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We consider a one-dimensional Dicke lattice with complex photon hopping amplitudes and investigate the
influence of time-reversal symmetry breaking due to synthetic magnetic fields. We show that, by tuning the
total flux threading the lattice with a periodic boundary condition, the universality class of superradiant phase
transition (SPT) changes from that of the mean-field fully connected systems to one that features anomalous
critical phenomena. The anomalous SPT exhibits a closing of the energy gap with different critical exponents on
both sides of transition and a discontinuity of correlations and fluctuation despite it being a second-order phase
transition. In the anomalous normal phase, we find that a non-mean-field critical exponent for the closing energy
gap and nondivergent fluctuations and correlations appear, which we attribute to the asymmetric dispersion
relation. Moreover, we show that the nearest neighborhood complex hopping induces effective long-range
interactions for position quadratures of the cavity fields, whose competition leads to a series of first-order phase
transitions among superradiant phases with varying degrees of frustration. The resulting multicritical points also
show anomalous features such as two coexisting critical scalings on both sides of the transition. Our work shows
that the interplay between the broken time-reversal symmetry and frustration on bosonic lattice systems can give
rise to anomalous critical phenomena that have no counterpart in fermionic, spin, or time-reversal symmetric
quantum optical systems.
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Introduction. Inspired by the discovery of remarkable phe-
nomena for charged particles moving in magnetic fields such
as integer and fractional quantum Hall effects [1,2], there
have been intense theoretical and experimental efforts to re-
alize synthetic magnetic fields for uncharged particles such as
photons [3–7], phonons [8,9], and neutral atoms [10,11]. In a
lattice of photonic resonators, for example, the synthetic mag-
netic fields have been realized to observe unique topological
photonic properties and robust edge states [12–14]. Moreover,
the chiral photon current due to the time-reversal symmetry
breaking induced by synthetic magnetic fields has also been
observed [5]. The light-matter interaction between such chiral
photons and quantum emitters may give rise to novel quantum
optical phenomena [15–19].

A bosonic mode coupled to two-level systems, described
by the Dicke model, exhibits a superradiant phase transition
(SPT) [20–27] when the spin-boson coupling strength exceeds
a threshold. The SPT of the Dicke model belongs to the
universality class of fully connected systems characterized by
the mean-field exponents [23,28–31]; thus, we refer to it as
mean-field SPT. Finding SPTs that exhibit critical phenomena
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that do not belong to this universality class may lead to a
discovery of novel phases of coupled light and matter; recently
discovered examples include spin glass phases induced by the
multimode cavity fields [32–39] and a frustrated SPT in the
Dicke lattice [40]. Also, a tricritical SPT in the Rabi lattice in
the synthetic magnetic field has been discovered [41,42].

In this Letter, we investigate a one-dimensional Dicke lat-
tice model with complex photon hopping amplitudes, whose
phase determines the magnetic flux threading the lattice under
periodic boundary conditions. We discover that there exists a
multicritical magnetic flux point θc, above which a mean-field
SPT occurs [27,31,43] and below which an anomalous SPT
occurs with unusual critical properties that do not belong to
the universality class of the fully connected systems. The
anomalous SPT features an anomalous normal phase (NP) in
which the fluctuation and correlation do not diverge at the crit-
ical point, which shatters the common belief that they always
diverge at the critical point. Moreover, the critical exponent
of the closing energy gap abruptly changes from a mean-field
exponent 1/2 above θc (NP) to 1 below θc (anomalous NP); at
θc, both critical exponents coexist. We show that the anoma-
lous NP emerges when the critical mode acquires a finite
momentum, which has an asymmetric dispersion relation due
to the time-reversal symmetry breaking. The broken symme-
try phase of the anomalous SPT, on the other hand, exhibits
a diverging correlation with the critical exponent that are dif-
ferent from that of anomalous NP. Furthermore, we construct
an effective semiclassical model for the position quadratures
with long-range effective photon hopping interactions. Our
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FIG. 1. Phase diagrams and excitation energies for (a),(b) N = 3 and (c),(d) N = 5. (a) and (c) Top panel: Phase diagram in the g − θ

