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Can quantum mechanical thermodynamic engines outperform their classical counterparts? To address one
aspect of this question, we experimentally realize and characterize an isentropic thermodynamic engine that
uses a Bose-condensed working fluid. In this engine, an interacting quantum degenerate gas of bosonic lithium
is subjected to trap compression and relaxation strokes interleaved with strokes strengthening and weakening
interparticle interactions. We observe a significant enhancement in efficiency and power when using a Bose-
condensed working fluid, compared to the case of a nondegenerate gas. We demonstrate reversibility, and
measure power and efficiency as a function of engine parameters including compression ratio and cycle time.
Results agree quantitatively with exact interacting finite temperature field-theoretic simulations.
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Classical thermodynamic engines have been critical to hu-
man technology since the industrial revolution. In the past
decade, the capabilities of quantum thermodynamic engines
have been explored theoretically [1–20], and recent years
have seen experimental demonstrations of both quantum
and nanoscopic classical engines using single ions [21,22],
nuclear spins [23], cold atoms [24–27], nitrogen-vacancy cen-
ters [28], and quantum gases [29,30]. A natural question is
whether quantum phenomena can enhance the performance of
a thermodynamic engine [19,31,32]. Perhaps the simplest ex-
perimental approach to this question—the direct comparison
of an engine using a classical working fluid to an equivalent
one using a quantum degenerate working fluid—has remained
unexplored.

In this work, we experimentally realize and characterize an
isentropic thermodynamic engine with a quantum degenerate
working fluid. The engine cycle interleaves compression and
decompression of an optical trap with Feshbach enhancement
and suppression of interparticle scattering to pump energy
from a magnetic field to an optical field via a trapped ensemble
of ultracold neutral lithium. We observe that quantum degen-
eracy significantly enhances the output power. We measure the
dependence of efficiency and power on cycle time, and inves-
tigate the effects on engine performance of compression ratio
and interaction strength ratio. Results agree quantitatively
with both approximation-free finite temperature interacting
numerical simulations and mean-field analytics.

The experiments begin by preparing a Bose-Einstein con-
densate (BEC) of 300,000 to 1 million 7Li atoms in a
far-detuned crossed optical dipole trap with a mean trap
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frequency ω̄ = 2π × 133 Hz, at a temperature of 170 nK,
corresponding to a condensate fraction of 0.95. After evapora-
tive cooling to degeneracy, the s-wave interparticle scattering
length is Feshbach-tuned to 100a0, where a0 is the Bohr
radius. This sets the initial condition (labeled A in figures).
Interleaved variation of the trap intensity and Feshbach field
then execute the thermodynamic cycle illustrated in Fig. 1(a).
Between steps A and B (stroke AB), the trap power is increased
with a functional form such that ω̄ increases from ω̄A to ω̄B at
a constant rate. This is the compression stroke of the engine.
In stroke BC, the trap frequency is held constant as the inter-
action strength is ramped from aB

s = 100a0 to a larger value
aC

s at a constant rate. Subsequently, the trap frequency and
then the interactions are ramped linearly back to their initial
values. For adiabatic ramps, energy conservation requires that
such a cycle pumps energy between the magnetic and optical
control fields, because the work performed by the strongly
interacting gas during decompression is not equivalent to the
work done to compress the more weakly interacting gas. The
microscopic mechanism of energy transfer between atoms
and optical fields is stimulated absorption and emission of
photons from and into the Gaussian trapping beams. Energy
exchange between atoms and magnetic coils is mediated by an
electromotive force arising from time-varying bound currents
due to changing magnetization of the atomic sample during
a Feshbach ramp, which in turn results from changing virtual
admixture of the closed-channel molecular state. This latter
mechanism has been somewhat neglected in the literature
and would make an interesting topic for future theoretical
work. While this pumping of energy should in principle be
observable from careful measurements of the external control
fields (magnet currents and optical trapping beams), the vast
difference in energy scale between control fields and atoms
makes it far more practical to infer the energy transfer by
measuring the working fluid itself, which is the approach we
take here. Performing the strokes of the cycle in the order
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FIG. 1. Thermodynamic engine with a quantum degenerate
working fluid. (a) Engine cycle in as-ω̄ space. Color shows total
energy per particle. (b) Top: BEC images after 12 ms of expansion
at each step. Middle: Evolution of trap frequency (dotted) and scat-
tering length (dot dashed). Bottom: measured release energies for
quantum degenerate (circles) and thermal (squares) working fluids
during one engine cycle, normalized by the step A value. Dotted
lines connect data points. Inset shows efficiency for each condensate
fraction fc; line indicates theoretical maximum efficiency in the
Thomas-Fermi regime. Error bars show standard error in all figures.

