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Viscous friction acting on a solid disk falling in confined fluid: Lessons for the scaling analysis
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We fill a viscous liquid in a vertically stood cell of millimeter thickness, called the Hele-Shaw cell, and insert
a disk in the liquid whose thickness is smaller than the cell thickness. The disk starts falling in the liquid due to
gravity opposed by viscous friction. We focus on the case in which lubricating films formed in the gap between
the cell surface and the disk surface are thinner than the disk thickness. As a result, we find an apparent scaling
regime for the falling velocity of a disk, in which the thickness of the lubricating film characterizes the dynamics.
We further show that the apparent scaling regime is explained simply as a result of competition of two scaling
regimes, elucidating the physics of the viscous friction. The present study is thus relevant to fundamental issues
and applications in various fields in which small-scale physics in the flow at low Reynolds numbers is essential,
such as microfluidics, bioconvection, and active matter. The simple scenario for explaining an apparent scaling
law demonstrated in the present study would be useful in diverse fields, considering that the generality and
strength of scaling analysis in science and that simple arguments usually lead to a few different scaling laws for
a given problem.
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Scaling analysis has been a powerful tool in various fields
in science beyond physics [1,2] and applied mathematics
[3], which include biology [4,5], engineering [6], and as-
tronomy [7]. A lot of scaling laws have been established
with a well-defined scaling exponent, with successful expla-
nations by renormalization group [1,2] or a simple scaling
argument. However, it also happens frequently that, although
an exponent is clearly observed, a simple argument predicts
an exponent slightly deviating from the observed one, as
in, for example, the metabolic-rate (R) vs body-mass (M)
relation in biology [8] and the luminosity (L) vs mass (M)
relation in astronomy [9]: For the relation R � Mα (L � Mβ),
experimental data clearly give α ≈ 3/4 (β ≈ 3.7), while a
simple dimensional analysis predicts α = 2/3 (β = 3). Such
apparent scaling laws have been interpreted in case-specific
or ad hoc theories, leaving room for debate. Here, we focus
on a simple viscous dynamics and demonstrate an apparent
scaling law, which is simply explained as a result of com-
petition of two scaling regimes. This simple scenario would
be useful for understanding apparent scaling laws in diverse
fields in science, if one notes that simple scaling arguments
usually result in a few different scaling regimes for a given
problem.

In addition to the significance in the general context of
the scaling analysis, the present study could be fundamentally
important for various current topics such as microfluidics [10],
promising for applications in chemistry, biology, medicine,
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and the pharmaceutical industry, and bioconvection [11–13],
which is created via swimming of a large number of small
objects and has received attention in active matter and biol-
ogy. The central issue is the flow at low Reynolds numbers
governed by viscous friction due to small scales at which most
liquids, including water, are highly viscous.

Relevant classic studies on viscous friction are motion of a
bubble in a capillary tube [14] and in a Hele-Shaw cell [15].
Our focus is on the latter. A number of studies have been
performed in the Hele-Shaw geometry, with a main focus on a
forced flow and/or with nearly horizontal geometries [16–19].
Recently, we have highlighted the existence of lubricating film
between the cell surface and bubble surface using a vertically
stood Hele-Shaw cell of millimeter thickness filled with vis-
cous liquid to confirm a number of scaling regimes for drag
friction acting on fluids surrounded by another immiscible
fluid [20–23]. Other groups have explored closely related
issues, using cells with smaller scales [24,25] and comparing
numerical results with experiments [26].

In this study, we explore a seemingly simpler case of drag
friction acting on a solid disk in a Hele-Shaw cell of millime-
ter thickness, where similar lubricating films exist between
the cell wall and disk surface. Our principal interest is in the
case in which the thickness of the lubrication film is smaller
than the disk thickness when the disk is falling in the direction
perpendicular to its axis. As far as we know, this case has not
been explored in the literature, while it is closely related to
a study of transport of strongly confined disks under flow in
microfluidic devices [27]. As a result, we identified an appar-
ent scaling regime, in which the observed scaling exponent for
collapsed data deviates from a predicted exponent. We reveal
that the deviation is simply the result of competition of two
scaling regimes.

