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Dragon kings in self-organized criticality systems
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The spontaneous emergence of scale invariance, called self-organized criticality (SOC), is often attributed to a
second-order absorbing-state phase transition (ASPT). Many real-world systems display SOC, yet with extreme
events overrepresented, called dragon kings (DKs) and causing significant disruption. We show analytically
that the trade-off between driving impulse and dissipation rate can create DKs in a second-order ASPT. This
establishes that DKs exist in SOC systems, reveals a taxonomy of DKs, and shows that larger dissipation and
smoother driving lower risk of extreme events.
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Introduction. Many natural and engineered systems ex-
hibit properties that follow a broad-scale distribution. For
power-law distributions this is often explained through the
framework of self-organized criticality (SOC). Examples are
numerous and diverse, from electric power grids [1,2] and
social media networks [3,4] to solar flares [5,6], possibly brain
dynamics [7,8], and even the multiverse [9]. The ubiquity of
power-law distributions in nature motivated the now semi-
nal Bak-Tang-Wiesenfeld (BTW) sandpile model [10]. This
model sparked broad and intense research of SOC, which con-
verged on the second-order absorbing-state phase transition
(ASPT) mechanism [11] as a widely accepted explanation of
the phenomenon [12,13].

Often, in real systems, smaller events follow a power-law
distribution, yet the extreme events violate the power-law
paradigm by being significantly larger and overrepresented.
This creates a peak at the tail of the distribution. Sornette
dubbed such events dragon kings (DKs) [14,15]. Dragon,
to stress their unique origins, distinguishing them from
smaller events, and king, to underline their disproportionate
impact. DKs are usually generated by an endogenous, self-
amplifying mechanism, different from mechanisms driving
smaller events. They have been observed in various contexts
including drawdowns in financial markets [16], nuclear re-
actor leaks [17], city sizes [18], marine particle sizes [19],
neuronal activity during epileptic seizures [20,21], thermoa-
coustics experiments [22], earthquakes [23], etc. Despite their
prevalence and impact, the analytic study of DKs is still quite

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

limited. Here we establish a second-order ASPT mechanism
for DKs, showing that DKs can exist in SOC systems and
revealing a taxonomy of DK systems (Fig. 1).

Enigmatic “peaks,” “bumps,” or “humps” have been ob-
served in previous SOC studies [12,23–30]. In special cases,
the bump can be explained by the accumulation of events
capped by finite system size [12,24,31]. However, this mech-
anism is only relevant for the distributions with a trivial
power-law exponent τ = 1 [12], and even then, the bump
could be evenly spread across the whole distribution. In other
cases, a bump can result from a finite driving rate [32–34];
however, vanishing driving rate has long been recognized as a
requirement for SOC [35,36]. We reconcile bumps in SOC
by showing that the standard SOC framework surprisingly
produces DK events through the interplay of dissipation and
an intrinsic quantity that we call the driving impulse, which
has received only limited attention [37,38]. Furthermore, we
derive a new necessary condition for SOC.

The self-organization (SO) mechanism, tunes a system to
balance the trade-offs between two external “forces” [12,29].
The balance usually occurs near a phase transition point be-
tween active and inactive phases. The first “force” is driving
(e.g., sand deposition in the BTW sandpile model [10]), which
increases the control parameter E (e.g., the particle density)
at a slow constant rate h. The second “force” is dissipation
ε, reducing E proportional to the current activity level (e.g.,
boundary or bulk dissipation of sand).

Self-organization around a second-order ASPT is the ac-
cepted theory of SOC [Fig. 2(a)]. The order parameter is
the stable stationary activity. When the system is subcritical
(E < Ec), the steady state is inactive. Thus, the SO mecha-
nism causes little dissipation and drives the system toward
E = Ec. In contrast, the supercritical system (E > Ec) has
an active, stable, stationary state in the thermodynamic limit.
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FIG. 1. Dragon kings have been observed in many scenarios. We
organize them by their underlying nature. The inner sets denoted as
self-organized dragon kings rely on dissipation ε and driving �E .

Thus, the SO mechanism dissipates E in a cascade of activity,
driving the system back to E = Ec. The system becomes bal-
anced at the critical point producing power-law distributions
in response functions. The size of the cascades follows the dis-
tribution P(S) = S−τ G(S/Sε ) in the limit of large system size
N → ∞ (thermodynamic limit), small dissipation probability
ε → 0 (conservative limit), and vanishing ratio of driving rate
to dissipation h/ε → 0 (adiabatic limit) [12,13,35,39]. Here
Sε is the cutoff due to the dissipation ε (note, Sε ∼ ε−1/σ →
∞ as ε → 0).