shown in Fig. 1(a) results in a net transfer of energy from
magnetic to optical fields. Appendix B details an intuitively
useful analogy between this isentropic cycle and the Otto
heat-engine cycle.

The second-quantized Hamiltonian describing the working
fluid includes kinetic, interaction, and potential terms:

Ĥ = Ĥkin + Ĥint + Ĥpot,

Ĥkin =
∫ (

h̄2

2m
∇�̂†∇�̂

)
d3r,

Ĥint = g(t )

2

∫
�̂†�̂†�̂�̂ d3r,

Ĥpot =
∑

k

h̄ωk(t )

(
�̂

†
k�̂

†
k + 1

2

)
, (1)

where g(t ) = 4π h̄2m−1as(t ) is the interaction coupling con-
stant, as(t ) is the scattering length, m is the mass, and ωk(t )
is the trap frequency of mode k at time t . To measure release
energy (defined below) at each step, we first abruptly switch
off the trap, quenching to zero the last term of the Hamiltonian
Ĥpot. Following 12 ms of free expansion we measure the
column-integrated density distribution by absorption imaging
and reconstruct the 3D distribution via Abel inversion [33].
After expansion, not only is the initial momentum distribution
converted to a position distribution, but also essentially all the
initial interaction energy is converted to kinetic energy [34],
so the distribution provides a measure of the condensate’s
release energy Erel = Ekin + Eint. We report release energies
per atom, while plotted powers represent the total engine
power.

Engine performance can be characterized by efficiency and
power. We define work done on the condensate as positive. As
in Refs. [7,12], we define the efficiency

η = −W las
AB + W las

CD

W mag
BC

(2)

and the power

P = −W las
AB + W las

CD

Tcycle
. (3)

Here W k
i j is the work done on the BEC by the field k (laser or

magnetic) in stroke i j of the cycle and Tcycle is the total cycle
time.

While we measure the release energy rather than the total
energy, these quantities can be simply related via the Gross-
Pitaevskii description of an interacting gas. In the Thomas-
Fermi regime, the total energy is given by [35]

Etot = Ekin + Epot + Eint = 5
7μ, (4)

where μ is the chemical potential, Epot = (2/7)μ, Eint =
(3/7)μ, and Ekin ≈ 0. The ratio between the total energy and
the measured energy is then

Etot

Erel
≈ Epot + Eint

Eint
= 2.5. (5)

Therefore, a power measurement based on release energy
will be reduced from the true power by a factor of 2.5,
while measured efficiency will give the true value. As shown
later, we have verified the validity of these assumptions using
approximation-free numerics.

Figure 1(b) demonstrates the stark contrast between the
behavior of degenerate and nondegenerate gases subjected
to similar thermodynamic cycles. The thermal gas is pre-
pared via inhibited evaporation at a small scattering length
of 57a0, resulting in a density of ∼6 × 1011 atoms/cm3 at
a temperature of 890 nK. The density of the condensate is
∼2 × 1013 atoms/cm3, about 33 times larger, at a temperature
of 170 nK. Much of this enhancement in density is a direct
result of bosonic quantum statistics. While the thermal gas
and condensate are prepared at different trap frequencies, the
compression ratio ν = ω̄B/ω̄A ≈ 2 is the same for both. As
interaction strength increases, the low density of the thermal
gas results in a negligible change in release energy, while
the Bose-enhanced density of the quantum degenerate sample
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(a)

(b)

FIG. 2. Engine reversibility and repeatability. (a): Comparison
of the cycle performed in the “forward” (A − B − C − D − A) and
“reverse” (A − D − C − B − A) directions, indicated by right- and
left-pointing markers, respectively. Light blue line shows results
of analytic calculations [see Eq. (7)]; black line shows results of
isentropic fully interacting numerical simulations in both panels.
(b): Measured release energy evolution during four repeated engine
cycles. Simulation particle number is set to the mean particle number
across each four-step cycle. Error bars are smaller than symbol size.

results in a significant change. The measured efficiency of the
engine with a thermal working fluid is consistent with zero,
while the measured efficiency of the engine with a quantum
degenerate working fluid is 0.45 ± 0.1, near the maximum
theoretical value of 0.55 for this compression ratio.

