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Imprinting spiral Higgs waves onto superconductors with vortex beams
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A vortex beam, akin to a quantized vortex in superfluids, possesses inherent orbital angular momentum
(OAM), resulting in the propagation of a spiral-shaped wavefront. Here, we demonstrate that a pulsed vortex
beam with OAM in the terahertz frequency band can induce a spiral Higgs wave, which is a spiral-shaped
oscillation mode of the superconducting order parameter. By utilizing the gauge-invariant theory for the super-
conducting order, we demonstrate that the phase mode is driven to screen the longitudinal magnetic field of the
vortex beam, which facilitates the imprinting of the spiral-shaped wavefront and the transfer of OAM to the
condensate. Furthermore, we find that increasing the OAM of light amplifies the intensity of the third-harmonic
generation. These findings highlight the potential of terahertz vortex beams as a spectroscopic probe of collective
modes.
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Introduction. In 1992, Allen et al. [1] discovered the
vortex beam, a light beam with a spiral-shaped wavefront
around its propagation axis. Similar to a quantum vortex
in superfluids, a vortex beam has a phase singularity and
carries both orbital angular momentum (OAM) of mh̄ and
spin angular momentum (SAM). SAM designates the hand-
edness of light, while the topological charge of OAM, m ∈ Z,
counts the number of phase windings in a single wavelength.
The phase singularity gives rise to a doughnut-shaped inten-
sity distribution [1–3]. Vortex beams have been developed
as essential optical techniques for a wide range of optical
and physical phenomena, including optical trapping and ma-
nipulation [4–9], quantum communications [10–12], chiral
nanostructure fabrication [13–15], optical vortex knots [16],
and astrophysics [17]. Although the research field of vortex
beams is continuously expanding, the applications for solid-
state physics are still limited.

The recent development of generating vortex beams with
high intensity in the terahertz (THz) band has exciting im-
plications for solid-state physics [18–24]. THz vortex beams
offer a unique opportunity for ultrafast manipulation of states
of matter since photon energy is comparable to that of collec-
tive excitations in materials, such as spin waves. The coupling
between THz vortex beams and ordered spin structure in mag-
nets leads to the OAM dichroic effect [20,22] and Faraday
effect [24]. Furthermore, the imprint of the helical structure
of vortex beams on spin texture has been demonstrated in a
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semiconductor quantum well [23]. Theoretical studies have
also revealed that vortex beams cause nonequilibrium phe-
nomena in magnets, including the generation of spiral spin
waves and topological defects [25,26].

In this Letter, we theoretically study the nonlinear optical
responses of superconductors to THz vortex beams. These
beams align with the distinctive length scale of superconduc-
tors, much as long-wavelength spin waves and topological
defects in magnets [25,26]. Given that the coherence length of
Cooper pairs is extensive, the macroscopic wave function can
effectively capture characteristic wavefronts of vortex beams.
The THz band is necessary since its photon energy is compat-
ible with the Higgs mode. Throughout numerical simulations
on the effective action of the superconducting order and gauge
fields, we demonstrate that pulsed vortex beams significantly
enhance the intensity of third-harmonic generation (THG)
by driving the spiral-shaped Higgs waves in the condensate.
This occurs due to the quadratic coupling of the amplitude
oscillation to gauge-invariant potentials. The spacetime phase
(plasma) fluctuations are responsible for imprinting the spiral-
shaped wavefronts to the condensate and amplifying the THG
intensity with the OAM of light. These findings suggest that
THz vortex beams serve as spectroscopic probes for collective
modes.

Laguerre-Gaussian vortex beam. Vortex beams are a class
of solutions of Maxwell’s equations within the paraxial
approximation that carries OAM [1,27]. They are often re-
ferred to as Laguerre-Gaussian modes. When considering
a monochromatic incident electric field and propagation in
the z direction, the field configuration can be expressed
as Eext (x, t ) = i�[êsup,m + ẑ i

k (ês · ∇)up,m]e−i�t , where ês =
(x̂ + isŷ)/

√
2 is the polarization vector for circularly polar-

ized light and s = ±1 is the SAM of light. Let x = (ρ, θ, z)
be the cylindrical coordinate, where ρ =