If instead of a second-order ASPT, one considers a first-
order ASPT as shown in Fig. 2(b), the SO mechanism leads to
hysteresis. Muñoz and collaborators established this in recent
papers [40,41] (see also [42]) and dubbed this phenomenon
“self-organized bistability.” The corresponding cascades fol-
low a power-law distribution with a DK bump (set E in Fig. 1).
This is a step toward unifying DKs and SOC, but SOC is
described by a second-order ASPT.

For a first-order ASPT, the emergence of DKs is illustrated
in Fig. 2(b). Plotted is the activity of the system ρ against
control parameter E . For small values of E the system is
inactive (ρ = 0). Driving increases E , but since the inac-
tive branch is stable, small fluctuations can only start minor
cascades, causing little dissipation. Once driven into the un-
stable region, a DK event begins [black curve in Fig. 2(b)].
The system is repelled from the newly unstable quiescent

FIG. 2. Self-organization around: (a) a second-order ASPT, cre-
ating SOC or DKs depending on regime; and (b) a first-order ASPT
creating hysteresis with DKs. Solid (dashed) lines indicate stable
(unstable) steady states of the underlying phase transition model
without SO (with E fixed, often called “static”). Black trajectories
are examples of possible DK events.

branch, while attracted to the stable active branch. Repulsion
increases linearly with distance from the unstable branch, and
the activity grows exponentially, leading to a self-amplifying
DK mechanism. Once on the active branch, the macroscopic
activity causes dissipation, reducing E until the saddle-node
bifurcation point after which the system falls back into a
quiescent steady state, concluding the single DK event. Then
the cycle repeats. Examples of such first-order absorbing state
DKs include the facilitated sandpile introduced in [40], and
more recently, the BTW–Kuramoto model [43].

Dragon kings in models of SOC. We next show how DKs
can arise from a second-order ASPT (set D in Fig. 1). Ex-
amples of such DKs include the self-organized quasicritical
neuronal models [30] and the rice-pile model [27] (see also
[23,24,28]).

For a DK to be triggered in a second-order ASPT model
of SOC it must be driven far into the supercritical region
[Fig. 2(a)]. Such a supercritical state is quiescent (e.g., when
all nodes are below or at capacity in the BTW sandpile model)
and stable under some perturbations due to the discrete nature
of the state space. Stable perturbations move the system to
another quiescent configuration (e.g., when a grain of sand is
added to a node that was below its capacity) or displace it in
the stable direction, causing only minor activity (e.g., when
sand arrival causes a local cascade with only a few topplings).
Thus the system advances deeper into the supercritical regime
with a nonzero probability. Once the macroscopic activity is
eventually triggered, it lasts until the surplus of the control
parameter (E − Ec) gets dissipated and E is reduced back to
Ec. Intuitively, a massive event is more likely when driving
increases E in large increments �E and the dissipation ε is
small.

SOC requires the adiabatic limit where the driving rate
h → 0, allowing all cascading activity to die down before
performing the next driving step. Nonzero h creates over-
lapping cascades, distorting the power law and potentially
creating a DK peak [13,34,44]. The adiabatic limit is realized
ideally in computer simulations where the code “babysits”
[36] the dynamics. This introduces an infinite separation of
timescales between cascading and driving dynamics, implying
driving happens infinitely rarely on the cascading timescale,
thus h = 0. However, even with this infinite separation, the
driving is still performed in discrete steps, imposing upon us
another small parameter, the driving impulse �E .

The role of the driving impulse �E. The driving impulse
�E is an important parameter (e.g., see [37,38]) distinct from
the driving rate h. To achieve SOC, one needs the stronger
limit �E → 0 in place of h → 0. This limit is usually implicit
in SOC models. For example, in the BTW sandpile model,
the system is driven by adding one grain of sand at a time,
�E = 1

N , which automatically vanishes in the thermodynamic
limit. We will show that even in the dual limit ε,�E → 0, the
interrelation of ε and �E determines the presence or absence
of DK events in otherwise power-law distributions. In con-
trast, for �E sufficiently large, all avalanches are system-wide
[37].