space. Here, NP and SP represent the normal and superradiant phase, respectively, while ANP and FSP stand for anomalous NP and frustrated
SP, respectively. kc is the momentum of the critical mode in NP, and k j = −2π j/N . The arrows denote the sign configurations of the mean
values xn = Re(〈an〉), where up arrows denote xn > 0, and down arrows denote xn < 0. The lines connecting lattice sites correspond to the
effective hopping shown in the bottom panel. (a) and (c) Bottom panel: The effective photon hopping J̄eff

m in the mean-field energy as a function
of θ . Here, J̄eff

1 is the nearest-neighbor hopping, while J̄eff
2 is the next-nearest-neighbor hopping. (b) and (d) Critical excitation energies as a

function of g for different values of θ . Here, γ denotes the scaling of the corresponding excitation, and the upper-right labels denote the region
the SPT belongs to. ANP-FSP corresponds to 0 < θ < θ k1,k0

c , except for the flux critical points θ
k j+1,k j
c (note that the time-reversal symmetric

case [40] is excluded). NP-SP corresponds to θ k1,k0
c < θ < π .

effective theory shows that the first-order phase transition
from the mean-field to the anomalous superradiant phase
occurs when the position quadrature of cavity coherences
exhibits frustration. The configuration of order parameters
is determined by the relative signs of the effective nearest
and the next-nearest interaction, analogous to the J1-J2 Ising
model, and therefore a series of first-order phase transitions
and multicritical points may emerge as the magnetic flux
modulates the sign of both interactions.

Our study therefore shows that the presence of the syn-
thetic magnetic field gives rise to the anomalous SPT and
anomalous multicritical points with critical properties that
have no counterpart in the time-reversal symmetric case [40]
and that are not commonly found in statistical physics systems
[44–46]; two most important characteristics of the anoma-
lous SPT are the following: (1) critical exponents on both
sides of the critical point are different from each other; this
adds an experimentally accessible counterexample to the com-
mon expectation that critical exponents on both sides of the
critical point are same due to the identical renormalization
group properties [47]. (2) The fluctuation and correlation are
bounded at the critical point in the anomalous NP and there-
fore they become discontinuous across the anomalous SPT,
despite it being a second-order phase transition.

Model. We consider a Dicke lattice model where each
lattice site realizes the Dicke model and neighboring lattices
are connected by the photon hopping interaction with complex
amplitudes. The model Hamiltonian reads

HN =
N∑

n=1

[Hn + J (eiθ a†
nan+1 + H.c.)],

Hn = ωa†
nan + �Jz

n + 2λ√
Na

(an + a†
n)Jx

n (1)

with a periodic boundary condition aN+1 = a1 to form a loop.
The phase θ ∈ (0, π ) represents the total flux of synthetic
magnetic fields threading the loop. At nth lattice site, the
oscillator of frequency ω is described by an annihilation op-
erator an and there is an ensemble of Na spins of frequency
� described by collective spin operators Jx,z

n . λ is the local
spin-boson coupling strength. The Hamiltonian HN commutes
with the parity operator � = exp[iπ

∑N
n=1(a†

nan + Jz
n + Na

2 )]
and thus respects a global Z2 symmetry in addition to the
translational symmetry. However, the time reversal symmetry
is broken due to the synthetic magnetic field. Note that we
consider the limit of an infinite number of atoms in each cavity
Na → ∞; thus, for any number of lattice sites N , the system
realizes the thermodynamic limit of infinite particles. Below,
we find a rich phase diagram as a function of g = 2λ/

√
ω�

and θ and anomalous critical properties as shown in Fig. 1 for
N = 3, 5.

Anomalous normal phase with bounded fluctuation
and correlation. Let us begin by investigating the nor-
mal phase. In the thermodynamic limit, we introduce the
Holstein-Primakoff transformation J+

n � √
Nab†

n and Jz
n =

Na/2− b†
nbn with [bn, b†

n] = 1 and perform a Fourier
transform, a†

n = ∑
k eikna†

k/
√

N, b†
n = ∑

k eiknb†
k/

√
N with

k = 0,±2π/N, . . . ,±(N − 1)π/N , to derive the effective
Hamiltonian

Hnp =
∑

k

[ωka†
kak + �b†

kbk − λ(ak + a†
−k )(b−k + b†

k )], (2)

where ωk = ω + 2J cos(θ − k). Note that only the modes
with the same magnitude of momentum, a±k and b±k , are
coupled with each other; thus, the Hamiltonian can be
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diagonalized for each k. Four excitation energies are given by