Reversibility can be tested by comparing the results of
forward (A−B−C−D−A) and reverse (A − D − C − B − A)
cycles. Figure 2(a) shows the experimental results of such a
comparison, demonstrating a high degree of reversibility and
confirming that the reverse cycle results in a net transfer of
energy from optical to magnetic fields, opposite to the forward
cycle. Figure 2(b) shows that the same cycle can be performed
many times. The repeated return of the condensate to its initial
release energy indicates that it can mediate energy transfer
between magnetic and optical fields without significant net
absorption of energy.

To estimate the degree of adiabaticity, one can apply the
Landau-Zener formalism [36] to approximate the probability
of low-lying collective excitations [37]. Considering only the
ground state and lowest-lying collective excitation, the proba-
bility of diabatic passage between them is PD = exp(−1/�),
where the adiabaticity parameter � = ω̇E/(2πω2

E ) depends
on the energy gap h̄ωE to the nearest excited level. Taking
our trap to be approximately axially symmetric, and using the
results of [37] with a known ramp speed ˙̄ω = 2π × 1 Hz/ms,
we estimate a maximum adiabaticity parameter of � � 0.001
for the cycles shown in Figs. 1 and 2, with cycle times
of 530 ms.

(a)

(b)

FIG. 3. Efficiency and power vs cycle time. (a): Measured en-
ergy transfer efficiency η versus cycle time. Line shows theoretical
efficiency from Eq. (7). (b): Measured engine power, quoted in
quectoWatts (10−30 Watts), versus cycle time. Shaded region shows
the theoretical prediction of Eq. (7) for the measured range of atom
numbers. The power shown here is taken from release energy mea-
surements; as discussed in the main text, the total power is a factor of
2.5 higher. Inset shows adiabaticity parameter � versus cycle time.

Varying the engine cycle time affects both efficiency and
power. Figure 3(a) compares measured efficiency to the ideal
Thomas-Fermi efficiency, which is independent of cycle time.
Measurements for a range of cycle times cluster near this
ideal. However, at long cycle times three-body loss, one-body
loss, and heating can degrade efficiency, while at the short-
est cycle times a combination of technical limitations (for
example inductive limits on magnet current ramp rate) and
decreasing adiabaticity affect engine performance.

Measuring engine power, we observe the expected inverse
dependence over a range of cycle times, as shown in Fig. 3(b).
Power increases for faster cycles, deviating somewhat from
the adiabatic prediction of Eq. (7) as the cycle time is reduced.
The breakdown of engine performance at very short cycle
times is also visible. These results indicate an optimal range
of working speeds; as with any engine, there is a balance to be
struck between power and efficiency [38]. Related theoretical
work has explored the possibility of bypassing this trade-off
using shortcuts to adiabaticity [6,7,39].

To investigate the validity of our theoretical approxima-
tions, we compare experimentally measured release energies
to the results of fit-parameter free, finite temperature equi-
librium simulations reproducing the experimental particle
number, scattering length, and confinement. The engine’s
demonstrated reversibility and adiabaticity justify the use of
multiple equilibrium simulations and an assumption of isen-
tropic evolution. At steps A through D, we model the system
as an interacting confined Bose gas using a path integral over
complex-conjugate coherent states fields φ and φ∗ with the
action given in continuous imaginary time notation as [40]

S =
∫ β

0
dτ

∫
dd r

{
φ∗(r, τ+)[∂τ − h̄2/(2m)∇2

+Uext (r) − μ]φ(r, τ ) + g

2
[φ(r, τ )φ∗(r, τ+)]2

}
, (6)
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where the notation τ+ indicates the field should be evaluated
at an advanced position on the τ contour, with τ ∈ [0, β] and
β = 1/kBT . Uext (r) = 1

