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Nonlinear response of a two-dimensional electron gas in the quantum Hall regime
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Breaking of inversion symmetry leads to nonlinear and nonreciprocal electron transport, in which the voltage
response does not invert with the reversal of the current direction. Many systems have incorporated inversion
symmetry breaking into their band or crystal structures. In this Letter, we demonstrate that a conventional two-
dimensional electron gas system with a back gate shows nonreciprocal behavior (with voltage proportional to
current squared) in the quantum Hall regime, which depends on the out-of-plane magnetic field and contact
configuration. The inversion symmetry is broken due to the presence of the back gate and magnetic field, and
our phenomenological model provides a qualitative explanation of the experimental data. Our results suggest a
universal mechanism that gives rise to nonreciprocal behavior in gated samples.
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I. INTRODUCTION

The current-voltage (IV ) characteristics of a conductor
can be generally expressed as V = RI + R(2)I2 + R(3)I3 · · · ,
where R, R(2), and R(3) are the linear and nonlinear resis-
tances. The linear response (V ∝ I) is understood in general
frameworks such as the linear response theory [1] and
Landauer-Büttiker theory [2–4], while the understanding of
the nonlinearities is still a challenge. Nonlinear responses can
be categorized as reciprocal or nonreciprocal depending on
whether the voltage response V switches sign upon reversal
of current direction (I → −I). The former typically arises due
to time and/or spatial symmetries [5–7] whereas the latter oc-
curs when those symmetries are broken. While nonreciprocal
responses such as magnetochiral effect [8,9], superconducting
diode effect [10,11], and nonlinear Hall effect [12,13] have
been observed in several systems, they have often been at-
tributed to peculiar band or crystal structures.

In this Letter, we demonstrate nonreciprocal behavior
in the quantum Hall regime of a conventional system of
a two-dimensional electron gas (2DEG) with a back gate.
Specifically, we measure the linear (V ∝ I) and the lowest-
order nonreciprocal (V ∝ I2) response of a GaAs/GaAlAs
2DEG, which was observed only for a device with a back
gate. We also investigate the symmetry of the observed
nonreciprocity with respect to magnetic field and contact con-
figuration. Our observations are explained qualitatively by a
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model that describes the spatial modulation of carrier density
due to the application of a bias current and the capacitive
coupling between the back gate and the 2DEG.

II. EXPERIMENT

The experimental setup is shown schematically in Fig. 1(a).
We used a GaAs/GaAlAs heterostructure that hosts a 2DEG
buried 200 nm below the surface. A back gate with voltage
VG, located 1 µm below the 2DEG, allowed us to vary the
electron density from 1.5 × 1011 to 2.7 × 1011 cm−2 [14].
Au/Ge Ohmic contacts were attached to the 2DEG to inject
a source-drain current and measure the longitudinal (Vxx) and
transverse (Vxy) voltage response. The sample was patterned
into a Hall bar shape, where the distances between the source
and drain contacts, the two contacts measuring Vxy, and the
two contacts measuring Vxx are 1500, 800, and 400 µm,
respectively. All measurements were performed at 60 mK.
Carrier density was measured using the classical Hall effect
at low magnetic fields (<0.3 T).

The current voltage characteristics of a 2DEG with the
lowest-order nonreciprocal term are written as Vxx = RxxI +
1
2 R(2)

xx I2 and Vxy = RxyI + 1
2 R(2)

xy I2 respectively. Here, the bias
current is small enough to let us ignore the component whose
order is higher than I3. The central goal of this Letter is to
investigate the existence and the behavior of the nonreciprocal
response (R(2)