In experiments, we filled a Hele-Shaw cell, stood vertically,
with a silicone oil (polydimethylsiloxane, PDMS) as shown

2643-1564/2023/5(3)/L032047(6) L032047-1 Published by the American Physical Society

https://orcid.org/0000-0002-8554-7173
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.L032047&domain=pdf&date_stamp=2023-09-29
https://doi.org/10.1103/PhysRevResearch.5.L032047
https://creativecommons.org/licenses/by/4.0/


NANA TANAKA AND KO OKUMURA PHYSICAL REVIEW RESEARCH 5, L032047 (2023)

FIG. 1. (a) Illustration of experiment. A metal disk of thickness D0 is dropped in the cell of thickness D filled with a viscous oil of kinematic
viscosity ν. The side view suggests the existence of two lubricating films of thickness h. The two dashed rectangles at the top of the cell on the
left indicate the places at which plates (of thickness � h) are set (see text for details). (b) Vertical position x vs time t . Results of three falling
experiments are shown for each parameter set specified by (ν, D0, h). ν is given in centistokes (cS), while D0 and h are given in millimeters
(mm). (See the text for the precise value of D0.)

in Fig. 1(a). We inserted a metal disk of radius R = 10 mm
at the top of the cell with a zero initial speed. We recorded
the ensuing falling motion of the metal with a camera after
the disk began going down in the cell at a constant speed. The
width and height of the cell was 90 and 160 mm, respectively.
We checked the thickness D of the cell using a laser sensor
(ZS-HLDS5, Omron) and its controller (ZS-HLDC11, Om-
ron) to find D was in the range of 2.2–7 mm (except
for a dataset shown by the square in Fig. 2 below). The
kinematic viscosity ν of PDMS was in the range of 1000–
10 000 cS, which corresponds to the range of the viscosity
η = ρ0ν, 0.970–9.75 Pa s (the density ρ0 was in the range
970-975 kg/m3). The metal disk was a stainless-steel SUS403
of density ρ = 7.70 g/cm3, which could be manipulated by a
magnet placed on the cell surface. The thickness D0 (< D)
of the disk was either 1.88, 2.87, or 3.90 mm (these three
thicknesses will be labeled as D0 = 2, 3, and 4 mm, for con-
venience, in Figs. 1–3). We used a digital camera (EX-F1,
Casio), setting the time interval in the range of 1 to 1/60 s.
The digital images were analyzed with software IMAGE J.

As demonstrated in Fig. 1(b), the velocity of falling motion
of the disk reached a constant speed, which was reproducible
at a given experimental parameter set, η, D0, and h (an error
in velocity is typically less than 10%). Here, h is the thickness
of two viscous liquid films, each of which is sandwiched by
the inner surface of cell plate and the surface of the disk.

Obtaining reproducible data as in Fig. 1(b) is highly non-
trivial. The main difficulty is to drop the disk in the cell
while precisely maintaining the relation 2h = D − D0. The
falling speed is expected to be maximized when this relation
is satisfied with no tilting. Thus, we created a gate by setting
two plates of thickness slightly larger than h at the places
indicated by the two dashed rectangles at the top of the cell
in Fig. 1(a) to help guarantee the condition at the entry. Even
with this gate, we need to carefully insert the disk into the gate
and collect the data in fast-falling cases. In this way, we could
obtain reproducible data as specified above.

In Fig. 2, we present the falling velocity V , obtained as a
slope in the x − t plot as in Fig. 1(b), as a function of the film
thickness h for h < D0 [except for the rightmost data set (8
data) shown by the square in Fig. 2(b), for which h � D0].
One data point shown without error bars corresponds to each
falling experiment. We repeated falling experiments typically
several times (in the range of two to more than ten times) for a
single parameter set and we showed all the results in the plots.
As a result, in some cases data points are closely overlapped,
which suggests a small size of errors in the measurements.

The viscosity dependence of the velocity in Fig. 2 indicates
that the dynamics is governed by gravity opposed by viscosity.
In fact, the inertia can be neglected in most (practically all,
as revealed below) of the data. This is because, writing the
Reynolds number Re as ρ0V L/η with introducing a length

FIG. 2. V vs h for h < D0. (a) ν = 1000 cS. (b) ν = 3000 cS. (c) ν = 5000 and 10 000 cS. Colors and marks differentiate D0 and ν,
respectively (the square is an exception). The labels for D0 and ν are given in mm and cS. The number of the data points shown here are 240
in total and they are obtained for 46 different parameter sets (D0, η, h). (The precise values of D0 are given in the text.)
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FIG. 3. Renormalized velocity V vs thickness h for the 240 data in Fig. 2. (a) Fit by Eq. (4) with α = 0.716. The slope of the fit (solid line)
deviates from the slope of the dotted line, which corresponds to α = 1. (b) Successful fit by Eq. (6) with the same renormalized axes with (a).
(c) The same successful fit by Eq. (6) but with a differently renormalized horizontal axis.

scale L, the condition Re <1 is equivalent to L < η/(ρV ),
where the average and minimum of η/(ρV ) are 1.5 and
0.02 m, while L in the present case is either h, D0, D, or R,
which are all smaller than even the minimum of η/(ρV ).