DK condition in models of SOC. Consider a second-
order ASPT [Fig. 2(a)]. Without driving and dissipation,
perturbations introduced in a quiescent state will die down
with probability p or grow into macroscopic activity with
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probability 1 − p. Clearly, p = 1 in the subcritical states and
p < 1 in supercritical states. Therefore p as a function of E
undergoes a phase transition at E = Ec. Assuming that near
criticality p follows scaling behavior standard for continuous
phase transitions [45], we write

p(E ) =
{

1 for E � Ec

1 − k(E − Ec)λ for E > Ec.
(1)

The critical exponent, λ, depends on the universality class of
the system. The constants k and Ec depend on the microscopic
rules of the model.

Let us consider self-organization with a small driving im-
pulse and vanishing dissipation around such a second-order
ASPT. Driving increases E by a constant amount �E at every
iteration which simultaneously introduces a small perturba-
tion to allow a cascade to begin [46]. In the limit of vanishing
dissipation ε → 0, minor cascades do not impact the control
parameter, and the system moves deeper into the supercritical
phase. Eventually, a macroscopic cascade will get triggered
pushing the system to the active stable branch. Dissipation
then reduces E proportional to the current level of activity ρ,
and the system evolves along the active branch lowering E
until it reaches Ec and falls into an absorbing state. This is a
single DK cascade [see the black curve in Fig. 2(a)].

The macroscopic cascade starts with supercritical E > Ec

and terminates at Ec. The size of the cascade S causes dissipa-
tion εS, which means (E − Ec) = εS or

S(E ) = E − Ec

ε
. (2)

We want to find the average size of a DK event in the
limit ε → 0. Starting at Ec, the control parameter increases by
�E on every iteration until a DK eventually happens. After j
uneventful iterations, Ej = Ec + j�E . The probability that a
DK will get triggered after exactly j iterations and not earlier
is given by q j = [1 − p(Ej )]

∏ j−1
i=0 p(Ei ). Thus the expected

size of a DK is

SDK =
∞∑
j=0

S(Ej )q j

=
∞∑
j=0

j�E

ε
[1 − p(Ec + j�E )]

j−1∏
i=0

p(Ec + i�E ). (3)

We can simplify this using Taylor expansions and by approx-
imating the sums by integrals (see Appendix):

SDK ≈ 1

ε

(
1 + λ

k
�E

)1/1+λ

�

(
2 + λ

1 + λ

)
. (4)

This derivation holds for small fixed �E in the limit ε →
0. In the reversed regime, with small fixed ε and vanishing
�E → 0, we expect a standard SOC distribution P(S) =
S−τ G(S/Sε ) with a sharp cutoff at the dissipative scale Sε.
Balance between driving and dissipation determines Sε [35]:

�E =
∞∑

S=0

εSP(S) ≈ εS2−τ
ε

∫ ∞

0
z1−τ G(z)dz (5)

with τ < 2. We express Sε as a function of ε and �E :

Sε ≈
(∫ ∞

0
z1−τ G(z)dz

)−(1/2−τ )(
�E

ε

)1/2−τ

. (6)

Notice that only the smaller scale between Sε and SDK is
relevant. When Sε � SDK, the cascade size distribution ter-
minates at Sε, and there is no DK peak. If Sε � SDK, a DK
peak at SDK violates the finite-size scaling assumption P(S) =
S−τ G(S/Sε ) and renders the dissipation cutoff Sε unphysical.

The competition between the two scales divides the pa-
rameter space of an SOC model into two regions: one with
DK peaks and the other without. The boundary between the
regions is roughly given by Sε ∼ SDK, or neglecting the coef-
ficients in Eqs. (4) and (6)

�E ∼ ε(λ+1)(τ−1)/λ+τ−1. (7)

Then the DK condition is

�E � ε(λ+1)(τ−1)/λ+τ−1. (8)

This result parallels the conjecture made by Kinouchi et al.
in [30] that there is a connection between adaptive SOC and
DKs, and an earlier attempt to unify DKs with power laws
by Eliazar [47]. It agrees with a qualitative observation by
Bonachela and Muñoz in [38] that for finite dissipation ε,
large driving impulse causes supercritical behavior with the
DK bump. It also aligns with the results by Cafiero et al.
that SOC requires nonzero local rigidity, which in our setting
translates to �E → 0 [37]. We show further that even with
�E → 0, one can get DKs provided that ε scales accordingly.
This provides a necessary condition on SOC.

For instance, in many SOC models �E = N−1 and the
effective dissipation ε also scales as some power of N (e.g.,
due to open boundary conditions). The potential appearance
of the DK peak in such systems will depend on these scaling
laws through Eq. (7).