xx and R(2)
xy ) of gated 2DEG. First, we measured

linear response (Rxx and Rxy) by applying an ac source-
drain current Iac with a lock-in amplifier at frequency f =
27 Hz and amplitude 5 nA. The back gate voltage is fixed at
VG = −2 V, making carrier density 1.35 × 1011 cm−2. Fig-
ure 1(b) shows the out-of-plane magnetic field (B) dependence
of Rxx and Rxy. As seen in the plateau of Rxy and the zero
of Rxx, the integer (filling factor ν = 1, 2, . . .) quantum Hall
effect was observed.
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FIG. 1. (a) Schematic of the device. 2DEG, source and drain electrode (S and D), four voltage contacts to measure Vxx and Vxy (1 to 4), and
back gate are shown. (b) Magnetic field dependence of the linear longitudinal (Rxx , blue) and transverse resistance (Rxy, green). [(c),(d)] The
dc current Idc dependence of the differential resistances in the plateau (ν = 1) regime [(c) left panel, dVxx

dI ; right panel, dVxy

dI ] and outside plateau

(ν = 0.7) regime [(d) left panel, dVxx
dI ; right panel, dVxy

dI ].

To detect the nonreciprocal responses, we applied an ac
source-drain current Iac (frequency f = 27 Hz and amplitude
5 nA) mixed with a dc current Idc (|Idc| < 20 nA), letting
I = Iac + Idc. We then measured the Idc dependence of
the differential resistance, which is dVxx

dI = Rxx + R(2)
xx I and

dVxy

dI = Rxy + R(2)
xy I . In this method, the differential resistance

at Idc = 0 corresponds to the linear resistance (Rxx and Rxy),
and the slope of the Idc dependence corresponds to that of
the nonreciprocal component (R(2)

xx and R(2)
xy ). Note that we

could also detect the nonreciprocal responses by measuring
the second harmonic (27 × 2 = 54 Hz) voltage response. The
measured first (and second) harmonic voltages of the longi-
tudinal and transverse resistance correspond to Rxx (R(2)

xx ) and
Rxy (R(2)

xy ), respectively. We have also used this method to eval-
uate the nonreciprocal signal and obtained the same results.

Figure 1(c) shows the Idc dependence of the differential
resistance dVxx

dI and dVxy

dI within ±20 nA. At the quantum Hall
plateau (ν = 1), no Idc dependence was observed, and the
resistance remained constant, meaning that the transport is
perfectly linear within the measured range of the current.
Now, it is a surprise that dVxx

dI and dVxy

dI exhibited a linear
dependence on Idc in the out-of-plateau regime (ν = 0.7) as
shown in Fig. 1(d). This means that a finite nonreciproc-
ity emerges in this regime. The relative amplitude of the
nonreciprocal signal compared to the linear component is
R(2)

xx I2

RxxI � 2.5 �/nA×(5 nA)2

4 k�×5 nA � 0.3% and
R(2)

xy I2

RxyI � 2.5 �/nA×(5 nA)2

35 k�×5 nA �
0.03%, meaning that the linear component is still dominant.
From the fact that no Idc dependence was observed at the
plateau, we can say that the observed nonlinearity is irrelevant
to contact resistance and the breakdown of the quantum Hall
effect. We have also done a control experiment using a sample
without back gate, in which no Idc dependence was observed
(see Appendix A). This suggests that the existence of the back
gate is essential to observe the nonreciprocity.

We characterize the behavior of the nonreciprocal response
(R(2)

xx and R(2)
xy ) with respect to the magnetic field and the

contact configurations. In our sample, there are two config-
urations for measuring Vxx. One is along the top channel
of the sample [from contact 1 to 2 in Fig. 1(a)], and the
other is along the bottom [from contact 3 to 4 in Fig. 1(a)].
As long as we deal with the linear response, there is no
configuration dependence in the results. However, the config-
uration actually matters in the nonreciprocal response, as we
see below. In Fig. 2(a), we show two traces of R(2)

xx for the
two contact configurations, namely top and bottom [see the
inset in the Fig 2(a)]. Consistent with the results in Fig. 1(c),
R(2)

xx takes zero at the quantum Hall plateau regime and a
finite value outside the plateau. Unlike Rxx, R(2)

xx is not sym-
metric with the reversal of the magnetic field (B → −B).
Moreover, it clearly depends on the configurations and there
seems to be a certain symmetric correlation between the two
datasets.

