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Structural spillage: An efficient method to identify noncrystalline topological materials
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While topological materials are not restricted to crystals, there is no efficient method to diagnose topology
in noncrystalline solids such as amorphous materials. Here we introduce the structural spillage, a new indicator
that predicts the unknown topological phase of a noncrystalline solid, which is compatible with first-principles
calculations. We illustrate its potential with tight-binding and first-principles calculations of amorphous bismuth,
predicting a bilayer to be a new topologically nontrivial material. Our work opens up the efficient prediction of
noncrystalline solids via first-principles and high-throughput searches.
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Introduction. Predicting which solids host nontrivial elec-
tronic topological phases is a central problem in condensed
matter physics. For crystalline solids, first-principles methods
take advantage of crystal symmetries to identify topological
materials [1–5]. However, symmetry-based methods cannot
be applied to diagnose nontrivial topology in materials that
lack translational invariance such as amorphous, polycrys-
talline, and quasicrystalline materials. In fact, given the far
greater ubiquity of noncrystalline materials in condensed mat-
ter, solving this challenge would open up several new material
classes far more numerous than crystals, with both funda-
mental interest for novel phenomena unique to noncrystalline
matter [6–39], and for their possible greater ease of integration
into devices [40,41].

Prior work on topology in noncrystalline materials used
convenient amorphous tight-binding models with average and
local symmetries [11,14,20,21,42], however these do not in-
clude the full chemical and structural specificity found in real
matter. Similarly, real-space invariants [8,43–55], including
Wannier-based tight-binding formalism, require the system be
treated on a case-by-case basis and can be computationally
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costly. Single-point formulas constitute powerful tools for
some classes [56,57], but general and efficient formulas are
still lacking.

To overcome this methodological problem, we introduce
the “structural spillage,” which is inherently compatible
with first-principles approaches. Since the characterization
of topology in general relies on the comparison with a
known reference [58], we propose that in our case the ap-
propriate comparison is between the wavefunctions of the
noncrystalline target system and a crystalline reference state.
A similar approach was proposed in Ref. [59] to identify
topological band inversions in crystals by comparing the
wavefunction overlap in insulating crystals with and without
spin-orbit coupling (the spin-orbit spillage). The spillage is an
example of a “strange correlator,” which diagnoses the topol-
ogy of symmetry protected topological phases by comparing
them to a trivial reference system [60,61].

As a strange correlator, the spillage relies on the non-
Wannierizability of short-range entangled topologically non-
trivial phases, i.e., the obstruction to find exponentially
localized wavefunctions. This obstruction holds irrespective
of the lattice structure [48,49,51,53], but the spillage is not
currently applicable to noncrystalline systems. This is a sig-
nificant drawback as it impedes the prediction of a potentially
large number of novel topological materials, such as qua-
sicrystals or amorphous solids.

In this work we introduce the structural spillage as
a method to calculate the overlap between wavefunctions
with different structural configurations. The central advan-
tage of this method is the use of a crystal as the reference
system, whose topological characterization can be effi-
ciently calculated using standard symmetry-based methods
[1–5], to determine whether noncrystalline systems retain the
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FIG. 1. (a) The spillage γ is high or low depending on whether
a test wavefunction |ψ〉 is in the same or different topological state
compared to a known reference wavefunction |ψ̃〉. (b) The spin-orbit
spillage [59] compares wavefunctions with and without SOC. The
structural spillage takes advantage of the knowledge of the topo-
logical state of a crystalline solid to find the topological state of an
amorphous solid.

topological properties of their crystalline counterparts
(Fig. 1). Our results indicate that the structural spillage
can accurately identify amorphous bismuthene as topologi-
cally nontrivial [13,62], and predicts that amorphous bilayer
bismuth is a novel topological material. By definition, the
structural spillage is applicable to generic noncrystalline ma-
terials. It is suitable to establish a high-throughput catalog of
potential noncrystalline topological materials, using currently
available density functional theory (DFT) codes.

