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Loss of percolation transition in the presence of simple tracer-media interactions
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Random motion in disordered media is sensitive to the presence of obstacles which prevent atoms, molecules,
and other particles from moving freely in space. When obstacles are static, a transition between confined motion
and free diffusion occurs at a critical obstacle density: the percolation threshold. To test if this conventional
wisdom continues to hold in the presence of simple tracer-media interactions from the type seen in recent
experiments, we introduce the Sokoban random walk. Akin to the protagonist of an eponymous video game,
the Sokoban has some ability to push away obstacles that block its path. While one expects this will allow the
Sokoban to venture further away, we surprisingly find that this is not always the case. Indeed, as it moves—
pushing obstacles around—the Sokoban always confines itself after traveling a characteristic distance that is set
by the initial density of obstacles. Consequently, the percolation transition is lost. This finding breaks from the
ruling ant in a labyrinth paradigm, vividly illustrating that even weak and localized tracer-media interactions
cannot be neglected when coming to understand transport phenomena.
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Introduction. More than a century after their introduc-
tion to the readers of Nature by Karl Pearson [1], random
walks continue to fascinate and draw attention [2,3]. While
initially motivated by the theory of gambling [4] and finan-
cial speculation [5], random walks became important in the
natural sciences following the pioneering works of Einstein
[6], Smoluchowski [7], and others [8] on diffusion of atoms
and molecules. In the time following the publication of these
seminal works, random walks were further established as a
versatile modeling tool [9–14], with applications in physics
[15–22], chemistry [23–28], biology [29–33], movement ecol-
ogy [34–39], and finance and economics [40,41].

One paradigmatic random walk is the “ant in a labyrinth”
(AIL) [42], which was introduced by de Gennes as a simple
model for diffusion in disordered media [43–45] (similar ideas
were explored by Brandt [46], Kopelman [47], and Mitescu
and Roussenq [48]). Consider an ant walking on a two-
dimensional square lattice, where a fraction ρ of the lattice
sites are occupied with obstacles (other sites are empty). Each
time unit, the ant takes a step into an empty neighboring site
that is chosen randomly. Given a specific obstacle density ρ,
one can ask how does the mean squared displacement (MSD)
of the ant depend on time? When ρ is small, i.e., most sites
are empty, the ant’s motion is almost unobstructed. In this
case, the MSD scales linearly with time. On the other extreme,
when ρ is large, most sites are occupied by obstacles and the
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ant’s motion is highly restricted. In this limit the ant will find
itself caged in the labyrinth, resulting in an MSD that saturates
asymptotically. As it turns out, for large enough systems,
the transition between restricted motion and free diffusion is
sharp, occurring at a critical density 0 < ρc < 1 [49].

The basic assumption in de Gennes’ model is that obstacles
comprising the media are immobile—namely, that the ant’s
motion has no affect on the distribution of obstacles around
it. This assumption is fair when, e.g., considering a hydrogen
atom diffusing in a solid [50]. Yet, it clearly breaks for active
tracers, e.g., animals, microorganisms, and biological “ma-
chines” that plow their way through crowded environments.
Recent controlled experimental studies of such scenarios re-
vealed that the motion of active tracers in the presence of
static—yet pushable—obstacles is inherently different than
in a field of obstacles that cannot be moved. This happens
because the tracer’s motion directly affects obstacles in its
path, thus altering the density field accordingly [51,52]. This,
in turn, creates long-term memory [53], which could, e.g.,
alter first-passage times [51,52]. It is thus clear that tracer-
media interactions are not negligible in such systems and that
a different approach is required to describe and capture the
emerging phenomena.

Model. We introduce a minimalist model to show that
tracer-media interactions from the type mentioned above re-
sult in a drastic, qualitative change of transport properties
(also see [51]). To this end, we consider a random walker
that has some ability to push away obstacles that block its
path. We imagine an n × n square arena where a fraction ρ

of the available sites are occupied by obstacles. Taking n to
be odd, we place a random walker at the center of this arena.
The random walk then takes place according to the following
rules which are illustrated in Fig. 1(a). The walker can move
into an unoccupied neighboring site, placed horizontally or
vertically relative to its position. In addition, even when a site
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FIG. 1. Sokoban random walk. Panel (a): laws of motion. The
walk has two feasible moves: (i) it can step into an unoccupied site;
(ii) it can step into an occupied site by pushing away an obstacle
that occupied it one site forward, in its direction of motion. Only
one obstacle can be pushed at a time. Thus, two obstacles in a row
create a block. At each time step, the walker chooses between all
feasible moves with equal probability. Panel (b): initial configuration
of a 15 × 15 arena. Arenas are generated by randomly distributing
obstacles, such that each site has probability ρ to be occupied. White
squares indicate unoccupied sites. Black and gray squares indicate
obstacles (these are identical, but distinguished here for clarity).
Panel (c): a possible trajectory of the Sokoban random walk. Gray
squares indicate obstacles that were pushed during the course of the
walk.