There are also two configurations for measuring Vxy. One
is on the left side of the sample [from contact 1 to 3 in
Fig. 1(a)], and the other is on the right side [from con-
tact 2 to 4 in Fig. 1(a)]. Figure 2(b) shows the magnetic
field and configuration dependence of R(2)

xy . Similar to the
previous case, a peculiar symmetry in the magnetic field
and the configuration dependence was also observed. The
actual formulations of the magnetic field and configuration
symmetry will be discussed and derived in the following
section. We also measured R(2)

xx and R(2)
xy with different back

gate voltages of VG = −1 (n = 1.93 × 1011 cm−2) and 0 V
(n = 2.50 × 1011 cm−2). The obtained magnetic field depen-
dence is essentially the same as the ones shown in Fig. 2
(see Appendix B for data). The observation of finite nonre-
ciprocal responses and their magnetic field and configuration
symmetries are the central experimental findings in this
Letter.
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FIG. 2. Magnetic field dependence of the nonreciprocal compo-
nent (a) R(2)

xx (magenta, top; cyan, bottom) and (b) R(2)
xy (magenta, left;

cyan, right). Insets show contact configurations.

III. ANALYSIS

Now, we discuss the origin of the nonreciprocal responses
as well as the field and the configuration symmetries. The

observation of the nonreciprocal response infers that the in-
version symmetry is broken in the sample. We suggest that it
is caused by the capacitive coupling between the 2DEG and
the back gate. Our model assumes that the carrier density is
influenced by both the back gate voltage and the Hall voltage,
which alters the potential difference between the 2DEG and
back gate. This creates a gradient of carrier density across and
along the sample [15,16], breaking the inversion symmetry
and leading to nonreciprocal behavior [17].

A. Model

In the quantum Hall plateau regime, the current is car-
ried by the edge channels and no dissipation or potential
drop occurs. Therefore, the potential distribution would look
like the dotted horizontal lines shown in Fig. 3(a). vt (x, B)
and vb(x, B) are the potential along the top and the bottom
channel. In the figure, RQ

xy = h
νe2 is the Hall resistance at the

quantum Hall plateau. The contacts along the top channel
separated by a distance d [see the voltage Vxx(top)], which
is the potential difference between vt (x) and vt (x + d ). Then,
Vxx(top) is given by Vxx(top) = vt (x) − vt (x + d ) = RQ

xyI/2 −
RQ

xyI/2 = 0. Similarly, the Hall voltage Vxy(left) is given by
the voltage difference between the two contacts on the left or
right side of the sample, Vxy(left) = vt (x) − vb(x) = RQ

xyI/2 −
(−RQ

xyI/2) = RQ
xyI . Note that both Vxx(top) and Vxy(left) are

linear in I . This reflects the experimental observation that
there is no nonlinearity in the plateau regime.

Next, we consider the situation outside the plateau. The
current is carried not only by the edge channel but also
by the bulk, giving rise to a finite dissipation and a poten-
tial drop. The position-dependent potential can be written as

FIG. 3. (a) Schematic summary of the model. Due to the Hall effect, a potential gradient in the transverse direction of the sample is created.
This modulates the potential between the 2DEG and the back gate space dependence, modulating the carrier density in space (n ± �n at the
sample edges are shown). Popup: Schematic of the Hall voltage along the x (longitudinal) axis of the sample. Solid (dotted) lines show the
potential profile outside (inside) the plateau. Red and blue lines correspond to the top and bottom channels, respectively. Potential differences

that correspond to Vxx and Vxy are indicated by red and blue rectangles. (b) Comparison of the data from the experiment R(2)
xx (top)−R(2)

xx (bot)
2 (blue

line) and
R(2)

xy (left)−R(2)
xy (right)

2 (green line) and the model Rxx
∂Rxy

∂B
BC
n (pink line) setting C = 10 pF/cm2.

