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Wave-particle duality in a quantum heat engine
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According to the wave-particle duality (WPD), quantum systems show both particlelike and wavelike behavior
and cannot be described using only one of these classical concepts. Identifying quantum features that cannot be
reproduced by any classical means is key for quantum technology. This task is often pursued by comparing the
quantum system of interest with a suitable classical counterpart. However, the WPD implies that a comparison
with a single classical model is generally insufficient; at least one wave model and one particle model should
be considered. Here we exploit this insight and contrast a bosonic quantum heat engine with two classical
counterparts, one based on waves and one based on particles. While both classical models reproduce the average
output power of the quantum engine, neither reproduces its fluctuations. The wave model fails to capture the
vacuum fluctuations, while the particle model cannot reproduce bunching to its full extent. We find regimes
where wave and particle descriptions agree with the quantum one, as well as a regime where neither classical
model is adequate, revealing the role of the WPD in nonequilibrium bosonic transport.
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Introduction. The wave-particle duality (WPD) expresses
the coexistence of particlelike and wavelike behavior in a
single quantum system [1–3]. This fundamental principle,
confirmed in both photon [4] and matter interferometers
[3,5,6], is a pillar of our understanding of quantum mechanics.
The WPD has been expressed in quantitative terms [7,8],
extended to many-body interference [9], and even tested by
interferometric scenarios in which neither particle nor wave
models can describe the measurement outcomes [10].

Identifying genuine quantum behavior is central both for
quantum technologies [11–15] and for fundamental aspects
of quantum theory [16–20]. Generally, quantum behavior is
identified by comparison with classical models. For instance,
quantum computers are benchmarked by classical computers
to identify a quantum advantage [21]. There is, however, no
general recipe to determine the classical models that serve as a
benchmark. Often, only a single classical model is considered,
e.g., when results from quantum optics experiments are com-
pared with predictions from classical electrodynamics [22].
However, the WPD implies that one model is not enough: To
identify genuine quantum behavior, a system of bosons, for
instance, should be benchmarked by both classical waves and
particles. Otherwise, classical wave or particle phenomena
may be misinterpreted as quantum signatures.

In this Research Letter, we exploit this insight from the
WPD and contrast a minimal model of bosonic transport
with two classical counterparts. We focus on a setup where
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quantum coherence is relevant: a pair of harmonic oscillators
coupled coherently to each other and to thermal reservoirs at
different temperatures (see Fig. 1). This system implements
a quantum heat engine [23]; heat flowing from the hot bath
to the cold bath gives rise to power output. We compare the
quantum heat engine with two classical models, one in which
bosons are modeled as waves (using classical Langevin equa-
tions) and one where bosons are modeled as particles (using
a classical rate equation). Our classical wave and particle
models should not be considered merely as approximations
to the quantum model. Instead, they serve as benchmarks, to
identify the departure from classical behavior.

Remarkably, both classical models reproduce the average
power of the quantum model. However, both fail to repro-
duce fluctuations around this average. While the wave model
cannot correctly describe vacuum fluctuations, the particle
model does not result in the same amount of bunching as
the quantum model. For both models, there are relevant limits
where they accurately describe power fluctuations: The wave
model becomes accurate in the high-temperature regime,
where vacuum fluctuations do not matter; and the particle
model becomes accurate for weak coupling, where the trans-
port statistics becomes (bidirectional) Poissonian, as well as
in the high-coupling regime, where the two oscillators ef-
fectively behave as a single one [24]. In these limits, power
fluctuations can be described classically using two distinct
models for the different limits. Away from these limits, the
output power contains signatures of the WPD as neither waves
nor particles can capture its fluctuations. Our results showcase
that the WPD is a powerful tool to reveal the nonclassical
features encoded in out-of-equilibrium quantum systems.

Quantum heat engine. We consider a quantum heat engine
composed of two bosonic modes [24–26], with frequencies
�h/c, described by the Hamiltonian

H (t ) =
∑
α=h,c

�αa†
αaα + g(a†

hace−i�t + a†
cahei�t ) (1)
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FIG. 1. (a) Schematic representation of the quantum heat engine.
We consider two bosonic modes, described by the time-dependent
Hamiltonian in Eq. (1), coupled to two thermal reservoirs. (b) Sketch
of the wave model: Two classical waves interact by a χ (2) nonlinear
crystal, resulting in difference frequency generation. (c) Sketch of
the particle model: Particles moving from a hot bath to a cold bath
produce work by turning a gear, whereby they lose part of their
energy.

in the Schrödinger picture. We work with units h̄ = kB = 1
and � = �h − �c. Each system mode is connected to a bath
with different temperatures, and the heat flow leads to power
output, P(t ) = −∂t H (t ) [27], our quantity of interest. The
setup is depicted in Fig. 1(a).

