trajectory, the weak method constructs the system
rows by projecting the data onto weak samples such as

wν
ik ≡

∫
�k

φk (x; t )X(ν)
i (x; t )dDxdt, (5)

where �k is a compactly supported sample domain, φk is the
test function, and X(ν)

i denotes the νth partial derivative the ith
dependent variable. By moving derivatives off of the data and
onto the test functions via integration by parts,

wν
ik = (−1)|ν|

∫
�k

φ
(ν)
k (x; t )Xi(x; t )dDxdt, (6)

the weak method significantly reduces the impact of measure-
ment noise on the SINDy library and improves the fit results
[34].

To maximize the performance of the weak method, we have
optimized and fully vectorized numerical integration for the
weak formulation in PySINDy, which can be easily combined
with the SINDyCP library class. Products of weak features do
not generally form reasonable samples for a SINDy model,
since multiplication and integration do not commute, so at first
sight, it is not clear how to combine weak-form feature and pa-
rameter libraries with SINDyCP. However, when computing
the weak samples corresponding to constant functions, such
as those that form the parameter library, the integrals simply
represent the spatiotemporal volume of the domain �k . Our
implementation thus rescales the weak features for the tempo-
ral derivatives by the same volumetric factors. Details of our
implementation are presented in Sec. S4 of the Supplemental
Material [30].

Performance. Using 500 randomly distributed sample do-
mains (measuring 1/10th the spatiotemporal domain size in
each dimension), the weak SINDyCP easily identifies the
complex Ginzburg-Landau equation using the same data used
for the traditional differential form shown in Fig. 1. Further-
more, it can do so in just a few seconds of run time on a
modern processor in this case (over five times faster than the
differential form).

To assess the impact of noise, we inject random Gaussian
noise of varying intensity [35] into the four trajectories used as
the training data for the complex Ginzburg-Landau equation.
We then generate two new sample trajectories to use as testing
data, with b = 2.0, 1.5 and c = 1.5, 1.0, respectively. Using
the training data, we perform the SINDyCP fits using both the
differential and weak formulation and evaluate the R2 score
on our test trajectories. Figure 3(a) shows the results for the
R2 score on the test trajectories. While both methods provide
good fits for low noise intensity, only the weak method ex-
hibits a robust fit for parameterized equations for large noise
intensities.

The SINDyCP fit also requires a sufficient amount of
data to identify governing equations. Figure 3(b) shows the

FIG. 3. Performance of SINDyCP for the fit of the complex
Ginzburg-Landau equation with noisy data. (a) Model score vs noise
intensity using the differential and weak forms of SINDyCP with
nt = 4 trajectories. (b) Model score vs number of samples for varying
number of randomly generated trajectories, varying trajectory length,
and noise intensity 10−3.

performance of SINDyCP on the testing data for fits per-
formed with a varying number of trajectories nt = 2, 3, 4, 5
and of varying length corresponding to a number of time
samples Nt = 25, 50, 75, 100, with an injected noise intensity
of 10−3. Unlike the trajectories in Fig. 1, the parameters for
trajectories were randomly generated, with (b, c) distributed
as Gaussian random variables with means (1.5, 1.0) and stan-
dard deviations (0.5,0.25). For too little data, the fit fails to
identify the correct model, and the value of 1 − R2 is O(1).
The models improve moderately with an increasing number
of samples per trajectory (the product of Nt with the number
of spatial grid points). More importantly, a sufficiently large
number of trajectories nt is required to achieve a good fit (at
least 3 in this case). The amount of data required will further
increase when including a larger number of possible library
terms and when identifying a larger number of parameters.
These requirements should be carefully assessed in order to
achieve successful SINDyCP fits for more general pattern-
forming systems.

Parameter extrapolation. As a final demonstration (Fig. 4),
we consider the one-dimensional cubic-quintic Swift-
Hohenberg equation

u̇ = du − uxxxx − 2uxx − u + eu3 − f u5, (7)

with parameters d , e, and f describing the linear, cubic, and
regularizing quintic terms, respectively. This model pattern-
formation equation has been used to study defect dynamics
incorporating quintic corrections beyond the weakly nonlinear
approximation and has revealed universal snaking bifurca-
tions leading to the formation of localized states for e > 0 and
d < 0 [36].