√
x2 + y2 and θ =

arctan(y/x). The spatial profile of up,m at the focal plane
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(z = 0) is given by

up,m(ρ, θ, z = 0) =
(

ρ

w0

)|m|
e−ρ2/w2

0 eimθ L|m|
p

(
2ρ2

w2
0

)
, (1)

where L|m|
p is the associated Laguerre polynomial and w0

is the diameter of the Gaussian beam. Apart from s = ±1,
the Laguerre-Gaussian mode is identified by p, m ∈ Z. The
integer p corresponds to the number of nodes for the radial di-
rection, while m represents the topological charge associated
with the OAM of light. This delineates the phase accumulated
in multiples of 2π when traveling around the mode circum-
ference. The winding number of the spiral-shaped wavefront
can determine the helicity or handedness of the wavefront.
Vortex beams with m �= 0 have a “doughnut-shaped” inten-
sity profile, with peak intensity around ρ ∼ w0. Gaussian
beams, corresponding to m = 0, have been employed in
the spectroscopy of the Higgs excitations [28–38]. Unlike
conventional Gaussian beams, the vortex beam involves a
longitudinal component of the magnetic field, Bext

z = (∇ ×
Aext )z ∝ cos(Jθ − �t ). Below we show that in superconduc-
tors, the phase mode screens the longitudinal field, which is
essential for imprinting the spiral wavefront of light to the
condensate.

Nonlinear dynamics induced by vortex beams. To study
the nonlinear dynamics of superconductors induced by vortex
beams, we start with the effective action at T = 0 [39–41],

S =
∫

dx

[
− τ |Dt�(x)|2 − γ�∗(x)Dt�(x) + κ|D�(x)|2

+ α|�(x)|2 + β

2
|�(x)|4 + B2(x) − E2(x)

8π

]
, (2)

where �(x) is the superconducting order parameter. Here, we
introduce x ≡ (x, t ), and (τ, κ, α) are microscopically deter-
mined [42]. The wave speed and coherence length are defined
as v2 ≡ κ/τ = v2

F/3 and ξ 2
0 ≡ κ/|α| = v2/2�2

0, respectively,
where �0 is the superconducting gap at equilibrium and vF

is the Fermi velocity of normal electrons. These values char-
acterize the wave propagation and length scale of �(x). The
scalar and vector potentials (
, A) are coupled to � through
covariant derivatives Dt ≡ ∂t + 2ie
 and D ≡ ∇ − i 2e

c A.
The internal electromagnetic (EM) fields in the superconduc-
tor are defined as B = ∇ × A and E = −∇φ − 1

c ∂t A, where
φ ≡ 
 − φext and A ≡ A − Aext are the scalar and vector
potentials in the superconductor, respectively, and the exter-
nal potentials generated by vortex beams are represented by
φext = 0 and Aext = Eext/i�. In this Letter, we set h̄ = 1. The
first term in Eq. (2) pertains to collective excitations, while the
second term, which involves γ , contributes to the dissipation
of these modes back to equilibrium. When the energy scale of
the excitations satisfies ω � 2�0, the damping is suppressed
because of the absence of the fermionic excitations. There-
fore, we determine γ to satisfy γ 	 τω.

The equation of motion (EOM) for �, derived from Eq. (2),
has a wavelike form with a relaxation term [42]. The gauge
fields are governed by Ampère’s law and Gauss’s law,

∇ × B(x) − 1

c
∂t E(x) = 4π

c
j(x), ∇ · E(x) = 4πρ(x),

(3)

where the charge and supercurrent densities are ρ(x) =
2ieτ�∗(x)Dt�(x) + c.c. and jμ(x) = −2eiκ�∗(x)Dμ�(x)
+ c.c., respectively. We introduce the dissipation of the EM
fields by replacing j with jtot = j + jn. Here, jn = σnE is
the dissipative current that follows the Ohmic law. The EOMs
obey the charge conservation law, ∂tρ + ∇ · j = 0.