L032046-3
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vt (x) = ρxy(top, x, n(x))I , where resistivity ρxy(top, x, n(x))
is that of the top channel as a function of x and n(x). Here,
the key assumption is that the carrier density is also a function
of x, making n(x). Considering that the potential difference
between the 2DEG and the back gate determines the car-
rier density, n(x) can be written such as n(x) = N + C[VG +
vt (x)] = n0 + Cvt (x). Here, N is the carrier density without
back gate voltage or injection current, C is the capacitance
between the 2DEG and the back gate, and n0 = N + CVG.

Hereafter, we briefly sketch the outline of the derivation
of the nonreciprocal responses. See Appendix D for detailed
derivation. We consider the longitudinal voltage along the
top channel Vxx(top) as an example. The linear term of
Vxx(top) comes from the spatial dependence of the resistivity.
Assuming a constant carrier density of n, Vxx(top) =
ρxy(top, x, n)I − ρxy(top, x + d, n)I = − ∂ρxy (top,x,n)

∂x dI ∝ I .
As we see in Appendix D, the coefficient of I corresponds to
Rxx. The nonreciprocal term of Vxx(top) can be obtained
considering the spatial dependence of carrier density
n(x). Vxx(top) = ρxy(top, n(x))I − ρxy(top, n(x + d ))I �
∂ρxy

∂n [n(x) − n(x + d )]I = ∂ρxy

∂n C[vt (x) − vt (x + d )]I . Here,
we assume that the amount of modulation of the carrier
density due to the injection current is small enough
compared to the original carrier density [Cvt (x) � n0].
Using vt (x) − vt (x + d ) = Rxx(top)I , we obtain Vxx(top) =
Rxx(top) ∂ρxy

∂n CI2 ∝ I2. Similarly, expressions of R(2)
xx and

R(2)
xy for all configurations are obtained (see Appendix D for

detailed derivation).

B. Magnetic field and configuration symmetry

Using the model shown above, we derive the magnetic
field and configuration symmetries of the nonreciprocal resis-
tances. For R(2)

xx and R(2)
xy , one obtains the relation below:

R(2)
xx (top, B) = R(2)

xx (bot,−B),

R(2)
xy (left, B) = −R(2)

xy (left,−B),

R(2)
xy (right, B) = −R(2)

xy (right,−B). (1)

These outcomes on the commutation in magnetic field and
configuration in R(2)

xx and the antisymmetry in R(2)
xy are

in approximate agreement with the experimental observation
in Fig. 2.

According to the model, R(2)
xy and R(2)

xx should also be corre-
lated to each other:

R(2)
xx (top) − R(2)

xx (bot) = R(2)
xy (left) − R(2)

xy (right), (2)

R(2)
xx (top) − R(2)

xx (bot) = R(2)
xy (left) − R(2)

xy (right)

= 2CRxx
∂Rxy

∂n0

= −2CB

n
Rxx

∂Rxy

∂B
. (3)

In the last transformation, Euler’s chain rules ( ∂Rxy

∂n0
)B =

−( ∂B
∂n0

)Rxy ( ∂Rxy

∂B )n = −B
n ( ∂Rxy

∂B )n are used [16,18]. Equation (2)
illustrates that the potential drop across the top and right chan-
nels is equivalent to that across the bottom and left channels.

This equivalence should be consistently maintained, indepen-
dent of the specificities of the model.

