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Frustrated magnets without geometrical frustration in bosonic flux ladders
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We propose a scheme to realize a frustrated Bose-Hubbard model with ultracold atoms in an optical lattice that
comprises the frustrated spin-1/2 quantum XX model. Our approach is based on a square ladder of magnetic flux
∼π with one real and one synthetic spin dimension. Although this system does not have geometrical frustration,
we show that at low energies it maps into an effective triangular ladder with staggered fluxes for specific values
of the synthetic tunneling. We numerically investigate its rich phase diagram and show that it contains bond-
ordered-wave and chiral superfluid phases. Our scheme gives access to minimal instances of frustrated magnets
without the need for real geometrical frustration, in a setup of minimal experimental complexity.

DOI: 10.1103/PhysRevResearch.5.L042008

Introduction. The interplay between geometrical frustra-
tion and quantum fluctuations leads to exotic states of matter
such as resonating valence bond and quantum spin-liquid
phases [1–3]. The simplest models encompassing the richness
of frustrated quantum magnets are antiferromagnetic Heisen-
berg Hamiltonians on triangular lattices [4], which include
deconfined quantum critical points [5–7], anyonic liquids [8],
and where spontaneous dimerization and chiral order appear
[9–13]. In this Letter, we focus on a minimal instance of the
frustrated antiferromagnetic Heisenberg model, the spin-1/2
quantum XX model on a triangular two-leg ladder. We show
that its rich phase diagram can be effectively accessed with
ultracold bosons in flux ladders of square lattice geometry,
a setup of minimal experimental complexity that is routinely
realized with real-space [14,15] and synthetic dimension ap-
proaches [16–24].

While the investigation of spin-1/2 Heisenberg triangu-
lar ladder systems in solid state materials is a very active
field of research [25–31], the broad tunability of ultracold
atoms offers an attractive alternative to investigate mag-
netic frustration in a pristine setting and gives access to
new observables. On the one hand, Fermi gases in triangu-
lar optical lattices or optical tweezer arrays provide ideal
implementations of the celebrated J1-J2 antiferromagnetic
Heisenberg Hamiltonian [32–34], although achieving exper-
imental temperatures below the superexchange energy scale
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remains a formidable challenge [35,36]. On the other hand,
strongly interacting bosonic systems subjected to artificial
magnetic fluxes also display frustrated magnetic phases, but
at larger (and accessible) energy scales set by the tunnel-
ing [37,38]. However, despite tremendous progress in the
realization of artificial gauge fields in such systems using
real-space lattices [14,15,39–43], the combination of large
magnetic fluxes and strong interactions leads to detrimental
heating processes that hinder the investigation of quantum
magnetism [44].

An alternative approach, more resilient to heating, is to
employ semisynthetic flux ladders with one fictitious dimen-
sion constituted by internal spin states coupled via two-photon
Raman transitions [16,45], a system that has been success-
fully employed to experimentally investigate few-leg square
ladder systems in both noninteracting [17–20] and strongly
interacting regimes [24], but is not straightforward to gener-
alize to triangular geometries without introducing additional
heating mechanisms [46,47]. In this Letter, we propose a
scheme to realize a frustrated quantum spin model—inbuilt
in a semisynthetic flux ladder—without the need for explicit
geometrical frustration. Building on our previous work [48],
we exploit an analytical map between the square flux ladder at
low energies and a triangular system with staggered magnetic
fluxes. Related schemes have been very recently proposed
in fermionic synthetic ladders [49,50], although no effective
frustration was investigated in this setting. Here, we identify
parameter regimes where the effective geometric frustration
plays an important role at accessible temperatures, numeri-
cally show that the system displays the same ground state
phases as the frustrated spin-1/2 quantum XX model [51],
and identify suitable observables to reveal them in current
experiments with ultracold atoms.