The parameters d , e, and f are the minimal and natural
set to describe the possible dynamics in the Swift-Hohenberg
equation derived from normal-form theory. However, in typ-
ical pattern-formation applications, one does not have direct
control over such parameters. Instead, experimentally ac-
cessible parameters will have a complicated and nonlinear
relationship with the normal-form parameters, which requires
detailed knowledge and tedious calculations to derive, e.g.,
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FIG. 4. Extrapolation of localized states in the cubic-quintic
Swift-Hohenberg equation. (a) The randomly generated relationships
between the normal-form parameters (d, e, f ) and the experimental
parameter ε. Red dotted lines show the values used to train the
SINDyCP fit and dashed colored lines show the coefficients derived
from the fit. (b) Snaking bifurcations of localized states for Eq. (7)
(purple lines) and the SINDyCP fit (red lines). Insets show the lo-
calized states found from random initial conditions with ε = 0 in the
discovered model.

an expansion and center manifold transformation around a
bifurcation point. The SINDyCP approach enables an auto-
mated discovery of such relationships, which can be used to
extrapolate system behavior beyond a set of measurements.

To illustrate this idea, we generate random quadratic re-
lationships between an experimental parameter ε and the
normal-form parameters (d, e, f ), and we create five training
trajectories using random values of the parameter 1 < ε < 3
[Fig. 4(a)]. For all of the training trajectories, ε is sufficiently
large that no localized or periodic states exist, and all tra-
jectories decay to the trivial u = 0 solution. We perform the
weak SINDyCP fit using these trajectories subject to injected
white noise with intensity σ = 0.01 [35] and with a quadratic
parameter library. To test the ability of SINDyCP to extrapo-
late beyond the parameter regime given in the input data, we
simulate the identified model for the experimental parameter
value ε = 0. Remarkably, even with limited and noisy training
data, the method identifies an accurate relationship between ε

and the normal-form parameters. Simulations of the identified
model with random initial conditions converge to localized
states for ε = 0. Numerical continuation of these localized
states [Fig. 4(b)] with the AUTO package [37] reveals that the
SINDyCP model exhibits snaking bifurcations that closely ap-
proximate those in the Swift-Hohenberg equation (see Sec. S5
of the Supplemental Material [30] for fits and continuations

with differing noise intensity and training data). Thus, despite
the significant extrapolation of the parameter value beyond
the input data, the model captures the complex bifurcation
structure in the dynamics.

Discussion. The SINDyCP approach represents a simple
but powerful generalization of SINDy with control. By dis-
ambiguating the feature and parameter components of the
SINDy libraries, the method enables the discovery of sys-
tems of partial differential equations parameterized by driving
parameters. Such equations arise naturally in the context of
pattern formation, where the normal forms of bifurcations
lead to parameterized equations near the onset of instabilities.
The approach can be easily applied with the data available
in typical pattern-formation experiments and promises to en-
able extrapolation beyond the regime that can be theoretically
described with weakly nonlinear theory. For example, it may
find application in the discovery of mechanisms leading to
the formation of novel localized states beyond the snaking
bifurcations of the Swift-Hohenberg equation [38,39]. While
new phenomena may be easily conjectured to occur at unseen
parameter values, we emphasize that such predictions must be
validated experimentally to ensure correct extrapolation.

In practice, two significant challenges must be over-
come to discover good parameterized models with SINDyCP.
First, the method requires sufficiently informative trajectory
data. Samples should be collected on appropriate tempo-
ral and spatial scales, sufficiently many parameter values
should be measured, and trajectories with persistent dynamics
provide more information than transient trajectories. While
the weak formulation significantly mitigates the problem,
measurement noise impairs the fit and can corrupt results.
Second, the method requires an appropriate state space with
a good coordinate representation to discover sparse dynam-
ics. Near a bifurcation, the normal-form theory helps provide
information about the state space dimension and sparsity-
promoting coordinate transformations. In the future, a more
sophisticated data-driven phase-amplitude reconstruction [40]
or autoencoder-assisted discovery of physical coordinates
[41–45] will further enable researchers to discover parsimo-
nious equations governing complex systems directly from
data gathered through experiments conducted under various
driving parameters.
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