Equation (2) is the nonrelativistic U(1) Higgs model,
which describes the collective modes in bulk supercon-
ductors [40]. Let us consider small amplitude and phase
fluctuations of the condensate around �0, �(x) = [�0 +
δ�(x)]eiϕ(x). For |�(x)| = �0, the U(1) phase [ϕ(x)] is ab-
sorbed into the gauge fields through the gauge transformation.
As a result, the longitudinal component of the gauge field
gains a mass gap of ωp =

√
4πe2n/me, where n is the elec-

tron density and me is the mass of electrons. Then, the only
low-lying collective excitation is the Higgs mode with the
dispersion ω2

H(q) = 4�2
0 + v2q2. The action has been uti-

lized for the numerical simulations of spontaneous vortex
formation [43] and collisional dynamics of vortices [44]. For
numerical calculations, we take the temporal gauge that φ = 0
in all time [44–47], and implement methods from the Hamil-
tonian formalism of the lattice gauge theory to ensure gauge
invariance and charge conservation [42,44,48].

We first consider a superconducting film with a thickness
(d) that is less than the London penetration depth λ and ξ0.
Then, the dynamics of �(x) and j(x) can be restricted to two
dimensions. Starting at the equilibrium state, �(x, t = 0) =
�0, we irradiate a pulsed vortex beam for t > 0 [Fig. 1(a)].
Since the wavelength of THz vortex beams is significantly
longer than both d and λ, we can disregard the z dependence
of Aext. The vector potential for the pulsed vortex beam with
(m, s) is given by

Aext (x, t )=Re

{
A0up,m(x)

max |up,m(x)| exp

[
−

(
t − t0

σ

)2

− i�t

]
ês

}
,

(4)

where � and σ ≡ 2πnp/� are the frequency and the full
width at half maximum of the beam intensity, respectively.
In this work, we consider vortex beams with p = 0. In the
following calculations, we take the number of cycles of the
pulse field and the beam waist as np = 5 and w0 = 20ξ0,
respectively. We also set t0 = 2σ and the size of the xy
plane to x, y ∈ [−200ξ0, 200ξ0]. In the Supplemental Mate-
rial [42], we clarify that np and w0 do not alter the dynamics
of �(x) and EM waves. In conventional superconductors, ξ0

and λ are O(10–100 nm). For instance, bulk Nb has ξ0 ∼
λ ∼ 40 nm [49] and NbN thin films have a large value of
the Ginzburg-Landau (GL) parameter κGL ≡ λ/ξ0 with ξ0 ∼
5 nm and λ ∼ 200 nm [50]. The timescale is represented
by t� ≡ h̄/�0 = O(1 ps) with �0 = O(1 meV). In the fol-
lowing calculations, the coefficient in Eq. (4) is fixed to
2|e|ξ0A0/h̄c = 0.4, corresponding to the maximum electric
field of E0 ≡ �A0 = 0.4 kV/cm with ξ0 = 10 nm and � =
0.5 THz. In the current work, the heating effect is not taken
into account since laser absorption has a minimal impact on
THz vortex beams. For ultraviolet-visible vortex beams, how-
ever, the heating effect becomes more substantial [26,51,52].

Figure 1(b) shows the spatial profile of the internal
magnetic field Bz(x, t ) and the supercurrent density j(x, t )
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FIG. 1. (a) Schematics of our setup, where the spiral shape de-
picts the wavefront of the vortex beam with m = 4. The vortex beam
with m �= 0 involves Bext

z , which is screened by the internal field Bz

and the supercurrent density j. (b) Spatial profiles of Bz(x, t ) (color
map) and j(x, t ) (arrows) at t = 51t�, driven by the vortex beam
with (m, s) = (4, 1). (c), (d) Snapshots of (c) the charge density
ρ(x, t ) at t = 51t� and (d) the condensate amplitude |�(x, t )| at
t = 153t�, induced by vortex beams with J = m + s, where t� ≡
h̄/�0 = O(1 ps) represents the timescale of the condensate. The in-
tensity of the pulsed vortex beam almost becomes maximum around
t = 62t�. In all data, we set � = 1.025�0, close to the nonlinear
Higgs resonance.

(arrows) at t = 51t� ∼ t0, driven by the circularly polarized
vortex beam with (m, s) = (4, 1). Here, we set the GL pa-
rameter to κGL ≡ λ/ξ0 = 10. The frequency of light is set
to be close to the nonlinear resonance of the Higgs mode,
� = 1.025�0. The induced supercurrent generates the inter-
nal field Bz(x, t ) ∝ −Bext

z (x, t ), which screens the external
field Bext

z (x, t ). The charge conservation dictates that the inho-
mogeneous current density in the plane is accompanied by a
fluctuation in the charge density as ∂tρ = −∇ · j. In Fig. 1(c),
we present the snapshots of ρ(x, t ) at t = 51t� for m = −4,
0, 2, and 4 (J = −3, 1, 3, and 5), which yield the oscillation
pattern that reflects the total angular momentum of light J .
In Fig. 1(d), we observe that the oscillation pattern of the
condensate amplitude along the azimuthal direction carries
twice the total angular momentum 2J .