Examples. A classic example of a second-order ASPT is
directed percolation. Consider a network where each node
is either infected (active) or susceptible (inactive). Infected
nodes infect each of their neighbors with probability E
and then immediately recover. Here E serves as the self-
organizing control parameter. A cascade is triggered by
infecting a random node and lasts until all nodes recover. The
infection probability E increases by �E before every cascade
(driving) and decreases by ερ at every time step during the
cascade (dissipation). Here ρ is the number of infected nodes
(i.e., activity), and ε is the dissipation.

This model undergoes a second-order phase transition. Un-
der mean-field approximation, the probability of falling back
into the absorbing state Eq. (1) can be approximated as the
extinction probability of the corresponding branching process
[26]. This fixes λ = 1. In addition, the critical exponent for the
cascade size distribution has the mean-field value τ = 3

2 . Then
Eq. (7) reduces to �E ∼ ε2/3. Alternatively, we can write it as
�E = f (ε)ε2/3 with f (ε) = O(1) which becomes a constant
coefficient in the small dissipation limit

�E = cε2/3, (9)

where the constant c = limε→0 f (ε) can be determined by
fitting experimental data.
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FIG. 3. Illustration of DK detection based on empirical cumu-
lative distribution function [48]. (a) Typical distribution with DKs
present (large �E for given ε). The straight line is a power-law fit
of the data in the second decade. The gray curves show the tightest
confidence interval around this power law, which contains the most
overrepresented data point. (b) Typical distribution without DKs
(small �E for given ε).

The same argument leads also to Eq. (9) for the BTW
sandpile model on a network. To explore Eq. (9) beyond
the standard fixed driving impulse �E = 1

N , we extend the
BTW model to allow different values of �E by adding more
than one grain during driving. The additional sand grains are
deposited to noncritical sites to retain unique cascade seeds
and keep activity perturbations consistent.

We perform simulations for various values of dissipation
ε and driving impulse �E . We consider random 3-regular
and Erdős-Rényi networks. Each run produces a cascade size
distribution. The potential presence of a DK peak is then
quantified by a p value of the statistical DK detection test de-
veloped in [48]. This test considers the empirical cumulative
distribution function eCDF of event sizes (fraction of events
larger than S). To find the p value, we first fit the appropri-
ate section of the 1 − eCDF with a power law (see Fig. 3).
Next, we find the most overrepresented data point in the tail,
potentially a DK [marked with a dot in Fig. 3(a)]. Finally, we
find the tightest confidence interval accommodating this point
[48]. One minus this confidence level is the p value of the null
hypothesis that there is no DK in the distribution.

Figure 4 shows the parameter space of the above models
colored by the p values of the statistical test. The dashed
curve shows the theoretical boundary while green (the dark
region) indicates the presence of DKs. Each simulation was
performed on a network of 5000 nodes for 105 driving itera-

1×10-6 1×10-6 1×10-2

1×10-3 1×10-3 1×10-3

FIG. 4. Parameter spaces for self-organized directed percolation
(a) and (b), and for the BTW model (c), colored by the p value of the
statistical DK test [48]. The green (dark-colored) region indicates
the presence of DKs, while yellow (light-colored) regions indicate
power law with a cutoff. The black dashed curve is the theoretical
border between the two regions; Eq. (9) with c fitted to p value =
0.05. (a) and (c) are for random 3-regular networks (with c = 4 and
c = 0.013, respectively), while (b) is for Erdős-Rényi graphs of the
same density (with c = 1.1).

FIG. 5. Histograms of cascade sizes for different values of the
control parameter E (weak node density) in perfectly mixed (a) in-
oculation and (b) complex contagion models of [29]. Dark pixels
indicate a high probability. The dashed line shows the largest mode
(location of the rightmost peak) which is (a) continuous for the
inoculation model (second-order transition), and (b) discontinuous
for the complex contagion models (first-order transition). Insets show
vertical slices (i.e., cascade size distribution) for E = 0.6 marked
with a blue (light-colored) vertical line.

tions. Power laws were fitted to the cascade sizes 10 < S <

1000 for directed percolation and 10 < S < 100 for the BTW
sandpile model. Experiments analogous to Fig. 4 confirm that
the exponent 3

2 in Eq. (9) is robust and independent of the de-
gree and connectivity of the random regular and Erdős-Rényi
graphs.