This model of a quantum heat engine can be realized in a
superconducting circuit architecture [26,28–30]. In this case,
each mode is provided by an LC resonator, the heat baths
are provided by transmission lines, and the coupling between
the modes is mediated by a Josephson junction. In this case,
power is provided by a supercurrent against a voltage bias,
due to photon-assisted Cooper-pair tunneling [26]. Another
possible implementation of this engine is in optomechanical
devices [31,32].

We are interested in the average power in the long-time
limit, 〈P〉q, and its zero-frequency noise,

〈〈P2〉〉q = 2 Re
∫ ∞

0
dt〈δP(t )δP(0)〉q, (2)

with δx := x − 〈x〉, and at t = 0 we are at the long-time limit
(or steady state in a suitable rotating frame [33]). We also
introduced the subscript “q” to distinguish the quantum aver-
ages from the averages of the classical models in the following
text. Equation (2) is directly connected to the variance of work
[33]. Henceforth, we refer to it simply as noise.

The reduced system dynamics is described by the Lindblad
master equation (LME),

ρ̇ = −i[H (t ), ρ] +
∑
α=h,c

(n̄α + 1)καD[aα]ρ + n̄ακαD[a†
α]ρ,

(3)

with Bose-Einstein occupations n̄α = (e�α/Tα − 1)−1, n̄h �
n̄c, and superoperators D[L]ρ = LρL† − 1

2 {L†L, ρ}. We note
that due to the coherent coupling, the LME couples diagonal
and off-diagonal elements of the density matrix in the particle
number basis.

The LME (3) is equivalent to a set of quantum Langevin
equations (QLEs), in the input-output formalism [34]

ȧh = −
(

i�h + κh

2

)
ah − igace−it� − √

κhbh,in, (4a)

ȧc = −
(

i�c + κc

2

)
ac − igahe+it� − √

κcbc,in, (4b)

where the thermal baths are captured by input fields, bα,in, and
with quantum white noise autocorrelation function,

〈b†
α,in(t ′)bβ,in(t )〉q = n̄αδαβδ(t ′ − t ), (5)

with [bα,in(t ′), b†
β,in(t )] = δαβδ(t ′ − t ) and α, β = h, c. This

entails classical white noise and vacuum fluctuations, due to
the bosonic algebra of the input fields. Moreover, the dynam-
ics of any product of the ladder operators is computed through

˙(ab) = ȧb + aḃ.
In the long-time limit, the average power reduces to 〈P〉q =

g�〈Nh − Nc〉q, with Nα = a†
αaα and explicitly evaluated from

a closed set of equations of motion, 〈d/dt (a†
αaβ )〉q; α, β =

h, c. The same equations of motion are obtained either from
the LME (3) or from applying the QLEs (4) and the white
noise autocorrelation functions (5). Armed with the equa-
tions of motion, noise (2) is evaluated by employing the
quantum regression theorem and Wick’s theorem [35]; details
can be found in the Supplemental Material [33].

Wave heat engine. Our wave model, sketched in Fig. 1(b),
consists of a pair of classical fields, externally driven by two
thermal white noise sources. Formally, the model is based on
the canonical association between the ladder operators and
the complex amplitudes for the classical fields, aα ↔ Aα . The
classical dynamics is given by classical Langevin equations,

Ȧh = −
(

i�h + κh

2

)
Ah − igAce−it� − √

κhξh,in, (6a)

Ȧc = −
(

i�c + κc

2

)
Ac − igAhe+it� − √

κcξc,in. (6b)

Above, the input fields encompass classical white noise, with

〈ξ ∗
α,in(t ′)ξβ,in(t )〉w = n̄αδαβδ(t ′ − t ), (7)

where we indicate the averages of the wave model with “w.”
Notably, ξα,in are scalars and commute; thus the classical
fields, Aα , are functions of the random inputs, ξα,in. A similar
wave model has also been considered in Ref. [12] for unitary
dynamics. We can visualize the wave model in a classical opti-
cal setting; see Fig. 1(b). Two cavities with frequencies �α are
supplied by thermal fluctuations, and a χ (2) crystal amounts
to difference frequency generation, producing a power-output
field with frequency � = �h − �c [36,37].