Figure 2 shows how vortex beams induce the dynamics
of the condensate and charge density. Here, we focus on
(m, s) = (4, 1) and � = 1.025�0. In Fig. 2(a), we display the
snapshots of |�(x, t )| and ρ(x, t ) after irradiating the pulsed
wave in Eq. (4) onto the condensate. For t � t0/2 = 10πt�,
the vortex beam mainly stimulates the charge density with the

FIG. 2. (a) Snapshots of |�(x, t )| and ρ(x, t ) at t� = 27.5, 55.0,
82.5, 110.0, and 137.5 for � = 1.025�0 and (m, s) = (4, 1), where
�−1 = 0.6 ps for �0 = 1 meV. (b) Time evolutions of the projec-
tions of � onto angular momentum eigenstates (��) with � = J , 2J ,
3J , and 4J . The amplitudes of the other � components are negligibly
small. In (a), we also plot the spatially averaged charge density
fluctuation 〈|ρ(t )|〉av. (c) Time evolutions of ��=2J for �/�0 = 0.85,
1.0, and 1.1. In (b) and (c), the magenta curve shows the temporal
profile of the applied field f (t ) = cos(�t )e−(t−t0 )2/σ 2

.

peak intensity around t ∼ t0. Subsequently, a spiral-shaped
wave appears on the condensate �(x), persisting even af-
ter the charge density fluctuation ρ(x) is fully screened. We
expand the condensate wave function in terms of the eigen-
states of the angular momentum as �(θ, t ) ≡ ∫

�(x, t )dρ =∑
� ei�θ��(t ) (� ∈ Z). In Fig. 2(b), we find that �� with � =

2J significantly increases around t ∼ t0, while the other com-
ponents with � �= 2J are almost negligible. The time evolution
of the net charge density excitation, 〈ρ(t )〉av ≡ ∫

dx|ρ(x, t )|,
is also shown in Fig. 2(b). This excitation follows the envelope
of the pulsed field e−(t−t0 )2/σ 2

. The charge density is excited
before the oscillation of the condensate amplitude grows,
and it returns to neutral once the pulse is off. As mentioned
below, the charge density oscillation is associated with the
off-resonant phase excitation and only transiently excited. In
Fig. 2(c), we observe a sharp reduction in the intensity of
�2J (t ) as the frequency � deviates from the nonlinear res-
onance to the Higgs mode, � = �0.

Gauge-invariant response and enhancement of THG. Let us
now examine the results in Figs. 1 and 2, based on the analysis
of the effective action. The phase of the superconducting
order ϕ, defined by � = |(�0 + δ�)|eiϕ , is essential for the
gauge invariance of the theory. Here, we clarify that vortex
beams carrying nonzero OAM stimulate phase excitations,
which strengthen the gauge-invariant quadratic coupling of
the vortex beams to the Higgs mode (δ�) and amplifies the
nonlinear current responses.

To uncover the role of the phase fluctuation, let us focus
on the gauge-invariant potential Ã(x) ≡ A(x) − c

2e∇ϕ(x).
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Solving the continuity equation and the Maxwell-Ampère law
in the linear response regime, the potential reads [42]

Ã(x) ≈ − (κGL/C)2

1 − (κGL/C)2
Aext

⊥ (x) − ic

2e

∇[∇ · Aext
⊥ (x)]

(ωp/v)2
, (5)

for � ∼ �0, where C ∼ c/v and Aext
⊥ = (Aext

x , Aext
y , 0). The

first term pertains to the screening effect, while the second
term is attributed to the off-resonant phase excitation ∇ϕ. In
the low κGL regime, the internal field is induced to screen
Aext

⊥ and the first term vanishes at the type-I limit, κGL → 0.
As a result, Bext

z generated by vortex beams is screened by
the internal field Bz, while the transverse fields (Bext

x , Bext
y )

remain unscreened in a thin film. On the other hand, at the
type-II limit (κGL → ∞), the screening current is negligible,
and the first term of Eq. (5) reduces to Aext