Model. We consider the two-leg semisynthetic bosonic
flux ladder [16] in the translation-invariant gauge-transformed
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frame [52] [see Fig. 1(a)],

H� =
∑
j,σ

(
−te−ıγ σ a†

j+1,σ + �

4
a†

j,−σ + δ

2
σa†

j,σ

)
a j,σ + H.c. +

∑
j,σ

(
Uσ,σ

2
n j,σ (n j,σ − 1) + Uσ,−σ

2
n j,σ n j,−σ

)
. (1)

Here, a†
iσ (aiσ ) creates (annihilates) a boson in site i of a

one-dimensional (1D) optical lattice of length L—we restrict
ourselves to 1D systems throughout this Letter—and two dif-
ferent internal atomic states σ = ±1/2 coupled via Raman
transitions realize the two legs of the ladder. The intraleg
tunneling t is the conventional tunneling rate along the lattice,
while the interleg tunneling amplitude is proportional to the
Raman Rabi frequency �. The two-photon Raman detuning
yields a potential interleg offset δ, and a classical magnetic
flux γ results from the momentum transfer of the Raman
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FIG. 1. Mapping semisynthetic square ladders into frustrated tri-
angular ladders. (a) Left: Original square flux-ladder model (1), with
intra- and interleg tunnelings t and �/2, interleg offset δ, on- and
off-site interactions U , and magnetic flux γ . Right: Truncated lower-
band Hamiltonian (2), describing an effective triangular ladder with
complex tunnelings t1 and t2, on-site interactions U , and staggered
flux �. Inset: Single-particle dispersion relation of the lower-energy
band of the square flux ladder for strong � and γ ∼ π . (b)–(d) Cur-
rent (arrow) and density (circle) patterns of the flux-ladder phases
at average density ρ = 1/4 (left), and corresponding phases of the
effective triangular model at half filling (right). (b) Meissner super-
fluid (M-SF): Superfluid (SF) of the triangular model. (c) Vortex
lattice insulator (VL1/2-MI): Bond-ordered wave (BOW). (d) Biased-
ladder superfluid phase (BLP): Chiral superfluid (CSF). Circles and
arrows in the square ladder sketches are scaled according to their
numerical values at � = 10t and δ = 0, with γ and U adjusted so
that t2/|t1| = 0.2 in (b), t2/|t1| = 0.5 in (c), and t2/|t1| = 1.0 in (d),
and U = 10|t1|. The BLP is signaled by the difference of circle size
between both legs. Color scale: Spin composition mz of the ground
states in the semisynthetic ladder.

beams. Atoms experience intraleg on-site and interleg nearest-
neighbor interactions, which we choose to be identical Uσ,σ =
Uσ,−σ = U . The total atom number is N = ∑L

i=1

∑
σ ni,σ ,

with ni,σ = a†
i,σ ai,σ the density in site i.

In the strong Raman coupling limit � � t , the two single-
particle dispersion bands of (1) are separated by an energy gap
∼� [52]; we denote them as lower- and higher-band dressed
states. When the condition � � U is also fulfilled, the low-
energy properties of the system are captured by a Hamiltonian
that includes only lower-band modes,

H� =
∑
l=1,2

tl
∑

i

(b†
i bi+l + H.c.) + U

2

∑
i

ñi(ñi − 1), (2)

where b†
j (b j) are the bosonic creation (annihilation)

operators for the inverse-Fourier-transformed lower-band
dressed states and ñ j = b†

jb j [see Supplemental Material
(SM) [52] for the derivation]. In this regime, the effective
Hamiltonian (2) describes a system of N bosons in a lattice of
length L with the same on-site interaction U but with effective
nearest-neighbor (NN) t1 and next-nearest-neighbor (NNN) t2
complex tunnelings. It is thus equivalent to a triangular lad-
der with staggered magnetic flux � = π − 2δ tan(γ /2)/� +
O[(δ/�)2] [see Fig. 1(a)]. At δ = 0, the staggered flux lad-
der is fully frustrated with � = π . To order O[(t/�)2], the
effective tunneling amplitudes in H� relate to the parameters
of H� by [52]

t1 � −t cos(γ /2) and t2 � t2 sin2(γ /2)/�. (3)