ε
(±)
k =

2∑
j=1

√
A(±)

j,k + 
k, (3)

where 
k = (ωk − ω−k )/4. The superscripts (±) denote the
upper and lower branches of the excitation spectra, respec-
tively, and the expressions of A(±)

j,k can be found in [48]. The

upper branch is always gapped, ε(+)
k > 0. For each momentum

k, the lower branch excitation ε
(−)
k can become zero. By solv-

ing ε
(−)
k = 0, we find gk (θ ) = √

2ωkω−k/ω(ωk + ω−k ). At a
given θ , the lowest value of gk defines the critical point as Hnp

becomes unstable above this point, indicating the emergence
of the superradiant phase. Namely, the critical point at θ is

gc(θ ) = min
{
gkj (θ )|k j

}
, (4)

where k j = −2π j/N, j = 0, 1, . . . , (N − 1)/2. We denote
the momentum mode that realizes the minimum in Eq. (4) as
kc, the critical momentum. As the magnetic flux θ is varied,
the critical momentum kc also changes; thus, we define the
flux critical points θ

k j+1,k j
c , which mark the boundary between

the regions where the modes k j+1 and k j become critical,
respectively. These points are found by solving gkj+1 = gkj for

θ . We find that 0 < θ
k(N−1)/2,k(N−3)/2
c < θ

k(N−3)/2,k(N−5)/2
c < · · · <

θ k1,k0
c < π . When θ > θ k1,k0

c , the zero-momentum mode be-
comes critical, i.e., kc = k0, with a mean-field exponent of
1/2. Interestingly, for θ < θ k1,k0

c , a nonzero momentum mode
becomes critical, i.e., kc 	= k0, with a non-mean-field exponent
of 1 [see Figs. 1(b) and 1(d)]. We refer to this as an anomalous
NP, which spans g < gc(θ < θ k1,k0

c ).
To understand the emergence of the anomalous NP, we

note that εk from Eq. (3) consists of a sum of square root
terms and a constant shift 
k = (ωk − ω−k )/4 = J sin θ sin k.
The latter is the difference in frequencies of lattice photons
with opposite momentums and it is nonzero only for k 	= 0
when the time-reversal symmetry is broken (θ 	= 0, π ). For
kc = k0, 
kc=k0 = 0; therefore, ε

(−)
kc=k0

closes the gap with

the square root ε
(−)
kc=k0

∝ |g − gc|1/2, a typical mean-field be-

havior. For kc 	= 0, however, ε
(−)
kc

becomes zero before the
square root term becomes singular due to the cancellation
with 
kc 	=k0 < 0. In this case, the energy gap closes when an
analytical function simply crosses the zero and the exponent
becomes 1, i.e.,ε(−)

kc 	=k0
∝ |g − gc|1. Furthermore, at the bound-

ary between the normal phase and anomalous normal phase,
namely, at gc(θ k1,k0

c ), we find that both the k0 and k1 mode
simultaneously become critical, whose scaling exponents are
1/2 and 1. In addition, at other flux critical points between the
nonzero momentum modes, i.e., θ

ki+1,ki
c with i > 0, the two

critical excitations with an identical exponent γ = 1 appear
[see Fig. 1(b)].

In the anomalous NP, the local photon number 〈a†a〉n and
the bipartite entanglement Sn between the nth site and the rest
of chain remains finite at the critical point [Fig. 2(a)]. This
is a striking observation because the fluctuation and corre-
lation are typically expected to diverge at the critical point
[43,46,49]. To gain further insight, we adiabatically eliminate
the atomic degrees of freedom in the infinitely frequency ratio
limit (�/ω → ∞) [31], and derive the analytical expression

FIG. 2. (a) Bipartite entanglement between nth site with the two
remaining sites and (b) photon number for nth cavity as a function
of g/gc for N = 3 and θ < θc across the anomalous SPT. Lines
are analytical and shapes are numerical results. Both quantities are
bounded in the anomalous NP and divergent in the frustrated SP.
The insets on the left side show scaling of the two quantities in the
frustrated SP, both of which are γ = 1/2. In the right inset of (a) and
(b), the divergence of the third site is given separately as its peak is
much narrower than the rest.