Structural spillage.The total spillage γ measures the mis-
match between two projectors P and P̃ into occupied states
[59]

γ = 1
2 Tr[(P − P̃)2] = Tr[P(1 − P̃)], (1)

where the trace acts on the entire Hilbert space, and the last
equality holds under the assumption that both systems have
the same total number of occupied states Nocc = Tr[P] =
Tr[P̃]. By definition, γ � 0 and can be viewed as the vari-
ance between two distributions with the same average. When
P = P̃ the spillage vanishes. However, when the overlap be-
tween the two projectors is zero, it equals the total number
of occupied states Nocc. Therefore, γ acts as an indicator of
band inversions caused by the parameters that differ in P and
P̃ [59].

To predict topological band inversions in crystals, Liu
and Vanderbilt [59] chose P and P̃ to be projectors onto
the subspace of occupied states of crystalline insulators with
and without spin-orbit coupling (SOC), respectively. Lattice
periodicity allows these to be written in Bloch momentum
k as P(k) = ∑

n∈occ |ψnk〉〈ψnk|, which defines a k-resolved

spin-orbit Bloch spillage γB(k) = nocc − Tr[P(k)P̃(k)], where
nocc = Nocc/Ncells is the number of occupied bands. The to-
tal spillage is recovered by summing over all momenta in
the Brillouin zone (BZ) γ = ∑

k γB(k). The spin-orbit Bloch
spillage γB(k) thus quantifies the band inversion caused by
SOC at each k; it is large at points in the BZ where the band in-
version is sizable. Reference [59] showed that at certain points
in the BZ the spin-orbit Bloch spillage has to be larger than
some given value if the SOC induces a topologically nontrivial
phase from Wannier obstruction arguments. For instance, this
lower bound equals two for a time-reversal symmetric topo-
logical insulator.

From the above properties, γB(k) can be used to signal
topological band inversions in crystals, and is straight-
forward to calculate using DFT [59]. Indeed, it has recently
been applied to high-throughput searches for topological
crystals [63,64]. We note, however, that a large spillage
is a necessary but not sufficient condition for nontriv-
ial topology: in certain cases, e.g., when many bands
close to the Fermi level are slightly mixed by SOC, the
spillage may be fooled by trivial insulators [59]. Conse-
quently, more recent searches for topological crystals favor
symmetry-based methods. In most practical cases, the spillage
is expected to be an accurate indicator of topology in
crystals [59].

In this work, we propose a spillage that compares a non-
crystalline system with the crystalline counterpart closest in
local structure. In doing so, we take advantage of the well-
developed methods of symmetry indicators for the topological
characterization of crystals [2]. To this end, we now refor-
mulate our spillage in a plane-wave basis for incorporation
into standard plane-wave DFT codes. Moreover, it is also
well defined for both crystalline and noncrystalline systems.
We write the total spillage γ in the plane wave basis |pα〉,
where p is the plane-wave momentum (not necessarily re-
stricted to the first BZ) and α denotes spin. To calculate
the spillage, we need the projector onto occupied states of
the amorphous and reference systems P = ∑

N∈occ |ψN 〉〈ψN |,
where |ψN 〉 are the eigenstates. By projecting these onto plane
waves, we then have access to the projector matrix elements
Pαβ

p,p′ = 〈pα|P|p′β〉, which are well-defined for crystalline and
noncrystalline systems. Any plane-wave momentum p can
be uniquely decomposed as p = k + G, the sum of a crystal
momentum k in the first BZ plus a reciprocal lattice vector G,
both of the reference crystal. Then, by substituting the plane-
wave expansion into Eq. (1), we can define the quasi-Bloch
spillage as

γqB(k) = 1

2

∑
k′

∑
GG′

∑
αβ

[
Pαβ

k+G,k′+G′P
βα

k′+G′,k+G
− Pαβ

k+G,k′+G′ P̃
βα

k′+G′,k+G

] + [P ↔ P̃] = (2a)

= 1

2

⎧⎨
⎩

[∑
Gα

Pαα
k+G,k+G

]
+ ñocc(k) −

∑
Gα

∑
G′β

[Pαβ

k+G,k+G′ P̃
βα

k+G′,k+G + P̃αβ

k+G,k+G′P
βα

k+G′,k+G]

⎫⎬
⎭ (2b)
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In Eq. (2b) we have used the fact that the reference projec-
tor P̃ corresponds to a crystal, which allows us to set k′ = k
in terms involving at least one P̃, since there is no scattering
between different crystal momenta due to the discrete trans-
lational symmetry. Note that γqB(k) fulfills the same sum rule
as the Bloch spillage γ = ∑

k γqB(k). Therefore, applied to
two insulating crystals, γqB(k) recovers the Bloch spillage.
Moreover, it can also be applied to semimetallic systems with
the advantage of it being bounded by zero, in contrast to recent
extensions to semimetallic materials [63,64].