2 m(ω2
x x2 + ω2

y y2 + ω2
z z2) is the con-

finement potential, with ωi the angular trap frequency in the
ith direction. Interactions are modeled as pairwise contact
repulsions. The chemical potential μ is constrained such that
total particle number N is constant in each simulation [41]. We
sample configurations of this field theory using the complex
Langevin (CL) technique, a stochastic method of evaluating
integrals that is robust for actions with a sign problem [42,43]
like Eq. (6), and has increasingly been used for simulation of
cold bosonic systems [41,44–46]. Observables are calculated
by time averaging field operators, obtained from thermo-
dynamic derivatives of the partition function. This method
does not require simplifying approximations, even at finite
temperature, so it fully accounts for quantum and thermal
fluctuations. The use of fields rather than particle coordinates
allows full-scale replication of the experimental system on
readily available GPU hardware. Further details of the numer-
ical methods appear in Appendix A.

Figure 2(a) shows close agreement between numerically
calculated and experimentally measured release energies. This
correspondence provides additional retroactive justification
for the isentropic assumption, and also demonstrates that
approximate analytic expressions describing only the conden-
sate with Nc particles provide relatively accurate estimates of
the energy. The analytic formulas for release energy and total
energy are [47]

Erel

NckBT 0
c

= 3ζ (4)

2ζ (3)
t4 + α

1

7

(
(1 − t3)2/5

(
2 + 17

2
t3

))
(7)

and
Etot

NckBT 0
c

= 3ζ (4)

ζ (3)
t4 + α

1

7
((1 − t3)2/5(5 + 16t3)), (8)

with α = μ0/(kBT 0
c ), μ0 the zero-temperature chemical po-

tential, t = T/T 0
c the reduced temperature, T 0

c the critical
temperature of a harmonically confined Bose gas, ζ (x) the
Riemann zeta function, and kB the Boltzmann constant. These
results are accurate to within about 3% of approximation-free
numerical simulations at the measured condensate fraction.
The numerical results shown in Fig. 2(b) do indicate that
Ekin accounts for 10% to 15% of the total energy in steps A1

through A5, violating to some extent the Thomas-Fermi ap-
proximation. Evaluating the ratios Ptot/Prel and ηtot/ηrel using
energies obtained from simulations shows that the former is
1% to 3% larger than predicted, while the latter is 0.1% to
0.6% larger.

A natural parameter to tune in order to maximize effi-
ciency is the compression ratio ν = ω̄B/ω̄A. Figure 4(a) shows
measured release energy evolution over one cycle for dif-
ferent values of ν. At higher compression ratios we observe
distinctly higher release energies for steps B and C but no
significant changes to the values at steps A and D, in agree-
ment with expectations from Eqs. (7) and (8). Figure 4(b)
demonstrates that increasing the compression ratio increases
the efficiency η, which asymptotically approaches unity. In
the Thomas-Fermi approximation this can be understood by
analyzing the change in energy per particle Etot ∝ a2/5

s ω̄ 6/5

[35]. Defining κ = aC
s /aA

s as the interaction ratio between

(a)

(b)

FIG. 4. Varying compression ratio. (a): Measured release energy
evolution over one engine cycle for varying ν = ω̄B/ω̄A at a fixed in-
teraction ratio κ = aC

s /aA
s = 2.4. Lines show analytical prediction of

Eq. (7). (b): Efficiency η as a function of compression ratio. Shaded
region shows theoretical prediction of Eq. (9) for the measured range
of atom numbers.

steps C and A, the efficiency can be expressed as

η = κ2/5(ν6/5 − 1) − (ν6/5 − 1)

ν6/5(κ2/5 − 1)
= 1 − ν−6/5. (9)

In the Thomas-Fermi limit, η is independent of the interaction
strength, and the efficiency approaches unity as ν → ∞. This
can be compared in loose analogy to the Otto cycle efficiency
ηOtto = 1 − ν1−γ with ν the compression ratio and γ the spe-
cific heat ratio.