[48] for the excitation energy as εk = √
Ak + 2
k and the

photon number as

〈a†
nan〉np = 1

N

∑
k

[
ωk + ω−k

2
√

Ak
− 2

√
Ak

ωk + ω−k
− 2

]
. (5)

From this, we see that 〈a†
nan〉np → ∞ only if

√
Ak → 0

and for the anomalous NP with 
k < 0, the photon number
is bounded. This in turn leads to the bounded entangle-
ment among cavity fields as the entanglement is generated
by multimode squeezing with a bounded photon number.
On the other hand, for θ > θ k1,k0

c , both 〈a†a〉n and Sn di-
verge with mean-field exponent [48] as the photon number
is proportional to the inverse of the square root term

√
Ak

in εk .
Multicriticality and frustration in the broken symmetry

phase. When g > gc(θ ), a second-order continuous phase
transition occurs giving rise to spontaneous coherence,
i.e., 〈an〉 = xn + iyn 	= 0. We first replace the operators in
Eq. (1) with their mean values to derive the mean-field
energy (see Supplemental Material [48] for the validity of
the mean-field approximation). By minimizing the mean-
field energy over the atomic degree of freedom [48],
we have

ĒN =
N∑

n=1

[
x̄2

n + ȳ2
n − 1

2

√
1 + 4g2x̄2

n + 2J̄ cos θ (x̄nx̄n+1

+ ȳnȳn+1) + 2J̄ sin θ (x̄n+1ȳn − x̄nȳn+1)

]
, (6)
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where J̄ = J/ω, Ē = E/Na�, x̄n = √
ω0/Na� xn, ȳn =√

ω0/Na� yn. We numerically minimize Eq. (6) and draw the
phase diagram for N = 3 and N = 5 as shown in Figs. 1(a)
and 1(c). For odd N , there exists (N − 1)/2 first-order transi-
tion lines that meet with the continuous transition line gc(θ )
at each flux critical point θ

ki,ki+1
c , making them tricritical

points.
Here, we show that the origin of first-order transitions is

the frustration of cavity fields, which leads to the recently
discovered frustrated superradiant phase [40]. To this end, we
derive an effective mean-field energy for the position quadra-
ture xn of the cavity fields only by eliminating the momentum
quadrature yn at the global minimum of Eq. (6) [48], which
leads to

ĒGS
N =

N∑
n=1

⎡
⎣x̄2

n − 1

2

√
1 + 4g2x̄2

n +
(N−1)/2∑

m=0

J̄eff
m x̄nx̄n+m

⎤
⎦. (7)

Equation (7) shows that the nearest-neighborhood complex
photon hopping effectively realizes long-range interactions
among x̄n mediated by ȳn. In particular, we find that the
dominant terms are the nearest and next-nearest neigh-
borhood interaction, |J̄eff

m>2| � |J̄eff
1,2|. As the flux modulates

signs and magnitudes of J̄eff
2 and J̄eff

1 , frustrated sign con-
figurations for x̄n may occur, analogous to the J1 and
J2 Ising model. We illustrate this point using N odd
lattices.

For N = 3, Eq. (7) becomes identical with the mean-field
energy of the Dicke lattice model with a real photon hop-
ping [40]. As shown in Fig. 1(a), J̄eff

1 changes the sign at
the critical flux point θ = θ k1,k0

c . Therefore, the broken sym-
metry phase undergoes a first-order phase transition between
the nonfrustrated SP for J̄eff

1 < 0 and the frustrated SP for
J̄eff

1 > 0 with the ground-state degeneracy D = 6. We note that
a similar phase diagram has been found in the Rabi triangle
model [41], which can also be understood from our effective
description.