Our key result is that the structural quasi-Bloch spillage,
defined by Eq. (2), can be used as an efficient topological
indicator in noncrystalline systems. Crucially, it can be effi-
ciently computed with plane-wave-based DFT methods, since
the projector matrix elements are an output of the calculation.
Consequently, this method is suitable for high-throughput
identification of noncrystalline topological materials. Note
that Eq. (2) can also be computed using a localized-basis
DFT code, by determining the plane-wave coefficients using
a Fourier transform.

Structural spillage in the tight-binding approximation.
Defining a structural spillage that is useful in the tight-binding
approximation requires us to develop further Eq. (2). The
reason is that two issues emerge as we define plane-wave
states projected into the tight-binding Hilbert space of Nsites

as |pα〉 = 1√
Nsites

∑
r eip·r|rα〉, where r labels the position of

each site and α labels internal quantum numbers, such as spin
or the orbital type. First, because the tight-binding model’s
Hilbert space does not span the entire real space but only
positions defined by the charge centers, our plane waves
are nonorthogonal. Therefore, their overlap depends on the
atomic positions, and therefore on the amount of structural
disorder. Since we expect continuous translational symmetry
to be recovered after averaging over different disorder real-
izations, we may solve this issue by neglecting the scattering
between different momenta in Eq. (2), i.e., assuming that
Pαβ

p,p′ ∝ δp,p′ . This assumption has been successfully used to
determine the topology of noncrystalline systems using the
effective Hamiltonian approach [14,20,21,38].

A second issue of the tight-binding approximation is that
the projected plane waves form an overcomplete set. A well-
defined basis for a crystal with Ns/c sites per unit cell consist
of a subset with momenta in Ns/c Brillouin zones. However,
there are different types of Brillouin zones depending on the
phase factor eiG·t , where t are the relative positions of the sites
inside the unit cell [65]. For instance, in the honeycomb lattice
there are 3 types of BZ, since e−iG·t = eia2π/3, with a ∈ Z3

(see Supplemental Material (SM) [66] C). This issue can be
handled by replacing the sum over reciprocal lattice vectors G
by an average over the different types of G, and multiplying
by Ns/c.

With these modifications, the structural spillage Eq. (2) can
be defined in the tight-binding approximation as

γ TB
qB (k) = 1

2

Ns/c

NBZs

∑
G∈BZs

tr[(Pk+G − P̃k+G)2], (3)

where the sum over G runs over one BZ of each of the NBZs

types, the trace acts over the internal degrees of freedom α,

and we have defined the single-momentum projector Pαβ
p =

Pαβ
p,p.

Equations (3) and (2) define the structural spillage to be
used in the tight-binding approximation and first-principles
calculations, respectively. In the remainder of the paper, we
demonstrate how they capture topological phase transitions
of amorphous systems, using low-dimensional bismuth as an
example.

Tight-binding benchmark: bismuthene on a substrate.
Crystalline bismuthene consists of a two-dimensional (2D)
honeycomb monolayer of bismuth atoms. Experiments sug-
gest it to be a quantum spin Hall insulator with topological
helical edge states when grown on SiC(0001) [81] or Ag(111)
[82] substrates. The effect of the substrate is crucial: it filters
the pz orbitals away from the Fermi level leaving the px,y or-
bitals, resulting in a large gap (∼0.67eV) and a nonzero strong
Z2 topological index. Moreover, amorphous bismuthene on a
substrate is predicted to remain topological via first-principles
calculations [13,62], making it a convenient system to bench-
mark our proposed structural spillage.