In this case, the average power is given by 〈P〉w =
g�〈|Ah|2 − |Ac|2〉w, and the average is taken with respect to
classical white noise (7). The evaluation of power statistics
closely follows those of the quantum model in the input-
output formalism. From Eqs. (6) and the white noise relation
(7), we compute 〈d/dt (A∗

αAβ )〉w, and a (classical) regression
theorem [38] combined with Wick’s or Isserlis’s theorem [39]
gives the noise. The procedure is carefully addressed in the
Supplemental Material [33].

Particle heat engine. In our particle model, particles may
reside on two different sites, as sketched in Fig. 1(c). The
occupation numbers of those sites are governed by a classical
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rate equation

ṗnh,nc = κh(n̄h + 1)(nh + 1)pnh+1,nc + κhn̄hnh pnh−1,nc

+ κc(n̄c + 1)(nc + 1)pnh,nc+1 + κcn̄cnc pnh,nc−1

+ �I (nh + 1)nc pnh+1,nc−1 + �I (nc + 1)nh pnh−1,nc+1

− �0
nh,nc

pnh,nc , (8)

where pnh,nc denotes the joint probability for the occupa-
tions nh and nc, the intrasystem jump rate is given by �I =
4g2/(κh + κc), and the rate, �0

nh,nc
, is such that

∑
nh,nc

ṗnh,nc =
0. We note that the rates for particles entering and leaving the
system are the same as in the LME (3). Indeed, for g = 0 the
rate equation (8) coincides with the evolution of the diagonal
elements of ρ given in Eq. (3). In contrast to the quantum
model, transport within the system is described by incoherent
jump processes, analogous to the jumps between the system
and the baths. As sketched in Fig. 1(c), a particle moving from
hot to cold will turn the gear in the orientation of the arrow
and produce the work �h − �c. An opposite and less likely
process is also allowed and would decrease the power output.

We find, in the long-time limit, 〈P〉p = �I�〈nh − nc〉p,
where 〈x〉p = ∑

nh,nc
x(nh, nc)pnh,nc , resembling the behavior

of the quantum model. In order to study the power fluctua-
tions, we apply full counting statistics (FCS) [40] to Eq. (8).
Concretely, we attach counting fields to intrasystem transi-
tions and determine the particle current statistics [33].

Average power and noise. We find that the quantum, as
well as the wave and particle models, lead to the same average
power,

〈P〉q = 〈P〉w = 〈P〉p = 4g2κhκc�(n̄h − n̄c)

(4g2 + κhκc)(κh + κc)

= �(n̄h − n̄c)
(
κ−1

h + κ−1
c + �−1

I

)−1
, (9)

where the last equality illustrates an analogy to the addition of
three conductances in series. For the wave model, the equality
with the quantum one follows since only normal-ordered op-
erators appear in computing the average power; thus vacuum
fluctuations are irrelevant. For the particle model, we note
that the steady-state power can be cast solely in terms of
average number operators, 〈P〉q = g�〈Nh − Nc〉q, which are
reproduced exactly by the particle model [33].

For each model, we find the power noise,

〈〈P2〉〉q = E[n̄h(n̄h + 1) + n̄c(n̄c + 1)] − S(n̄h − n̄c)2,

(10a)

〈〈P2〉〉w = E(n̄2
h + n̄2

c

) − S(n̄h − n̄c)2, (10b)

〈〈P2〉〉p = E[n̄h(n̄h + 1) + n̄c(n̄c + 1)] − Sp(n̄h − n̄c)2,

(10c)

where we wrote our results in terms of equilibrium noise, E,
and shot noise, S (Sp) [41]. The equilibrium noise,

E = 〈P〉�
n̄h − n̄c

, (11)

is proportional to the response coefficient in power when
a temperature bias is applied, in agreement with the

fluctuation-dissipation theorem [42]. For simplicity, we
present shot noise in the case κh = κc = κ ,

S = E
[

1 − 2g2 (4g2 + 5κ2)

(4g2 + κ2)2

]
, (12)

Sp = S+ E 24g4κ2

(6g2 + κ2)(4g2 + κ2)2
. (13)

General expressions for the noise can be found in the
Supplemental Material [33].

The wave model reproduces the shot noise of the quan-
tum model, but equilibrium fluctuations are reduced since the
terms linear in n̄α are absent in Eq. (10b). These linear contri-
butions stem from vacuum fluctuations and can be traced back
to the quantum white noise autocorrelation function (5). This
mismatch is shown in Fig. 2(a) (green-shaded region). While
the wave model fails to capture the dominant contributions
of noise at low temperatures, n̄h, n̄c � 1, it reproduces the
quantum noise at high temperatures n̄α 	 1.