For N = 5, when θ < θ k2,k1
c , one has J̄eff

1 > J̄eff
2 > 0 and

the nearest neighbors should be antialigned to minimize
the energy, which is incompatible with a one-dimensional
(1D) chain with odd N . Therefore, a frustrated configuration
emerges where a single pair of neighboring sites are aligned,
called a ferromagnetic pair, with D = 10. For θ > θ k2,k1

c ,
one has J̄eff

2 > J̄eff
1 > 0 that favors the next-nearest neighbors

xn and xn+2 to be antialigned, which leads to a frustrated
configuration with three ferromagnetic pair (D = 10). This
configuration persists even when J̄eff

1 becomes negative; how-
ever, when the negative J̄eff

1 becomes the dominant energy
scale and all xn have the same sign, leading to a nonfrustrated
SP with the degeneracy D = 2. Our analysis can be straight-
forwardly extended to a larger lattice size for both odd and
even N [48]. For even N , if J2 > 0 is dominant over J1, there
could be frustration for odd N/2, but no frustration for even
N/2.

Excitation and fluctuation in the superradiant phase. Let
us discuss the excitation and fluctuation in various SPs. For
detailed derivation, we refer to Ref. [48]. For θ � θ k1,k0

c ,
since all mean values x̄n are identical with no frustration,
the resulting effective Hamiltonian preserves the translational

symmetry and we find that the k0 momentum mode becomes
critical, with the mean-field exponent γ = 1/2 [48]. For 0 <

θ < θ k1,k0
c , the translational symmetry of the system is broken

due to the frustration. Therefore, we numerically calculate
the excitation spectra for N = 3, N = 5 [see Fig. 1(b)]. For
N = 3, through asymptotic expansions, we analytically derive
that the excitation energy gap closes with an exponent 3/2
[48], which agrees with the numerical result. For N = 5, we
find the exponent to be 5/2. Therefore, we have

ε ∝ (gc − g)γ− (for g < gc),

ε ∝ (g − gc)γ+(N ) (for g > gc) (8)

with γ− = 1 and γ+(N ) = N/2 for N = 3, 5. We note that the
possibility of having different critical exponents on both sides
of phase transition has been recently discussed in Ref. [47]
and the anomalous SPT in the synthetic magnetic fields ex-
hibits such unique properties. This is qualitatively different
from the scaling behavior of the previously reported frustrated
SPT [40], where both sides of the transition share a mean-field
exponent and an additional non-mean-field scaling appears
in FSP. We also calculate the photon number and bipartite
entanglement Sn in the SP. Unlike the anomalous NP where
both are non-divergent, we find that they do diverge at the
critical point as shown in Fig. 2 for N = 3. Therefore, there
is a discontinuity of both quantities at the critical point of
a continuous phase transition. We discovered that the SPT
for 0 < θ < θ k1,k0

c exhibits highly unusual anomalous critical
properties summarized above, and hence we call it an anoma-
lous SPT.

Anomalous multicritical points. Finally, we discuss the
properties at the multicritical points. We have found that there
are two types of multicritical points: (i) one is gc(θ k1,k0

c ),
where the boundary between the NP and anomalous NP
and the boundary between nonfrustrated and frustrated SP
meet. At this point, two critical scalings for the closing
energy gap with γ = 1 and γ = 1/2 coexist. (ii) Others
are gc(θ ki+1,ki

c ) with 1 � i � (N − 3)/2, where the momen-
tum of the critical mode changes from ki to ki+1 in the
normal phase and the sign configuration for the frustrated
SP changes. At this point, there are two critical modes on
both sides of the multicritical point, but their exponents are
both γ = 1. While it is generally expected that the critical
exponents at the multicritical point are different from that
of the continuous phase transition, two coexisting critical
scalings are unique properties of multicritical points of the
anomalous SPT.

Discussions. The Dicke lattice model in the synthetic mag-
netic fields can be realized in various quantum systems that
consist of coupled spins and bosons. The local spin-boson
interactions can be implemented using ion-traps [50,51],
superconducting circuits [25,26,52], and cavity quantum
electrodynamics [53–55]. Moreover, the photon or phonon
hopping can be engineered to form a desired lattice with a
complex hopping energy [5,56–61]. Our work demonstrates
that the breaking of the time-reversal symmetry offers a
unique mechanism for the normal phase of lattice bosons to
become unstable with bounded fluctuation and that the com-
plex nearest-neighborhood hopping amplitudes effectively
mediate long-range interactions which may lead to exotic
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frustrated quantum phases of coupled light and matter. How
the unique scaling properties of the anomalous SPT dis-
covered here could be used for the applications in critical
metrology based on quantum optical models, like the Dicke
and Rabi models, is an interesting topic for future investiga-
tions [62–64].
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