The low-energy physics of bismuthene is captured by a
tight-binding model with px,y orbitals in the honeycomb lat-
tice, coupled by nearest-neighbor hoppings tσ and tπ , a large
onsite SOC λ, and a substrate-induced Rashba SOC λR (which
we take proportional to λ) [81]. To extend this model to
amorphous structures while preserving the short-range order
expected in amorphous systems [40], we use the voronization
of a pointset [8,14] (see SM [66] (A1)). When the pointset
is triangular, the voronization produces its dual honeycomb
lattice. By randomly displacing the triangular pointset accord-
ing to a characteristic length r, the voronization produces
lattices with threefold coordination, as the honeycomb lat-
tice, but with a finite density of nonhexagonal plaquettes
[see Fig. 2(a)] [83]. Therefore, r continuously controls how
amorphous are our lattices, allowing us to study the effect
of structural disorder on topological properties. In the fol-
lowing, we quantify how amorphous our systems are by the
(configuration-averaged) density of nonhexagonal plaquettes
ρnon-hex, which is in one-to-one correspondence to the param-
eter r (see SM [66] (A1)).

In Fig. 2 we present the topological phase diagram of
amorphous bismuthene as a function of ρnon-hex and λ, bench-
marking γ TB

qB (k) against the two-terminal conductance results.
In the crystalline limit ρnon-hex = 0, the system starts as a
Dirac semimetal for vanishing λ, and a finite λ opens up a
topological gap, similarly to graphene [84]. Above a critical
λ, where the gap closes at the � point, the system becomes a
topologically trivial insulator, adiabatically connected to the
atomic limit in which only the onsite SOC is nonzero.

Both the conductance [Fig. 2(c)] and the structural quasi-
Bloch spillage [Fig. 2(d)] capture the topological transition,
even at finite structural disorder ρnon-hex 
= 0. The conductance
in the topological insulator phase is equal to 2e2/h, originating
from the helical edge states, while it reduces to zero after
the phase transition to the trivial insulator. Concomitantly,
γ TB

qB (k = 0) is large in the topological phase and small in the
trivial phase because we choose the reference system to be a
trivial crystal, only with nonzero onsite λ. Had we chosen the
topological state as reference, the magnitude of the spillage in
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FIG. 2. Structural spillage in the tight-binding approximation.
(a) Example of a real-space structure with a density of nonhexag-
onal plaquettes ρnon-hex � 0.53. (b) Structural quasi-Bloch spillage
γ TB

qB (k) in the BZ comparing topological amorphous bismuthene with
ρnon-hex � 0.53 and λ = 0.22tσ with a trivial crystal with λ/tσ = ∞.
(c), (d) Phase diagrams as a function of SOC λ and the density of
nonhexagonal plaquettes ρnon-hex. (c) Conductance in the “armchair”
ribbon configuration (see Supplementary Material [66] Eq. (A3)).
(d) Structural quasi-Bloch spillage γ TB

qB (k = 0) comparing the amor-
phous system to a trivial crystal with λ/tσ = ∞.

each phase would be inverted, see SM [66] (A1). The critical
λ at the transition for the crystal is correctly predicted by
γ TB

qB (k = 0). In agreement with Refs. [13,62], we find that
increasing disorder decreases the topological gap and hence
the critical λ. Nevertheless, the realistic value of λ � 0.22tσ
[81] lies in the topological phase also in the amorphous case.

Lastly, Fig. 2(b) shows γ TB
qB (k) for fixed λ = 0.22tσ and

ρnon-hex = 0.53. γ TB
qB (k) is peaked around k = 0 with a value

∼1.5, reminiscent of the crystalline topological band inver-
sion occurring at the � point. We also notice that, in the
absence of Rashba SOC, the model reduces to two time-
reversed copies of Chern insulators. Each copy contributes
equally to the structural spillage, demonstrating that the struc-
tural spillage works also for other symmetry classes.

Structural spillage in DFT: free-standing Bi bilayer. To
show that Eq. (2) is well suited for high-throughput screen-
ing of amorphous topological materials, we calculate the
structural spillage from the output wavefunctions of first-
principles calculations (see full details in SM [66]). We choose
previously-studied free-standing bismuth (111) bilayer as an
example. This 2D bismuth allotrope, whose crystalline phase
consists of a buckled honeycomb lattice with lattice constant
a = 4.33 Å, is also predicted to be a strong topological in-
sulator crystal with Z2 = 1 [85–88]. However, no prediction
exists for its amorphous counterpart.