Theoretically, the change in gravitational energy per time
is trivially given as π�ρgR2D0V with �ρ = ρ − ρ0. As for
the viscous dissipation, we can think of three possibilities,
corresponding to three viscous length scales, h, D, and R.
The first one, η(V/h)2R2h, which we call the h dissipation,
describes dissipation inside the lubrication film of thickness
h with its volume scaling as R2h. The second D dissipation
η(V/D)2R2D is associated with the viscous flow developed
between the cell plates separated by the distance D in a
volume scaling as R2D. The third R dissipation η(V/R)2R2D
corresponds to the dissipation with the viscous length scale
R developed in a volume scaling as R2D. If we compare the
three dissipations with their coefficients set to unity, the ratios
of the D and R dissipations to the h dissipation are h/D and
hD/R2, respectively, both of which are less than unity in the
present experiment. More precisely, the average and median
of the first ratio h/D are 0.16 and 0.14, while those of the
second ratio hD/R2 are 0.039 and 0.018.

As a first trial for comparison between theory and exper-
iment, we assume the largest h dissipation dominates over
the other dissipations. Then, the balance of the change in
gravitational energy with dissipation (the h dissipation only)
gives

V ∼ �ρgD0h/η, (1)

which can be expressed as

ηV/
(
�ρgD2

0

) = f (h/D0) (2)

with

f (x) � x. (3)

In Fig. 3(a), we plot the renormalized velocity
ηV/(�ρgD2

0 ) as a function of the renormalized thickness
h/D0, in light of Eq. (2), using all the data in Fig. 2, where the
data described by Eq. (1) should collapse onto a master curve
on this plot. This is what we observe in Fig. 3(a): All the data
in Fig. 2 (except the data set with h � D0) collapse well on a
master curve.

However, the agreement is not perfect. As a result of
numerical fitting, we find that the collapsed data are well
described by the following expression:

ηV/
(
�ρgD2

0

) = k1(h/D0)α, (4)

with k1 = 0.127 ± 0.001 and α = 0.716 ± 0.008 (in this fit-
ting, the data set with h � D0 is excluded). The exponent α

deviates from the theoretical prediction α = 1.
This deviation cannot be explained by the slip length

which has been discussed for polymer liquids [1,28]. This
is because a simple linear extrapolation of the data of each
color in Fig. 2(a) may intersect the horizontal axis at a value
around h = −0.1 to −0.3 mm, and this order of magnitude is
too large for the slip length (in the present case, it is at most
10 µm).

As a second trial, we include the second largest D dis-
sipation in addition to the h dissipation, since the first trial
based on the h dissipation only raised problems. Then, the
new energy balance can be cast in the following form:

�ρgR2D0V = ηV 2R2(c1/h + c2/D), (5)

where c1 and c2 are numerical coefficients (the two energy
dissipations are added here, considering a simplest and phys-
ically plausible case). This leads to Eq. (2) with

f (x) = d1x

1 + d2x
1+2x

, (6)

where d1 = 1/c1 and d2 = c2/c1.
Equation (6) still predicts a data collapse when

ηV/(�ρgD2
0) is plotted as a function of h/D0, which is

truly observed in Fig. 3(a). In Fig. 3(b), the same plot is
presented with the result of an excellent fitting by Eq. (2)
with (6), where d1 = 0.34 ± 0.01 and d2 = 4.90 ± 0.26.
Note that even the data set with h � D0 is well fit by Eq. (6),
although this set is excluded in the fitting. Since d2 = c2/c1

corresponds to the relative importance of the D dissipation to
the h dissipation as seen in Eq. (5), the present fitting predicts
that the two dissipations are comparable and the D dissipation
is larger than the h dissipation.