is occupied by an obstacle, the walker can move into this site
while pushing the obstacle one site forward, in its direction
of motion. Yet, this can only be done provided that the next
site (in the direction of motion) is vacant. Thus the walker
cannot push more than one obstacle at a time. Finally, at each
time step, the walker chooses between all feasible moves with
equal probability.

The model presented herein is inspired by the video game
Sokoban (Japanese for warehouse keeper), which was created
in 1981 by Imabayashi. The premise of the game is simple:
the player, playing as the keeper, pushes boxes around in a
warehouse, in attempt to transport them to marked storage
locations. The rules of the game are similar to the rules of the
walk presented in Fig. 1. While being fairly simple to play,
solving Sokoban puzzles turns out to be a difficult computa-
tional task. It was first proved to be NP-hard [54] and was later
shown to be PSPACE-complete [55].

An illustration of a trajectory of the Sokoban random walk
is given in panels (b) and (c) of Fig. 1. The initial configuration
of the arena is given in panel (b) and the trajectory of the
walk is illustrated in panel (c). Note that an AIL cannot push
obstacles that stand in its path and would have thus been
caged by the initial configuration of the arena. In contrast, the
Sokoban was able to escape this cage by pushing some of the
obstacles surrounding it (highlighted in gray). More generally,
we expect that the ability to push obstacles will enable the
Sokoban random walk to venture further away from its initial

(a) (b)

FIG. 2. Sokoban random walk vs AIL. Panel (a): mean squared
displacement (MSD) of an AIL (yellow) and the Sokoban random
walk (purple) as a function of time, for three different obstacle
densities: ρ = 0.45, 0.5, 0.55. In the long time limit, the MSD of
the Sokoban is orders of magnitude higher compared to the MSD
of the AIL. Panel (b): trajectories of the AIL (yellow) and Sokoban
(purple) random walks, starting in an identical arena with ρ = 0.5.
The difference in MSD is evident.

position when compared to an AIL that does not have this
ability.

Monte Carlo simulations. To test this hypothesis, we sim-
ulate the Sokoban random walk and AIL, for a large number
of randomly generated arenas that were moreover taken to be
sufficiently large so as to completely avoid boundary effects.
In Fig. 2(a) we plot the mean squared displacement, given by
MSD(t ) = 〈r2(t )〉, where r(t ) is the Euclidean distance to the
initial position at time t and 〈·〉 indicates an ensemble average
over all generated walks. Plots are made for the Sokoban
(purple) and AIL (yellow) random walks at three different
obstacle densities. As expected, in the long time limit, the
MSD of the Sokoban is significantly higher compared to the
MSD of the AIL. As a result, the Sokoban explores larger
portions of the arena as illustrated by the trajectories given in
Fig. 2(b). Further illustration of the Sokoban walk is provided
in a Supplemental video [56].

All densities in Fig. 2 were taken to be above the 2D site-
percolation threshold, namely, the critical density ρc � 0.407
[57] above which the AIL’s MSD saturates at long times. The
fact that for these densities the Sokoban is able to explore
larger portions of the arena hints that the critical density for
this walk should be higher than, or equal to, the percolation
threshold; thus allowing the Sokoban to roam unbounded
when the density of obstacles drops below ρc. However, when
simulating the Sokoban for ρ < ρc, we surprisingly find that
its MSD still saturates in the long time limit. An example
is given in panels (a)–(c) of Fig. 3, where we take ρ = 0.4,
and present a time evolution of a typical Sokoban trajectory.
Snapshots are taken for t = 105, 106, and 107. For t � 107 the
walk does not visit new sites, indicating it is indeed confined
(see Fig. S1 [56]).