In the ultracold atom context, the triangular Bose-Hubbard
ladder Hamiltonian (2) has been mainly studied at unity filling
[61–63] and low densities [64] (for nonstaggered fluxes, see
Ref. [65]). Moreover, detailed studies of the hard-core boson
(HCB) limit (U → ∞) at half filling N/L = 1/2 and flux
φ = π , where the system is further mapped to a frustrated
spin-1/2 quantum XX model (b†

i , b j → S+
i , S−

j , see SM [52])
have been performed [51,66,67]. In this regime, a gapless
superfluid (SF) is found at low values of |t2/t1|, signaled by
the power-law decay of the one-body correlator g1(|i − j|) =
〈b†

i b j〉. At intermediate values of |t2/t1|, a gapped translation-
breaking bond-ordered-wave (BOW) phase is stabilized [see
Fig. 1(c)]. It is signaled by nonzero values of the two-point
operator OBO = ∑

i[(−1)i/L](b†
i bi+1 + bib

†
i+1). Its insulating

nature is signaled by the exponential decay of g1(|i − j|) and
by a finite charge gap 
c = EL,N+1 + EL,N−1 − 2EL,N , com-
puted from the extrapolated ground state energies at N = L/2.
Finally, for larger |t2/t1|, a gapless chiral superfluid (CSF)
phase emerges. There, the system presents two nonequivalent
minima in the dispersion relation, and interatomic interactions
favor the occupation of either of the two minima. This de-
generacy yields two solutions that spontaneously break a Z2

parity symmetry [see Fig. 1(d)], and exhibit a finite chirality
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ki = 2ı(bib
†
i+1 − b†

i bi+1). Thus, the chiral correlation function
k2(|i − j|) = 〈kik j〉 identifies the CSF.

In our realization of the triangular model (2), we can
widely adjust the ratio |t2/t1| while arbitrarily approaching the
HCB limit within the effective model by setting |t1,2| 	 U 	
�. Therefore, we expect that at filling ρ = 1/4 the flux ladder
Hamiltonian (1) reproduces the whole phase diagram of the
quantum XX model with the order parameters written in terms
of the currents and densities of the undressed bosons, and that
the phases are experimentally accessible [52].

The SF phase of the triangular model translates into the
Meissner superfluid phase (M-SF) of the flux ladder [68]
[see Fig. 1(b)], characterized by vanishing rung currents and
off-diagonal quasi-long-range order. The BOW phase cor-
responds to a vortex lattice insulating phase (VL1/2-MI) of
maximal vortex filling ρv = 1/2, where the effective dimers
correspond to the vortex plaquettes [see Fig. 1(c)]. The nature
of the BOW phase in the bare basis is easily understood from
the susceptibility of the energy against the explicit dimeriza-
tion of the leg tunnelings [52], through which one can identify

OBO �
∑
j,σ

2(−1) j Re(te−ıγ σ a†
j+1,σ a j,σ )

Lt cos(γ /2)
. (4)

The BOW phase is characterized by the staggered current
patterns of the vortices, and is signaled by the staggered leg
current

jsl = 1

L

∑
j,σ

4σ (−1) j Im(te−ıγ σ a†
j+1,σ a j,σ ), (5)

together with the exponential decay of the one-body correla-
tor. Finally, the CSF corresponds to a biased-ladder superfluid
phase (BLP-SF), characterized by a spontaneous density im-
balance between both legs of the ladder [69,70] [see Fig. 1(c)].
Around δ = 0,

k j � − 2�

t sin(γ /2)
m( j)

z , (6)

where m( j)
z = ∑

σ σa†
j,σ a j,σ is the magnetization or the inter-

leg population imbalance at site j [52].
Based on these correspondences, we propose to detect the

different phases by measuring the response of the system to
the explicit breaking of the Z2 parity and translation sym-
metries of the Hamiltonian. The former is easily achieved by
setting the Raman detuning δ to nonzero values. The latter can
be implemented by a spatial modulation of the optical lattice
using superlattice potentials to dimerize the lattice structure,
parametrized by including in (1) a position-dependent tunnel-
ing strength t j = t (1 + 
(−1) j ) between sites j and j + 1. In
this way, the spontaneous breaking of the Z2 symmetry of the
ground state in the CSF (or BLP-SF) phase is signaled by the
discontinuity in the mean magnetization 〈mz〉 = 1