In contrast to the wave model, the particle model captures
the equilibrium noise but fails to reproduce the shot noise of
the quantum model. Indeed, as for the wave model, the quan-
tum noise is an upper bound for the classical one since (Sp −
S) � 0. Note that the terms linear in n̄α , interpreted as vacuum
fluctuations so far, are related to detailed balance in the parti-
cle model since (n̄α + 1) = eβ�α n̄α , leading to the same equi-
librium noise. In Fig. 2(a) the red-shaded region illustrates the
mismatch between the particle model and the quantum model,
with a maximum mismatch at g/κ = 1/2(1 + √

3)1/2 ≈ 2/3.
We observe that for both limits g/κ → 0 and g/κ → ∞ the
particle model captures the noise of the quantum model, i.e.,
〈P〉q = 〈P〉p and 〈〈P2〉〉q = 〈〈P2〉〉p. For g/κα → 0, intersys-
tem transitions provide a bottleneck, and transport exhibits
bidirectional Poissonian statistics, fully characterized by the
rates �αβ = �I n̄α (n̄β + 1) [24],

〈P〉p = �(�hc − �ch), 〈〈P2〉〉p = �2(�hc + �ch). (14)

For g/κα → ∞ the system modes hybridize and effectively
behave as a single oscillator in contact with two thermal baths
[24,43]

〈P〉p = κcκh�

κc + κh
(n̄h − n̄c), (15)

〈〈P2〉〉p = κcκh�

(κc + κh)3

{
(κc + κh)2[n̄h(n̄h + 1) + n̄c(n̄c + 1)]

− (n̄h − n̄c)2
(
κ2

h + κ2
c

)}
. (16)

To supplement the discussion of noise, we now analyze the
Fano factor, F = 〈〈P2〉〉/(〈P〉�). This quantity is a measure
of bunching and connected to intensity correlations [44,45];
for example, thermal light is (super-)Poissonian, F � 1
(bunched), while the flux of single photons is sub-Poissonian
(antibunched), F < 1. For the quantum and particle models,
we find Fq � Fp � 1, while the wave model can attain sub-
Poissonian statistics since Fw can be both smaller and larger
than 1, as exemplified in Figs. 2(b) and 2(c). To understand
these results, we introduce δFqw(p) = Fq − Fw(p), which rep-
resent the shaded regions in Figs. 2(b) and 2(c).

For the wave model, Eqs. (10a) and (10b) give δFqw =
(n̄h + n̄c)/(n̄h − n̄c). The divergence at equilibrium, n̄h = n̄c,
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(a) (b) (c)

FIG. 2. Noise and the Fano factor. In all plots we set n̄c = 0.1, κh = κc = κ . (a) (linear-log) Power noise as a function of coupling between
system modes, g/κ , and average power in the inset. We fixed n̄h = 2. The green-shaded (red-shaded) region indicates the mismatch between
wave (particle) and quantum models; the particle model matches the quantum model for both small and large g/κ . (b) (linear-log) Fano factor
as a function of g/κ , with n̄h = 2 (solid curves) and n̄h = 10 (dashed curves). For these temperatures, both classical models show a clear
mismatch with the quantum one in the region where g is of the order of κ . The gray dashed line indicates F = 1. (c) (log-log) Fano factor as a
function of n̄h, with g/κ = 2/3 (solid curves) and g/κ = 10 (dashed curves). We see that for either coupling regime, the wave model converges
to the quantum model for large n̄h. The gray dashed line indicates F = 1, the solid gray curve is the bound provided by the TUR, and the
purple curve is the bound from the modified TUR which holds for the wave model. We observe sub-Poissonian statistics for the wave model
close for n̄h � 1.

is due to the absence of power, while equilibrium fluctuations
are still present. We also note that in the high-temperature
limit, δFqw does not vanish, but Fq(w) are dominated by
the quadratic terms in n̄α such that Fq ≈ Fw, as we see in
Fig. 2(c). At low values of g, the wave model results in anti-
bunching as Fw drops below 1 when n̄hn̄c < n̄h − n̄c. In this
regime, vacuum fluctuations are crucial to capture the correct
statistics, which never show antibunching in this quantum
model.