Now, we compare the calculation with the experimen-
tal data shown in Fig. 3(c). The two traces in the top
panel demonstrate a correspondence between R(2)

xy (left) −
R(2)

xy (right) and R(2)
xx (top) − R(2)

xx (bot) as predicted in Eq. (2).
Note that this relation is not exactly satisfied, where the
blue and green curves are not exactly on each other. This
is because the four components were not measured simul-
taneously. Initially, R(2)

xy (left) and R(2)
xx (top) were measured,

and after changing the terminal configurations R(2)
xy (right) and

R(2)
xx (bottom) were measured subsequently. Therefore, the two

measurements are not perfectly identical due to unavoidable
factors such as fluctuations in the magnetic field, subtle tem-
perature variations, and minor changes in the gate voltage.

Moreover, the expectations from the model [Eq. (3)] and
the data also agree with each other, as shown in the bottom
panel of Fig. 3(c). In the bottom panel of Fig. 3(c), the capac-
itance C is assumed to be 300 nF/cm2. These results show
that our model captures the behavior of the nonreciprocal
responses very well. However, the capacitance we assumed
to obtain a quantitative agreement (≈300 nF/cm2) is by a
factor of ≈30 bigger than the value estimated with other
methods (9.6 nF/cm2 by carrier density and 12 nF/cm2 by
direct measurement).

The capacitance used in the plot only considered the ge-
ometric capacitance at zero magnetic field, while the total
capacitance (Ctot) is composed of both geometric capacitance
(Cgeo) and quantum capacitance (CQ) such that 1

Ctot
= 1

Cgeo
+

1
CQ

. The quantum capacitance is given by CQ = dn
dμ

, where n is
the carrier density and μ is the chemical potential. However,
the ratio of the quantum capacitance CQ (the noninteracting
compressibility near zero magnetic fields) and the geomet-
ric capacitance Cg is CQ

Cg
= e2m∗

π h̄2 × d
εε0

= 4d
a∗

B
� 4000 nm

10 nm = 400.
Here, e is the elementary charge, m∗ is the effective mass, h̄ is
the reduced Planck constant, d is the distance between 2DEG
and back gate (1 µm in our sample), ε is the permittivity of
GaAs, ε0 is the vacuum permittivity, and a∗

B = 10 nm is the
effective Bohr radius in GaAs. Since CQ and Cg add inversely,
the contribution of Cq is 400 times smaller than that of Cg (i.e.,
it amounts to 0.25%). Though the above estimation of CQ is
valid near zero fields, exchange and correlation corrections
to CQ tend to be smaller than the value obtained from our
estimate, probably even at a higher magnetic field. In addition,
since the slope of the Hall effect (Rxy vs B) is the same for both
small and large magnetic fields, the density and the capaci-
tance remain constant over a wide range of magnetic fields.
Therefore, the quantum capacitance contribution is expected
to be small. These points suggest that an effect that is magnetic
field independent is necessary to determine the microscopic
origin of the nonreciprocity.

IV. CONCLUSION

In summary, we investigated the nonreciprocal transport re-
sponse in the quantum Hall regime next to the plateau regions
in high magnetic field. We also found that these responses
obey certain symmetry relations and are reconstructed from
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FIG. 4. The dc current Idc dependence of the differential resis-
tances in the plateau (ν = 1) regime [(a) left panel, dVxx

dI ; right panel,
dVxy

dI ] and outside plateau (ν = 0.7) regime [(b) left panel, dVxx
dI ; right

panel, dVxy

dI ].

linear response coefficients. Our phenomenological model
based on the capacitive coupling between the 2DEG and the
back gate also supports the observation, whereas the origin
of a quantitative discrepancy remains unsolved. These results
suggest a universal mechanism of obtaining nonreciprocal
responses in gated devices.
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APPENDIX A: CONTROL EXPERIMENT

We have conducted a control experiment using a
GaAs/GaAlAs without back gate (n = 1.2 × 1011 cm−2). We
measured dVxx

dI and dVxy

dI as a function of Idc at ν = 0.7 and 1 as
shown in Fig. 4. Here, no Idc dependence was observed. This
result suggests that the presence of the back gate is essential
to generate nonreciprocal responses.