⊥ . The second
term represents the off-resonant phase excitation, where the
THz range is far from the resonance � 	

√
(vq)2 + ω2

p ≈
ωp. The phase excitation is linearly driven by vortex beams
as ϕ(x) ∝ ∇ · Aext

⊥ (x) ∝ ês · ∇eimθ−i�t up,m(x), indicating that
the oscillation pattern of the phase mode reflects the OAM of
light as ϕ(x) ∝ m cos(Jθ − �t ). This explains the character-
istic oscillation pattern of ρ(x, t ) ∝ ∂tϕ(x, t ) ∝ m cos(Jθ −
�t ) shown in Fig. 1(c). Thus the OAM of light can be en-
coded to the superconductor in the form of the charge density
oscillation. It is also worth mentioning that the intensity of
the first term in Eq. (5) is insensitive to the OAM of light, m,
while the second term is proportional to m. In the low κGL

regime, the first term in Eq. (5) is screened, while the impact
of the second term becomes prominent. Then, the intensity
of the gauge-invariant potential (Ã) amplifies through the
off-resonant phase excitation as m increases. This is a unique
feature of vortex beams and absent in conventional Gaussian
beams with m = 0.

The phase excitation and the screening effect affect the
coupling of light to the Higgs mode the THG intensity. From
Eq. (2), the third-order current response is given as

j (3)(x, t ) = −16e2κ�0

c
δ�(x, t )Ã(x, t ), (6)

which is mediated by the Higgs excitations (δ�). The Higgs
mode (δ�) is coupled to Ã through the effective action

Sδ�A ≡ 4e2κ

c2

∫
dx|δ�(x)|2Ã2

(x). (7)

As mentioned above, the potential is approximated as Ã ∼
− 2e

c ∇ϕ in the low κGL regime, and its quadratic form involves
ϕ2 ∝ (ês · ∇eimθ−i�t )2 ∝ sin2(Jθ − �t ), which generates the
spiral wave in the condensate with a period of 2πw0/2J . For
Gaussian beams with m = 0, only the direct coupling of δ�

and (Ã)2 ≈ (Aext )2 in Fig. 3(a) is possible and the phase mode
is not active. In the case of vortex beams with m �= 0, however,
the inhomogeneity causes the off-resonant phase excitations
and enhances the gauge-invariant potential with increasing
|m|. Figure 3(b) depicts the impact of the phase mode on Ã,
which strengthens both the nonlinear Higgs excitation and the
nonlinear current response.

To verify the aforementioned scenario, we compute
the THG intensity for different values of �, m,
and κGL. The THG intensity is defined as I (3�) =

FIG. 3. (a), (b) Diagrams of nonlinear Higgs excitations by vor-
tex beams: (a) The coupling to (Aext )2 and (b) the quadratic coupling
through the phase modes. (c) m dependence of the THG intensity
I (3�)/I0 at � = 1.025�0 for κGL = 1 (circles), 10 (triangles), and
40 (squares), where I0 ≡ c2/(16πe). The inset shows the THG in-
tensity I (3�) for (m, s) = (4, 1) and κGL = 10.

∫
dtI (t )ei3�t with I (t ) ≡ ∫

dx| j(x, t )|. As shown in
Eq. (6), the nonlinear Higgs excitation contributes to
the THG as I (3�) ∝ ∫

dqÃ(q,�)Ã2
(−q,−2�)/{(2�)2

− [ωH(q)]2}, and the gauge-invariant potential involves the
off-resonant phase excitations. In Fig. 3(c), the inset displays
the THG intensity I (3�) for (m, s) = (4, 1). The spectrum
exhibits a distinct peak at the nonlinear Higgs resonance
frequency � = �0. The main panel of Fig. 3(c) indicates
that the weak intensity of the THG at m = 0 increases as |m|
increases. This aligns with the scenario where a vortex beam
with m �= 0 linearly drives a spacetime fluctuation of the
phase mode, enhancing the nonlinear coupling of the Higgs
mode to light through the gauge-invariant potential.