Equations (10a) and (10c) readily give δFqp = (Sp −
S)/(〈P〉�) � 0, implying reduced bunching for the particle
model. This can be seen in the red-shade regions in Figs. 2(b)
and 2(c): For g/κ ≈ 2/3, δFqp has a maximum, but the par-
ticle model still has Fp � 1. In contrast, in the limits g/κ →
0 (∞), δFqp = 0, independently of the temperatures.

Jointly analyzing quantum, wave, and particle models, we
conclude that for low temperatures, n̄α � 1, and g/κ ≈ 2/3,
neither the wave model nor the particle model captures the
quantum, bosonic, noise encoded in power statistics. There-
fore, even a minimal quantum heat engine, once operated
in the quantum regime, contains complementary equilibrium
and nonequilibrium effects stemming from wavelike and par-
ticlelike behavior. As we have shown, this is, however, not
conflicting with two possible classical pictures emerging in
different parameter regimes.

Thermodynamic uncertainty relations. In stochastic ther-
modynamics, the trade-off between power and noise has a
well-established bound in terms of the entropy production
rate, σ̇ [46–48]. In contrast to fermionic systems, where
the effect of quantum coherence can decrease noise [15],
the so-called thermodynamic uncertainty relation (TUR),
〈〈P2〉〉/〈P〉2 � 2/σ̇ , cannot be violated in our bosonic model
[49], and this bound immediately applies to the rate equa-
tion (8). For the power of our heat engine, the TUR is
equivalent to a bound on the Fano factor, F � 2(�c/Tc −
�h/Th)−1 [solid gray curve in Fig. 2(c)]. The wave model
violates this bound, and the violation coincides with the
spurious antibunching. The reason for TUR violations in
the wave model is the choice of the classical white noise

in Eq. (7). In classical Langevin equations, the strength of
the white noise is given by kBTα instead of n̄α , which only
coincide for large temperatures. Since classical Langevin
equations obey the TUR [50], a modified bound holds for
the wave model, Fw � 2(n̄−1

h − n̄−1
c )−1 [solid purple curve

in Fig. 2(c)].
Alternative classical models. The particle and wave models

aforementioned are in principle not unique. In the parti-
cle model, for instance, we chose �I = 4g2/(κh + κc). This
choice is motivated because it is the only one that reproduces
the quantum average power. For the wave model, a differ-
ent value for the strength of the white noise [cf. Eq. (7)]
could be chosen. Indeed, setting 〈ξ ∗

α,in(t ′)ξβ,in(t )〉w = (n̄α +
C)δαβδ(t ′ − t ), with the same C for α = h, c, leaves the av-
erage power (9) unchanged. Tuning C, we can attempt to
account for vacuum fluctuations in the wave model; this
has the consequence of modifying the equilibrium part of
Eq. (10b) as n̄2

α → (n̄α + C)2, which should be compared
with n̄α (n̄α + 1) in the quantum model [see Eq. (10a)]. For
C = 1/2, the modified wave model captures the linear terms
in n̄α present in Eq. (10a). However, for any C �= 0, the
modified wave model predicts noise at n̄h = n̄c = 0 and thus
cannot correctly reproduce vacuum fluctuations for arbitrary
temperatures.

Conclusions and outlook. We have shown that the wave-
particle duality (WPD) plays a fundamental role in the power
statistics of quantum heat engines. We considered a minimal
model where, despite the presence of quantum coherence
and vacuum fluctuations, two classical descriptions based
on either particles or waves reproduce the average power
of the quantum model. Power fluctuations, however, contain
contributions from vacuum fluctuations and coherence which
cannot be reproduced by our wave and particle models, re-
spectively. Our work thus highlights the connection between
power statistics and the WPD, a cornerstone of quantum
theory. Thereby, we provide an alternative perspective for
understanding engines in the quantum regime.

We stress that our approach of comparing a quantum model
with a wave model and a particle model may readily be

L042007-4



WAVE-PARTICLE DUALITY IN A QUANTUM HEAT … PHYSICAL REVIEW RESEARCH 5, L042007 (2023)

extended to different systems and thereby opens up an al-
ternative avenue for determining nonclassical behavior. For
instance, quantum few-level systems and qubits can be con-
trasted with either classical few-level systems (particlelike
models) or classical magnets with oscillating magnetiza-
tion (wavelike models). Furthermore, by considering the full
Josephson interaction in a circuit QED implementation of the
heat engine considered here [26], the WPD can be exploited

in a richer model which contains squeezing and non-Gaussian
effects in the power statistics.
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