To represent amorphous structures given the periodic
boundary conditions of the calculations, we create 5 × 5 × 1
supercells comprising of 50 Bi atoms per bilayer. Their elec-
tronic structure is calculated for a single supercell momentum,

FIG. 3. Bismuth bilayer supercells used in DFT calculations.
(a) and (b) show in-plane and out-of-plane views of the supercell,
respectively. The colors indicate different degrees of disorder: crystal
(blue), low disorder (green) and high disorder (orange). (c) Radial
distribution function (RDF) showing the statistics of the bond lengths
in the disordered bismuth bilayer and their deviations from the per-
fect crystal (vertical dashed lines). The disorder is sampled from a
Gaussian distribution with a standard deviation of 0.15 Å for the low
disorder and 0.30 Å for the high disorder.

the center of the supercell BZ. Starting from a crystalline
supercell, the structure is disordered by adding random dis-
placements in the x, y, and z directions, sampled from a
Gaussian distribution. The structures and their corresponding
radial distribution functions are shown in Fig. 3.

To predict the topological phase of amorphous Bi bilayer
with SOC, we compute Eq. (2) with plane-wave-based DFT
(see SM [66] B) to compare it with its crystalline counterpart
without and with SOC. When SOC is not included, and hence
when it is topologically trivial (Fig. 4, first row), γqB(k) is
peaked at k = 0, with γqB(k = 0) > 2. Increasing disorder
smooths γqB(k), yet it remains peaked at � with a value
greater than 2. In contrast, when we include SOC in calcula-
tions of both the disordered Bi bilayer and the pristine crystal
(Fig. 4, second row) the spillage is always small. Both rows
together show that amorphous bismuth bilayer with SOC is in
the same topological state as the crystal with SOC, a strong
topological insulator crystal with Z2 = 1.

We have performed a similar analysis using a tight-binding
model for the amorphous Bi (111) bilayer (introduced in SM
[66] (A2)). The results, displayed in the last column of Fig. 4,
show that for comparable disorder strengths γ TB

qB (k) is broader
and its maximum value is smaller than γqB(k) in DFT. It is
thus apparent that, due to the approximations in the tight-
binding calculation of the spillage, which lacks information
of the real-space extension of the orbitals, the spillage method
is more suitable for DFT, an advantageous feature compared
to other topological indicators available for noncrystalline
systems.

Discussion. We have introduced the structural spillage
as an efficient method to signal noncrystalline topological
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FIG. 4. Structural quasi-Bloch spillage γqB(k) for the bismuth
bilayer. First row: comparison between an amorphous system with
SOC (a-SOC) and a crystalline system without SOC (x-noSOC).
Comparing an amorphous system without SOC with a crystalline
sample with SOC leads to similar results. Second row: comparison
between the amorphous and crystalline systems with SOC (a-SOC
and x-SOC, respectively). γqB(k) is high at k = 0 for the first row
while small for the second row, indicating that amorphous bismuth
bilayer is a topological insulator. The last column shows a compari-
son with the tight-binding quasi-Bloch spillage γ TB

qB (k) (see SM [66]
(A2)).

phases, compatible with tight-binding and ab initio simula-
tions. We have used it to predict amorphous Bi bilayer as a
novel topological insulator.

As was the case for spin-orbit spillage in crystals, we
expect the structural spillage to signal a large fraction
of promising materials, but not to be infallible: if multi-
ple band inversions are introduced upon amorphization, the
spillage might also be artificially large. However, unlike
for crystals, the spillage is currently the only systematic,
model-independent method that is compatible with ab ini-
tio calculations. Additionally, we observe that, for different
disorder realizations, its fluctuations are smaller compared to
scattering methods like calculating the conductance. It can
also be applied to systems without a spectral gap, where the
effective Hamiltonian approach [38] can fail [14]. Using the
spillage in high-throughput calculations implies finding an
appropriate crystalline reference. Within noncrystalline struc-
tures generated by ab initio molecular dynamics, a natural

choice is the seed crystal from which the amorphous phase
is obtained. In the few cases where such a reference is absent
one may define a plane-wave-resolved spillage (see SM [66]
D) by using Eq. (2a) without the sum over G.

The structural spillage establishes a clear roadmap to
construct a high-throughput catalog of noncrystalline (amor-
phous, polycrystalline, quasicrystalline) topological materials
by screening existing amorphous databases, or by scrutinizing
realistic structures obtained using existing ab initio molecular
dynamics packages [89–91]. This methodology may enable
for the first time the systematic prediction and discovery of a
potentially large number of amorphous materials that are cur-
rently inaccessible, suitable to develop affordable and scalable
topological devices.
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