APPENDIX B: BACK GATE VOLTAGE DEPENDENCE

Figure 5 shows the magnetic field dependence of R(2)
xx and

R(2)
xy at two different back gate voltages of −1 (n = 1.93 ×

1011 cm−2) and 0 V (n = 2.50 × 1011 cm−2). The same
behavior as seen in Fig. 2 (zeros at the quantum Hall plateau
and antisymmetries in magnetic field) is observed.

FIG. 5. Magnetic field dependence of the nonreciprocal compo-
nent. (a) VG = −1 V [left, R(2)

xx (top); right, R(2)
xy (left)]. (b) VG = 0 V

[left, R(2)
xx (top); right, R(2)

xy (left)].

APPENDIX C: CAPACITANCE MEASUREMENT

We have estimated the capacitance between 2DEG and
back gate by two means as shown in Fig. 6, we mea-
sured a classical Hall effect at low magnetic field (< 0.5 T)
with which we deduce the carrier densities as a function
of back gate. By fitting n = N + CVG (N is the density at
zero gate voltage), we estimated the capacitance C ≈ 9.6
nF/cm2 (see Fig. 6(a)). Second, we connected a current-
to-voltage (IV ) converter to the 2DEG and grounded back

FIG. 6. (a) Back gate dependence of carrier density. (b) Fre-
quency dependence of the out-of-phase component of the charging
current across 2DEG and back gate.

L032046-5
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gate. By applying an ac voltage to the 2DEG, we mea-
sured the out-of-phase component of the current flowing
through the IV converter. This circuit can be consid-
ered as measuring a charging current of a capacitor (with
negligible resistance and inductance) under an ac voltage
application, from which we deduce the capacitance C ≈
12 nF/cm2 (see Fig. 6(b)).

APPENDIX D: DERIVATION OF THE MODEL

The configuration, position, and carrier density-dependent
potential are expressed as vt (x) = ρxy(top, x, n(x))I . As dis-
cussed in the main text, the key assumption is that the carrier
density is also a function of x, making n(x). Considering that
the carrier density is determined by the potential difference
between the 2DEG and the back gate, n(x) can be written
as n(x) = N + C[VBG + vt (x)] = n0 + Cvt (x). Here, N is the
carrier density without back gate voltage and injection cur-
rent, n0 = N + CVBG, and C is the capacitance between the
2DEG and the back gate. Then, vt (x) can be expressed as
below:

vt (x) = ρxy(top, x, n(x))I

� ρxy(top, x, n0)I + ∂ρxy

∂n0
Cvt (x)I. (D1)

Here, we assumed that the amount of modulation of the carrier
density due to the injection current is small enough com-
pared to the original carrier density [Cvt (x) � n0]. The above
equation can be solved with vt (x):

vt (x) � ρxy(top, x, n0)I

1 − ∂ρxy

∂n0
CI

� ρt
xy(x)I + ρt

xy(x)
∂ρt

xy(x)

∂n0
CI2, (D2)

where ρt
xy(x) = ρxy(top, x, n0). We assumed that the amount

of potential modulation due to the injection current is small

enough compared to the total potential [
∂ρt

xy (x)
∂n0

Cvt (x)I �
vt (x)I], which also means that the first term of Eq. (D1) is
much larger than the second term. We assume that the poten-
tial changes linearly in space vt (x + d ) = vt (x) + ∂vt (x)

∂x d +
o(d2) and obtain the expression of vt (x + d ):

vt (x + d ) � vt (x) + ∂ρt
xy

∂x
dI

+
(

∂ρt
xy

∂x

∂ρt
xy

∂n0
+ ρt

xy

∂2ρt
xy

∂x∂n0

)
× dCI2. (D3)

One can obtain the expression for vb(x) and vb(x + d ) by
exchanging ρt

xy(x) with ρb
xy(x) in Eqs. (D2) and (D3).