Similarly, we can isolate the effects of interaction strength
ratio κ by holding the compression ratio constant. Follow-
ing the same procedure used to derive Eq. (9), we find P ∝
(κ2/5 − 1)(ν6/5 − 1): the power is determined solely by the
interaction ratio κ for a fixed compression ratio ν. Figure 5(a)
shows release energy evolution over one cycle for various
interaction strength ratios corresponding to step C interaction
strengths of 120, 160, and 200a0 at a constant compression ra-
tio ν = 1.94 and a particle number approximately 60% larger
than in Fig. 2. Operation at much larger interaction strengths
is limited by three-body loss; while much smaller interaction
strengths even down to zero are experimentally straightfor-
ward to achieve, departure from the Thomas-Fermi regime
complicates the comparison to theory. Figure 5(b) shows that
the output power indeed increases with κ , with a departure
from theoretical predictions at larger values of κ a possible
hint of beyond-mean-field behavior. These results emphasize
the importance of interaction effects in the engine: Feshbach
tuning is the key parameter controlling energy transfer be-
tween magnetic and optical fields. This power enhancement
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(a)

(b)

FIG. 5. Varying interaction strength ratio. (a): Measured release
energy evolution over one engine cycle for varying interaction
strength ratio κ = aC

s /aA
s at a fixed compression ratio ν = 1.94.

(b): Power output as a function of κ . Shaded regions in both panels
are theoretical predictions from Eq. (7) for the measured range of
atom numbers.

is completely decoupled from the boost to efficiency achieved
through stronger compression, and from the power enhance-
ment due to decreased cycle time.

In conclusion, we have realized an isentropic thermo-
dynamic engine with a quantum degenerate working fluid
and demonstrated that it outperforms a classical counterpart.
Bose-Einstein statistics enable a high ground state occupa-
tion throughout the cycle, making manipulation of internal
energy straightforward via manipulation of the ground state
energy. The quantum-enhanced density of the BEC is essen-
tial; interaction-tuning strokes had no observable effect on
the dilute thermal gas at the same confinement ratio. It is
interesting to note that quantum statistics drive work output
in a very different way in the recently reported Pauli engine
[30]: while work done in the Pauli engine is a consequence of
excited-state occupation forced by a change to Fermi statis-
tics, the work output in our engine arises chiefly from changes
in the ground state energy. Experimental measurements of
engine performance for various values of control parameters
and degrees of adiabaticity are in good agreement with both
low-temperature analytics and approximation-free numerical
simulations.

This work opens up a variety of interesting directions
for future exploration. These include optimizing performance
with shortcuts to adiabaticity [6,7,12,39], realizing a quan-
tum Otto refrigerator [48–52], applying similar techniques to
quantum heat engines involving trapped reservoirs of hot and
cold atoms, investigating the role of criticality [8], and exper-

imentally exploring the effects of entanglement on quantum
thermodynamic engines [53–55].
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Appendix A: Numerical simulations. To compose the
full cycle in simulations, we must fix particle number, N ,
cell volume, V , and total entropy, S, around the cycle.
All experimental observables are calculated by averaging
field operators as described in the main text. Operators
for N , internal energy [56], and Helmholtz free energy
[57] have been derived previously. Release energy is calcu-
lated using the operator for internal energy derived in [56],
excluding the contribution from the trap. Entropy S is cal-
culated from the Helmholtz free energy and internal energy.
Note that this means N is an output of the field theory, not a
degree of freedom to be sampled, so the algorithmic cost is
virtually independent of N .

To perform the ensemble averaging, we allow the complex
fields φ and φ∗ to independently evolve in a fictitious com-
plex Langevin (CL) dynamics scheme according to a set of
coupled stochastic partial differential equations that generates
a Markov chain of system configurations [42,43]. Random
noise correlations are chosen according to a fluctuation dis-
sipation theorem [58,59] that ensures that averages over CL
time are equivalent to unbiased thermodynamic ensemble
averages [60,61], provided the CL dynamics have reached
steady state prior to sampling. Although the operators may
be complex, time or ensemble-average operators for physical
observables are real.

We evolve the CL dynamics equations using the pseu-
dospectral method detailed in [41], which decouples φ and
φ∗ to linear order for numerical stability, and gives near-linear
scaling with real space and τ resolution. We converge spatial
resolution and imaginary time resolution until finite size ef-
fects in Erel and S are no longer significant. For the simulations
reported here, we use up to 160 × 160 × 128 plane waves and
64 points in the τ direction. On an NVIDIA A100, the average
simulation in continuous 3D space of approximately half a
million particles at 170 nK converges to a time-independent
solution in 2.5 hours, and by 24 hours statistical errors of the
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mean are less than 0.05% of the mean. The longest simula-
tions reported in this study had a duration of approximately
49 hours.