However, the D dissipation does not play a dominant role.
This is clearly shown in Fig. 3(c). To understand this, note that
Eq. (2) with Eq. (6) can be expressed as

ηV/
(
�ρgD2

0

) = (1/c2)(D/D0) (7)

when the D dissipation dominates over the h dissipation, i.e.,
if c1 � c2. This means if the D dissipation is dominant we
should observe that most of the collapsed data are on a line
with slope 1 in Fig. 3(c), which is not the case. We empha-
size here that the data set with h � D0 (square) in Fig. 3(c)
significantly strengthens our arguments for the D dissipation,
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supporting the approach to a line with slope 1 as D/D0 in-
creases. Note that thanks to the relation D/D0 = 1 + 2h/D0

when the plot ηV/(�ρgD2
0) vs h/D0 collapses onto a master

curve as in Fig. 3(b), so does the plot ηV/(�ρgD2
0 ) vs D/D0

as in Fig. 3(c).
Further insight can be obtained if we note the following

limiting forms for Eq. (6):

f (x) =
{

d1x x � 1
[d1/(1 + d2/2)]x x � 1.

(8)

These limiting behaviors can be observed in Fig. 3(b) with
the aide of the dotted line with slope 1. In between there
exists a quasi-straight-line region with data collapsed. Such
a straight-line region, if it exists, should possesses a slope
smaller than 1, since the first coefficient d1 is larger than
the second coefficient d1/(1 + d2/2) in Eq. (8) and, thus,
the second slope 1 region (x � 1) is shifted below the first
(x � 1), as can be confirmed in Fig. 3(b). This is the reason
we obtained α less than 1 in the above. Note that the data set
with h � D0 is consistent with this argument: All the data in
Fig. 3(b) fit well in the region between the apparent scaling
with slope α and the linear scaling with slope 1 for x � 1 in
Eq. (8), where the set with h � D0 is in the region rather close
to the starting of the linear scaling. Further note that while
the linear scaling for x � 1 corresponds to the real scaling for
the h dissipation, that for x � 1 might look in consistent with
the real scaling for the D dissipation, which, in light of Eq.
(7) below, can be expressed as (1 + 2x)/c2. This concern is
resolved if one notices the second coefficient d1/(1 + d2/2)
in Eq. (8) approaches 2/c2 in the limit c2 � c1.

For completeness, we explain the reason we can neglect
the R dissipation, although this dissipation is expected to
be the smallest. We rewrite the balance in Eq. (5), includ-
ing the R dissipation: �ρgR2D0V = ηV 2R2(c1/h + c2/D +
c3D/R2), to obtain Eq. (2) with

f (x) = d1x

1 + d2x
1+2x + d3

(D0
R

)2
x(1 + 2x)

. (9)

This form predicts that, if the d3 term cannot be neglected,
the collapse onto a master curve cannot be observed in Fig. 3
(because the data includes those obtained for different D0

with R fixed), which is not true. Thus, we can judge that
the remaining R dissipation can be safely neglected from our
argument to explain the collapsed data.

We can learn two lessons from the present analysis.
(1) When a log-log plot is seen in a limited range, in principle,
it tends to seem like a straight line, and when the slope is fairly
close to the one predicted from a simple dimensional analysis,
one tends to overlook other important physical origin of the
problem. (2) In such a case, or even when such an apparent
scaling regime spans over a few or several decades, when
the exponent deviates from the one predicted from a simple
argument, it is worth considering competition of a few scaling
regimes, as simply demonstrated in the above.

The present apparent scaling regime demonstrated in
Fig. 3(a) spans at least over one order of magnitude, but a
limited range. According to the theory, our data happen to
correspond to the ones in the crossover region between the
two asymptotic regimes defined in Eq. (8). Judging from the
behavior of Eq. (8) shown in Fig. 3(b), we need to further

explore regions h/D0 < 0.01 and >1 to completely confirm
our argument by explicitly establishing real scaling regimes
originating from h and D dissipations (in addition to the ap-
parent scaling regime). This implies that we need to explore
over four orders of magnitude for h/D0 in total, which is
an important but experimentally challenging future problem.
Note here that the real scaling for the D dissipation is already
reasonably well confirmed in Fig. 3(c) as mentioned above
with the help of the data set with h � D0.