N

∑
j〈m( j)

z 〉
around δ = 0. Similarly, the spontaneous dimerization of the
BOW (or V1/2-MI) phase is signaled by the jump of the
staggered currents (5) around 
 = 0.

Numerical results. To assess the predictions of the effec-
tive model (2), we run density-matrix-renormalization-group
(DMRG) [71,72] simulations of Hamiltonian (1) in the
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FIG. 2. Phase diagram. (a) DMRG-computed values of chiral
correlation function k2(L/2) (top panel), charge gap 
c (central
panel), and two-point bond-order operator OBO (bottom panel) as
a function of |t2/t1| extrapolated to L → ∞. Triangles: Effective
triangular staggered-flux ladder (2) at half filling, with U = 10|t1|
and � = π . Squares: Square flux ladder (1) at ρ = 1/4 and δ = 0,
where we have fixed � = 20t and adjusted γ and U to match the
corresponding values of t2/t1 and U/|t1|. All quantities are extracted
via finite-size extrapolation using system lengths up to L = 120
(L = 80) for the triangular (square) ladder model. Only the central
half of the sites is used to compute the expected values. (b) Phase
diagram of the semisynthetic square flux ladder (1) at ρ = 1/4 for
� = 20t and δ = 0. Black circles: Phase boundary from DMRG
simulations. Blue triangles: Set of points where U = 10t cos(γ /2) =
10|t1| and the effective triangular ladder (2) tunneling ratio |t2/t1|
takes values from 0.9 to 0.1, corresponding to the curves of (a).

regimes discussed. In Fig. 2(a), we show the values of 
c,
OBO, and k2 as a function of |t1/t2|, for the ground states of
both the effective triangular Hamiltonian (2) at half filling
(triangles) and the original square ladder Hamiltonian (1) at
filling ρ = 1/4 (squares). For the latter, we set � = 20t , use
(3) to retrieve the corresponding values of t2 and t1, and use
expressions (4) and (6) to compute OBO and k2. In both cases,
the interaction strength is set to U = 10t cos(γ /2) = 10|t1|,
which realizes the strongly interacting regime of the effective
triangular ladder. We observe very good agreement between
both models in this regime of parameters. Moreover, the phase
diagram predicted in the HCB limit of the effective model
[51] is preserved for large but finite values of U/|t1| and �.
The gapless SF (M-SF) phase appears for sufficiently low
|t2/t1|. For higher values of |t2/t1| the quasi-long-range order
is lost and a phase with gap 
c 
= 0 occurs instead. It is
captured by finite values of OBO, signaling the dimerization
that characterizes the BOW phase of the triangular model,
or, equivalently, the vortex structures of the V1/2-MI phase in
the square ladder [see (4)]. Finally, a gapless phase analogous
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FIG. 3. (a) Magnetization mz as a function of the Raman de-
tuning δ, for the ground state of Hamiltonian (1) at ρ = 1/4, with
� = 10t and adjusting γ and U so that U = 10|t1| and |t2/t1| = 0.2
(yellow triangles), 0.5 (teal squares), 0.8 (dark red circles), with
t1 < 0. (b) Staggered leg current jsl defined in (5) as a function
of the lattice dimerization 
. All quantities are extrapolated to the
thermodynamic limit by considering system sizes up to L = 80.

to the CSF of the spin chain appears when |t2/t1| is further
increased. It is characterized by the long-range order of k2,
signaling the interleg population imbalance of the BLP-SF
phase [see (6)].