We report only simulations computed with the average
number of particles over the entire cycle. Initially, we per-
formed two sets of simulations, one at N = 5 × 105 and one
at N = 6 × 105, to account for experimental error in measured
particle number of the data in Fig. 2(a). However, the range of
simulation results was smaller than the line width in Fig. 2(a).
Relative uncertainty in experimental as and ωi is smaller than
the relative uncertainty in N , so we expect our results to be ac-
curate for the reported experimental conditions. Cell volume
V is fixed such that the density distribution is well contained
within the simulation cell and finite size effects are no longer
observed in the calculated release energy and entropy. For the
largest sample, we used a simulation box of 71 × 71 × 57 µm.
S is constrained by first computing the entropy at step A on the
cycle using the experimental TA as an input parameter, then
adjusting T at all other points to maintain constant S. Using
this procedure, S remains within 2.5% of its initial value in all
cycles.

Appendix B: Connection to the Otto cycle. Here we draw an
analogy between this isentropic thermodynamic cycle and the
classical Otto cycle. Because the walls of the trap are not rigid
and the optical trap interacts with the BEC at all spatial posi-
tions r through the single-body term Uext (r), thermodynamic
pressure and volume are understood differently than their
analogs for fluids in rigid containers. The proper pressure to
use in thermodynamic relationships is a generalized extensive
mechanical variable related to the spatial extent of the gas
V = (h̄ω̄)−3, and referred to as “harmonic volume” [62–64].
We can write the total energy in terms of this thermodynamic
volume as

E = 5

7

152/5

2
m1/5N

(
Nas

h̄V

)2/5

. (B1)

A conjugate intensive mechanical variable denoted P
and referred to as “harmonic pressure” can also be derived
[62–64]. This “harmonic pressure” governs mechanical equi-
librium of the gas, much like hydrostatic pressure governs
mechanical equilibrium of a fluid in a container with rigid
walls:

P = −∂E

∂V

∣∣∣∣
N

= 152/5

7
m1/5N

(
Nas

h̄

)2/5

V−7/5. (B2)

This expression may be equivalently derived by substi-
tuting the Thomas-Fermi density into the integral of the
harmonic pressure given in [62].

The total energy can then be rewritten as

E = 5

2

152/5

7
m1/5N

(
Nas

h̄V

)2/5

= 5

2
PV, (B3)

and by using the definition of the Thomas-Fermi energy, we
can recover an analogy to the ideal gas law:

PV = 2

7
Nμ. (B4)

It is important to note that while μ plays the role of an “ef-
fective temperature” it is unrelated to a thermal equilibrium.

In our cycle, strokes of constant μ are analogous to isothermal
strokes in the classical cycle.

We now have all of the pieces to establish a connection
with the Otto cycle. The first stage is an adiabatic compression
ω̄A → ω̄B = νω̄A with compression ratio ν. This traces an
adiabat in the PV space. Using Eq. (B4), the adiabat is defined
by

Vμ5/2 = constant or V7/5P = constant. (B5)

The heating stroke in the classical Otto cycle is replaced
by an interaction strength stroke, which keeps the harmonic
volume unchanged but changes the chemical potential and
the harmonic pressure, thus mimicking an “isochoric” pro-
cess. We note that this is not an actual transfer of heat,
as the thermodynamic entropy is constant. The final two
strokes follow the same arguments presented above. A quan-
titative PV diagram of this thermodynamic cycle is shown in
Fig. 6.

This mathematical analogy enables an alternative deriva-
tion of the efficiency of the thermodynamic engine, allowing
us to use the Otto cycle efficiency directly with the adiabatic
exponent γ = 7/5:

η = 1 −
(VB

VA

)γ−1

= 1 −
(VB

VA

)2/5

= 1 −
(

ω̄A

ω̄B

)6/5

= 1 − ν−6/5. (B6)

This is the same expression as Eq. (9) in the main text.

FIG. 6. PV diagram for the thermodynamic engine. VA and PA

are the harmonic volume and pressure evaluated at step A of the
engine cycle. Here κ = 10 and ν = 1.5.
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