Further evidence that the Sokoban random walk dynam-
ically confines itself at densities lower than the percolation
threshold comes from extensive numerical simulations that
we perform for this system. Defining the exploration radius
r∞ = limt→∞

√
MSD(t ), i.e., the level at which the square

root of the MSD saturates, we plot this quantity as a function
of ρ for the Sokoban random walk and AIL [Fig. 3(d)]. As
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FIG. 3. Loss of percolation transition in the Sokoban random walk. Panels (a)–(c): sites visited by the Sokoban random walk, in an arena
with an obstacle density of ρ = 0.4, for t = 105, 106, 107. By time t = 107 the Sokoban random walk is effectively caged and does not visit
new sites (see comparison with t = 108 in Fig. S1 [56]). Panel (d): the exploration radius r∞ = limt→∞

√
MSD(t ) for the Sokoban random

walk (purple markers) and AIL (yellow markers) vs the obstacle density ρ (log-log scale). Markers coming from simulations show that, while
the exploration radius of the AIL diverges as ρ → ρc, this radius remains finite for the Sokoban random walk. Simulations are in excellent
agreement with Eq. (4) whose prediction is given by a dashed line surrounded by a grayed out sleeve, which indicates an error of ±2.5% in the
estimates made for the parameters γ and C. Panel (e): the mean number of sites 〈A 〉 visited by the Sokoban and mean number of perimeter
sites 〈P〉 follow the power-law relations of Eqs. (2) and (3) [note the log-log scale; also see panel (f)]. Markers come from simulations and
best fits yield the following estimates of the relevant parameters: A � 0.2277, B � 0.5736, α � 1.936, and β � 1.754. Panel (f): area (purple)
and perimeter (green) of the trajectory from panel (c). The area of the trajectory is defined as the number of visited sites. The perimeter of the
trajectory is taken as the double layer of unvisited sites that surround area sites (share a mutual edge).

expected, for the AIL: r∞ diverges when ρ approaches ρc �
0.407 from above, indicating the existence of a critical density
beyond which the walk is no longer confined. However, for the
Sokoban random walk we find that r∞ is finite for all values
of ρ sampled.

The results presented in panels (a)–(d) of Fig. 3 assert that
the critical density of the Sokoban random walk cannot be
higher than the percolation threshold. Thus, if such critical
density even exists, it must be lower than the percolation
threshold. Alternatively, it is possible that the Sokoban ran-
dom walk does not have a critical density and that this walk
dynamically confines itself at every positive obstacle density
ρ > 0. One way to try and find out will be to simulate this
system for increasingly smaller obstacle densities, which in
turn requires increasingly larger arenas. However, this brute
force approach is limited computationally and quickly runs
into trouble.

Scaling approach. Instead, we take a scaling approach
seeking better physical understanding for why the Sokoban
random walk might be dynamically confining itself. We first
note that in order for confinement to occur the Sokoban must
push surrounding obstacles until it eventually creates a cage
from which it cannot escape; e.g., see Fig. 1(c) and the Sup-
plemental video [56]. Visited sites within the cage will be
surrounded by a double layer of obstacles (perimeter) that pre-
vents the walker from accessing additional sites. This double
layer is required since the Sokoban will otherwise be able to
push its way out and breach the perimeter.

To further proceed, we formulate a sufficient condition that
leads to caging. We define A to be the area covered by the
Sokoban trajectory, i.e., the total number of sites visited in the
long time limit. In addition, we let P stand for the number
of sites in the double-layered perimeter that surrounds visited
sites. For example, the double-layered perimeter of the sites
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visited by the trajectory in Fig. 3(c) is indicated in Fig. 3(f).
Recall that area and perimeter sites were initially occupied by
obstacles with the same probability ρ. Thus, on average, A ρ

area sites were initially occupied while P (1 − ρ) perimeter
sites were vacant. Now, to guarantee caging, we demand

A ρ = P (1 − ρ). (1)

In other words, Eq. (1) states that the Sokoban will surely
get caged when A ρ obstacles are pushed clear from its path
to occupy the P (1 − ρ) perimeter sites that were initially
empty.

Due to the inherent randomness of the Sokoban walk the A
and P defined above are random, taking different values with
every realization. However, averaging over many realizations
we observe that these quantities obey a power-law scaling

〈A 〉 � Arα
∞ (2)

and

〈P〉 � Brβ
∞, (3)

as shown in Fig. 3(e). Underlying these relations is what
seems like a fractal shape of the Sokoban’s trajectories
(Fig. S2 [56]). Substituting A and P in Eq. (1) by their
averages and rearranging we obtain

r∞ =
(

1 − ρ

Cρ

)1/γ

, (4)

where γ = α − β and C = A/B.
Equation (4) conveys a relation between the exploration

radius, r∞, of the Sokoban and the obstacle density ρ. To test
it, we fit the simulations data in Fig. 3(e) and estimate the
parameters {A, B, α, β} which govern the power-law scalings
of 〈A 〉 in Eq. (2) and 〈P〉 in Eq. (3). Using these estimates we
obtain γ � 0.182 and C � 0.397. Substituting these numbers
back into Eq. (4), we plot the predicted relation [dashed line,
Fig. 3(d)]. We compare this prediction to direct estimates of
the mean exploration radii that were obtained from the asymp-
totic MSDs at different obstacle densities [markers, Fig. 3(d)].
Very good agreement is found between the prediction of
Eq. (4) and data coming from simulations.