Dragon king taxonomy. Self-organized DKs are not re-
stricted to the ASPT mechanism (sets D and E in Fig. 1).
For example, the inoculation and complex contagion models
described in [29] self-organize around “spreading transitions,”
where activity dies down in subcritical states, while in su-
percritical states it consists of a propagating front line [49].
The cascade size distribution becomes bimodal in both models
once the control parameter exceeds the critical value. The
largest mode (i.e., the location of the rightmost peak in the
distribution) has a continuous transition in the inoculation
model [Fig. 5(a)], producing second-order DKs that belong to
set D of Fig. 1. The same order parameter is discontinuous for
the complex contagion model [Fig. 5(b)] producing first-order
DKs which belong to set E of Fig. 1 [50]. Set B is strictly
larger than D since it contains the inoculation model of [29]
and the self-organized branching process [26], which are not
in D. Similarly, set C \ E contains the complex contagion
model of [29]. Set A is also larger than B ∪ C since some DK
systems do not utilize the SO mechanism [31,51].

Discussion and conclusions. We have shown analytically
that DKs can exist in SOC systems. Even for a vanishing
driving rate h and dissipation ε, the competition between
driving impulse �E and dissipation ε determines whether a
DK peak appears in such systems. Proportionally large driving
impulse �E can push the system deep into the supercritical
phase, thus making it more susceptible to system-wide DK
cascades. On the other hand, for proportionally large dissipa-
tion, small cascades are sufficient to bring the system back to
the critical point, thus eliminating the DK peak from the event
size distribution.

The devastating nature of DKs is usually alleviated
by their predictability, allowing preparation and planning
[14,15,29,43]. The analytic treatment developed in this
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Letter could be useful for predicting and controlling DKs. The
condition in Eq. (8) determines if DKs are to be expected,
in which case dissipation should be increased and/or driving
impulse should be decreased to avoid them. One can predict
the DK probability 1 − p(E ) through Eq. (1) based on the
global information E . Alternatively, one can evaluate the risk
that an ongoing cascade will become a DK by monitoring its
local features [29,43]. For example, the exponential growth of
activity would imply the onset of the self-amplifying mecha-
nism [43] (this does not require global information, but it can
only give predictions after the cascade has started).
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APPENDIX: DERIVING EQ. (4)

Here we show the details of computing the expected size
of DK events SDK. We start by substituting the expression for
p(E ) given in Eq. (1) into Eq. (3).

SDK =
∞∑
j=0

j�E

ε
k( j�E )λ

j−1∏
i=0

(1 − k(i�E )λ)

=
∞∑
j=0

k

ε
( j�E )λ+1

j−1∏
i=0

(1 − k(i�E )λ) (A1)

Let us now compute the product term

j−1∏
i=0

(1 − k(i�E )λ) = exp

⎛
⎝ j−1∑

i=0

ln(1 − k(i�E )λ)

⎞
⎠

≈ exp

⎛
⎝−

j−1∑
i=0

k(i�E )λ)

⎞
⎠

≈ exp

(
−k�Eλ

∫ j−1

0
iλdi

)

= exp

(
−k�Eλ

λ + 1
( j − 1)λ+1

)
(A2)

Here in the second equality we use the Taylor expansion in
�E . Note, that this expansion breaks down for large values i,
but these terms do not contribute significantly since they cor-
respond to large and unlikely excursions into the supercritical
phase. In the third equality we use an approximation of the
sum with an integral. For convenience, we define A = k�Eλ

λ+1 ,
and substitute our result into Eq. (A1)

SDK ≈
∞∑
j=0

k

ε
( j�E )λ+1e−A( j−1)λ+1

≈
∫ ∞

0

k

ε
( j�E )λ+1e−A( j−1)λ+1

d j

= k

ε
�Eλ+1

∫ ∞

0
jλ+1e−A( j−1)λ+1

d j. (A3)

Since A ∝ �Eλ � 1, the exponent e−A( j−1)λ+1
will be sig-

nificant only for large values of j and thus we can neglect the
−1 compared to j.

SDK ≈ k

ε
�Eλ+1

∫ ∞

0
jλ+1e−A jλ+1

d j

= k

ε
�Eλ+1 1

λ + 1
A− λ+2

λ+1

∫ ∞

0
z

1
λ+1 e−zdz

= k

ε
�Eλ+1 1

λ + 1

(
k�Eλ

λ + 1

)− λ+2
λ+1

�

(
1

λ + 1
+ 1

)

= 1

ε

(
λ + 1

k
�E

) 1
1+λ

�

(
λ + 2

λ + 1

)
. (A4)

In the second line, we changed the integration variable to
z = A jλ+1. The validity of this approximation can be easily
verified by comparing its predictions with numerical evalua-
tion of the original expression.
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