We discuss here a semiquantitative estimate for c1 = 1/d1,
which can be obtained in the following way. The velocity
gradient could be precisely V/h (assuming a simple Couette
shear flow as in the film between two infinite plates separated
by h) almost everywhere on the disk surface except near the
edge in the small h limit. Then, in this limit, the total drag
force might be obtained simply by multiplying this gradient
by the viscosity η and the area of both disk surfaces 2πR2.
Balancing the force thus obtained with the gravitational force
πR2D0�ρg, we could obtain a plausible value d1 = 1/2 (this
leads to a one-parameter fitting in Fig. 3(b), resulting in d2 =
9.25 ± 0.08). It is interesting that this plausible value is not
far from the previous value (d1 = 0.34). However, the data
for small h/D0 in the present study slightly better support the
previous fitting shown in Fig. 3(b). This issue could be another
motivation for a separate study for h/D0 < 0.01 and >1.

As for the coefficient c2, when not a solid disk but a
fluid drop (viscosity η′) moving in a Hele-Shaw cell filled
with another viscous fluid (viscosity η), the formula V =
(1/12)�ρgD2/η is derived in the limit η′ = 0 and D = D0

in Ref. [17] from a result in Ref. [15], which has been con-
firmed by different methods [29,30]. While the present case
corresponds η′ � η and D = D0 + 2h, if the formula could
be applied, it would predict c2 = 12. This estimate is also
not far from the value of c2 obtained from the two-parameter
fitting as well as the one-parameter fitting: In the former case
c2 = d2/d1 = 4.9/0.34 and in the latter case c2 = 9.25/(1/2).

The present result can be appreciated in the context of a
Stokes drag friction F for a solid disk moving in a direction
perpendicular to the axis, i.e., in a direction of the disk plane,
in a confined geometry specified by two parameters: A mea-
sure of confinement C = R/D and the aspect ratio of the disk
A = D0/R. Under no confinement (C = 0) for a disk of zero
thickness (A = 0), the drag friction was given by Oberbeck
[31] as FO = 32ηV R/3. After the case of A = 0 and small C
was studied [32,33], the case of C = 0 and A �= 0 was consid-
ered [34]. Then, the case of C �= 0 and A �= 0 was reported
[35], where the case with h < D0 was not studied, which
is the main focus of the present study. In terms of the drag
friction force F (= KFO), the present study (0.05 � h/D �
0.3) predicts the following viscous drag and drag coeffi-
cient: F = πηV R2(c1/h + c2/D) and K = (3πR/32)(c1/h +
c2/D), with c1 and c2 given through the above values of d1

and d2. Note that K represents the enhancement of the friction
due to confinement and thus becomes significantly larger than
one under a strong confinement in which R � h and D. This
implies that the falling velocity in the present confined case is
(3π/4)(D0/R)/K times slower than the nonconfined case.

The present falling disk problem is inherently different
from the case in which the disk is replaced with a fluid “disk.”
Such a case is studied under no existence of surfactants [21],
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in which the thickness of lubricating film h and the disk thick-
ness (or the shape of fluid drop) are dynamically determined
and thus dependent on V , with the former governed by the law
of Landau, Levich, and Derjaguin (LLD) [36,37]. The drag
force F thus found scales with V 1/3, in contrast to the present
case, in which h is fixed by the (fixed) disk thickness and F
scales simply with V .

More complex cases with rigid and mobile surfactants
are relevant if fluid drops of various kinds, such as ar-
mored bubbles or drops, gelified drops, bubbles, and drops
with surfactants, are utilized. Such cases have been explored
mainly on a smaller-length scale appropriate for microfluidics
[38,39]. While direct comparison of such studies with the
present case may be irrelevant because of the inherent differ-
ence in how the thickness of the lubricating film is determined,
the study of cases with surfactants on a larger centimeter scale
as in the present study will be an important future problem.

In the present study, we investigated the falling velocity
of a solid disk in viscous liquid in a confined space and the
drag friction acting on the disk. We identified an apparent
scaling regime, in which two scaling regimes cooperate. The
present study provides a simple possibility of explaining an
apparent scaling law, which would be useful to any physical
scientists, considering the generality and strength of scaling
analysis in science. In addition, fundamental understandings
on fluid flow at low Reynolds numbers provided in the present
study could be valid for small objects in less viscous fluid
such as water. Accordingly, the present study is relevant to
various fundamental issues and applications—for example,
in microfluidics, bioconvection, and active matter—in which
viscous friction acting on small objects is highly important.

This work was partly supported by JSPS KAKENHI Grant
No. JP19H01859.
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