While the agreement between Eq. (4) and data coming
from simulations is very good, it is not perfect. One source
of error comes from the conservative assumption that was
made while writing Eq. (1). Namely, that the Sokoban gets
caged only when all visited (area) sites are empty and all
perimeter sites are occupied. Yet, we find that caging usually
occurs earlier, with some visited sites still occupied by ob-
stacles and some perimeter sites still empty. This can happen
as the Sokoban may get trapped in a small microenvironment
that becomes isolated from the rest of the arena after caging
occurs. However, modifying Eq. (1) to state that the Sokoban
gets caged when a fraction fA of the obstacles that resided in
visited sites were pushed to occupy a fraction fP of perime-
ter sites that were initially vacant, A fA ρ = P fP (1 − ρ),
yields C = A fA /B fP in Eq. (4) and does not change γ .

Interestingly, for the obstacle densities examined here, we
find that the average fraction fA is only slightly larger than
fP , thus explaining the slight overestimate in the theoretical
prediction of r∞ compared with simulations data [Fig. 3(d)].
Whether larger deviations from Eq. (4) arise for smaller

obstacle densities is currently unknown, but cannot be entirely
ruled out since fA and fP also show some dependence on ρ.

Discussion and outlook. In this paper we introduced a
model for random walks in disordered media. Contrary to
the canonical “ant in a labyrinth” AIL model, the Sokoban
random walk considered herein actively interacts and modifies
its surroundings by pushing obstacles in the course of its mo-
tion. We studied the dynamics of the Sokoban using extensive
Monte Carlo simulations, measured its MSD, and compared
it to that obtained for an AIL in the presence of obstacles.
At obstacle densities above the percolation threshold, we find
that the Sokoban typically roams much further than an AIL
that cannot push away obstacles that block its path. However,
at obstacle densities that are close to the percolation thresh-
old and lower, there is a striking change of trend: while the
AIL becomes unbounded, the Sokoban random walk remains
confined (caged).

A conservative sufficient condition regarding the onset of
caging was used, in tandem with fractal scaling laws, to derive
Eq. (4) which relates the density of obstacles to the asymp-
totic root MSD of the Sokoban. This equation explained the
observed density dependence of the mean exploration radius.
A prime corollary coming from Eq. (4) is that the explo-
ration radius is finite for any positive obstacle density ρ > 0,
suggesting that the Sokoban undergoes dynamical caging at
all obstacle densities. Consequently, the percolation transition
is lost. However, Eq. (4) is not exact, and numerical deter-
mination of the mean exploration radius at extremely low
obstacle densities is very challenging computationally and
beyond our reach. Thus the existence of a critical density in
the Sokoban model, or lack of it thereof, remains to be proven
rigorously.

Despite their superficial similarity, the Sokoban random
walk and AIL exhibit qualitatively different behaviors. While
the AIL becomes unbounded below a critical obstacle density,
the Sokoban random walk undergoes dynamical caging well
beyond this density. From this we learn that the ability to push
away obstacles is not always beneficial for a random walker
seeking to explore its surroundings. Indeed, depending on the
obstacle density, the asymptotic MSDs of the Sokoban random
walk and AIL may differ by orders of magnitude. However,
for a very narrow range of densities near the percolation
threshold the asymptotic MSDs are similar, thus making it
difficult to discriminate the two walks based solely on this
static measure. To this end, we recall that near criticality an
AIL on a percolation cluster displays subdiffusive behavior
[58]. In contrast, we find that the Sokoban displays regular
diffusion, i.e., MSDs that (prior to saturation) grow linearly
with time (Fig. S3 [56]).

Short-ranged tracer-media interactions are often neglected
as they are not believed to significantly impact transport
properties at the macroscale. However, the findings presented
herein and in [51] vividly demonstrate that even a limited
ability of a random walker to dynamically modify its local
environment could drastically alter its long-ranged transport
behavior and first-passage properties. In such cases, i.e.,
where strong deviations from the inert “ant in a labyrinth”
paradigm occur, the Sokoban provides an alternative null
model, which can be further adapted and refined according
to need.
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