Figure 2(b) shows the phase diagram of the square flux
ladder in the U -γ plane for � = 20t . The blue triangles fix
the condition U = 10t cos γ /2 = 10|t1|, and correspond to
the curves displayed in Fig. 2(a). Remarkably, the three phases
predicted by the effective frustrated XX model persist in wide
regions of parameter space. For stronger interactions—where
the truncation to the lower band is no longer accurate—a
charge density wave phase (not displayed here) has been
shown to appear [73,74], while the M-SF survives to the HCB
limit of the flux ladder at quarter filling [75].

Finally, we numerically assess the protocol described
above to probe the three phases in the square flux ladder. Fig-
ure 3(a) shows the mean magnetization mz of the ground state
as a function of δ for � = 10t . We adjust γ to different values
of |t2/t1| and keep U = 10|t1|. For |t2/t1| = 0.8, the disconti-
nuity in mz around δ = 0 signals the spontaneous breaking of
the Z2 parity symmetry that characterizes the BLP-SF (CSF)
phase. Similarly, Fig. 3(b) shows the expected value of the
staggered leg current jsl [see Eq. (5)] as a function of 
.
As expected, for |t2/t1| = 0.5, the spontaneous dimerization
that characterizes the VL1/2-MI (BOW) is signaled by the
discontinuity of jsl around 
 = 0.

Experimental implementation. The flux-ladder model dis-
cussed above can be implemented using a Raman-coupled
Bose gas in a 1D optical lattice. This approach allows real-
izing large rung couplings along the synthetic direction with
low Raman intensities that ensure small heating rates [18]. For
concreteness, we focus on 41K atoms at large magnetic fields,
where the low sensitivity of δ to magnetic field fluctuations
[76] provides a fine control of the effective staggered flux �.
However, our scheme can be implemented equivalently with
87Rb atoms using dynamical decoupling schemes [77,78].
We consider a blue-detuned retroreflected 1D lattice of

wavelength λL,s = 532 nm of depth 5EL,s for the physics,
and an additional retroreflected lattice of wavelength λL,l =
1064 nm overlapped with it for preparing the required ρ =
1/4 filling and for dimerizing the system in the symmetry
breaking measurements of Fig. 3 [52]. Using two Raman
beams at the tune-out wavelength 769 nm and forming a ∼45◦
angle with the lattice beams yields the required flux γ ∼ π

[16]. In such conditions, the BOW and CSF regimes of the
effective triangular model can be realized with tunneling rates
|t1,2|/h above 100 Hz, while reaching the strongly interacting
regime U = 10|t1| by confining the gas along the transverse
directions with two 1064-nm perpendicular optical lattices
of depth ∼45EL,l . Moreover, the Raman coupling � ∼ 10t
remains sufficiently large to satisfy the lower-band approx-
imation, while enabling gas lifetimes much larger than the
tunneling timescales of the effective model [52]. Finally, the
magnetization and staggered leg currents of Fig. 3 can be
simply determined by measuring the atomic spin populations
and leg currents using a combination of Stern-Gerlach, su-
perlattice, and time-of-flight techniques [14,18]. Thus, our
proposal is immediately accessible in current experiments.

Conclusion. We have shown that semisynthetic flux ladders
enable the experimental realization of a frustrated XX Heisen-
berg model with bosons in lattices without real geometric
frustration. Our scheme is robust and does not suffer from
the heating limitations of Floquet-engineering or higher-band
schemes [39,40,79]. Its tunability makes it ideal for detecting
multipartite entanglement [80], and for studying transport,
out-of-equilibrium, and thermal [81] properties, which are
challenging for classical numerical simulations but start to be
accessible experimentally [24]. Whether such effective low-
energy dressed-state descriptions can be successfully applied
to spin models implemented in other experimental platforms
[82–90], or extended to engineer 2D frustrated models with
[38] or without [91] geometric frustration is an open question
worth investigating.
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