The THG intensity is influenced by κGL. As shown in
Fig. 3(c), the THG intensity at κGL = 1 is approximately ten
times weaker than that at κGL = 10 due to the strong screening
effect, but it is significantly amplified by the OAM of light.
The κGL dependencies are attributed to the interplay between
the screening effect and off-resonant plasma oscillation. As
mentioned in Eq. (5), the gauge-invariant potential Ã con-
sists of Aext and the off-resonant phase excitation. In the low
κGL regime (κGL = 1, 10), the former is screened, and Ã is
dominated by the latter term which amplifies with m. For
κGL � 1, however, the screening effect weakens and the po-
tential reduces to Ã ≈ Aext. The nonlinear current response in
κGL = 40 is governed by Aext rather than off-resonant plasma
excitations. As a result, the increase of the THG intensity with
m is suppressed for κGL � 1. There are optimal values of κGL

that maximize the THG intensity [42]. We also note that the
result in Fig. 3(c) is insensitive to w0 [42].

Spiral waves on the surface of SCs. So far, we have focused
on two dimensions. However, comparable outcomes can be
seen even when we take into account a finite thickness along
the z axis. Consider a superconducting film with a thickness of
d = 20ξ0 and the penetration depth of λ = 10ξ0 (κGL = 10).
The vortex beam is irradiated towards the upper surface of
the film at z = d/2. Figure 4 shows the snapshots of |�(x, t )|
[Fig. 4(a)], ρ(x, t ) [Fig. 4(b)], and j‖ = ( jx, jy) [Fig. 4(c)],
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FIG. 4. Snapshots of (a) |�(x, t )|, (b) ρ(x, t ), (c) | j‖(x, t )|, and
(d) j(x, t ) at t = 51t� after the irradiation of the pulsed vortex beam
with (m, s) = (4, 1) and � = 1.025�0. In all data, we set κGL = 10.

after the irradiation of the vortex beam with (m, s) = (4, 1).
Here, we set � = 1.025�0 and w0 = 20ξ0. Figure 4(d) is the
vectorial plot of ( jx, jy, jz ). In a similar manner to the results
observed in a two-dimensional film, the vortex beam induces
spiral waves in both the condensate amplitude [Fig. 4(a)]
and the phase excitation [Fig. 4(b)], which reflect twice the
total angular momentum 2J and the total angular momen-
tum J , respectively. The amplitude oscillation penetrates the
skin depth within λ, while alternative positive and negative
charge distributions accumulate on the surface as ρ(x, t ) ∼
A sin(Jθ − �t )δ(z − d/2). Such charge distribution creates a
three-dimensional flow of the supercurrent density, depicted
in Figs. 4(c) and 4(d). Two-dimensional simulations can ac-
curately represent the nonlinear Higgs excitation and THG
induced by vortex beams. These characteristics remain con-
sistent as long as the thickness is much shorter than the laser
wavelength.

Concluding remarks. In this Letter, we have investigated
the nonlinear optical responses of superconductors to vortex

beams and examined the possibility of utilizing OAM as an
additional degree of freedom. We have demonstrated that
vortex beams with nonzero OAM induce the spiral-shaped
oscillations in both the condensate and charge density. The
phase modes linearly driven by vortex beams facilitate the
imprinting of the spiral-shaped wavefront and the transfer of
OAM to the condensate. We have also found that increasing
the OAM of light amplifies the THG intensity. In Ref. [42],
we have further discussed how light and material parame-
ters impact on our key findings. Here, we have identified
optimal values for the Ginzburg-Landau parameter and the
beam waist to maximize nonlinear Higgs excitation and THG
intensity.

We have used the effective action which only takes into
account the diamagnetic Higgs response, without considering
the contribution of Bogoliubov quasiparticles. For Gaussian
beams, however, it has been unveiled that quasiparticle pair
excitations play a crucial role in the THG [53,54]. In addition,
the third-order paramagnetic current responses [55,56] may
also come into play for vortex beams with nonzero OAM
even in clean superconductors. Further research is needed
to calculate the THG from the gauge-invariant microscopic
theory [57–59], including both quasiparticles and the Higgs
mode via paramagnetic and diamagnetic channels, beyond
Eq. (2).

As we mentioned in the Introduction, applications of struc-
tured light have been gradually extending to condensed matter
physics [20–26,60–66]. On top of vortex beams, several types
of topological light have been developed [67–69]. The present
Letter and these works will further accelerate the marriage of
topological light with condensed matter physics.
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