The expressions for the linear and the nonlinear resis-
tances are obtained by calculating Vxx(top) = vt (x) − vt (x +
d ), Vxx(bot) = vb(x) − vb(x + d ), Vxy(left) = vt (x) − vb(x),
and Vxy(right) = vt (x + d ) − vb(x + d ). In each expression,
the terms proportional to I and I2 are assigned to the linear
(Rxx and Rxy) and the nonreciprocal (R(2)

xx and R(2)
xy ) resistances

that are observed experimentally:

Rxx = −∂ρt
xy(x)

∂x
d, (D4)

Rxy = ρt
xy(x) − ρb

xy(x), (D5)

R(2)
xx (top) = −2

[
∂ρt

xy(x)

∂x

∂ρt
xy(x)

∂n0
+ ρt

xy(x)
∂2ρt

xy(x)

∂x∂n0

]
dC,

(D6)

R(2)
xy (left) = 2

(
ρt

xy(x)
∂ρt

xy(x)

∂n0
− ρb

xy(x)
∂ρb

xy(x)

∂n0

)
C, (D7)

R(2)
xx (bot) = −2

[
∂ρb

xy(x)

∂x

∂ρb
xy(x)

∂n0
+ ρb

xy(x)
∂2ρb

xy(x)

∂x∂n0

]
dC,

(D8)

R(2)
xy (right) =

(
∂ρt

xy(x)

∂x

∂ρt
xy(x)

∂n0
+ ρt

xy(x)
∂2ρt

xy(x)

∂x∂n0

)
2dC

−
(

∂ρb
xy(x)

∂x

∂ρb
xy(x)

∂n0
+ ρb

xy(x)
∂2ρb

xy(x)

∂x∂n0

)
2dC

+ 2C

(
ρt

xy(x)
∂ρt

xy(x)

∂n0
− ρb

xy(x)
∂ρb

xy(x)

∂n0

)
.

(D9)

Using the model shown above, we derive the magnetic field
and configuration symmetries of the nonreciprocal resis-
tances. To derive the symmetry relations, we first get three
useful relations to discuss the magnetic field symmetry. First,
the reversal of the magnetic field is equivalent to exchanging
the top and the bottom channels:

ρt
xy(B) = ρb

xy(−B). (D10)

Second, using the fact that Rxx(top) = Rxx(bot),

∂ρt
xy

∂x
= ∂ρb

xy

∂x
. (D11)

Third, by differentiating Eq. (D5) with n, one obtains

∂Rxy

∂n0
= ∂ρt

xy

∂n0
− ∂ρb

xy

∂n0
. (D12)

By using (D7), (D9), and (D10), one obtains the relations
below:

R(2)
xy (left, B) = −R(2)

xy (left,−B),

R(2)
xy (right, B) = −R(2)

xy (right,−B). (D13)

This means that the R(2)
xy (left) is antisymmetric in B. The same

goes for R(2)
xy (right). Also, Eqs. (D4) and (D6) lead to another

symmetry relation for R(2)
xx :

R(2)
xx (top, B) = R(2)

xx (bot,−B). (D14)

The relation between R(2)
xy and R(2)

xx is also obtained by com-
bining Eqs. (D6)–(D9):

R(2)
xy (left) − R(2)

xy (right) = R(2)
xx (top) − R(2)

xx (bot). (D15)

We have seen the symmetry relations within R(2)
xy and R(2)

xx ,
and we can further derive the connection between them using
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Eqs. (D6)–(D9), and (D14):

R(2)
xy (left) − R(2)

xy (right) = R(2)
xx (top) − R(2)

xx (bot)

= 2CRxx
∂Rxy

∂n0
= −2CB

n
Rxx

∂Rxy

∂B
.

(D16)

The transformation from the first line to the second line goes
like below. By plugging Eqs. (D11) and (D12) into Eq. (D6),

R(2)
xx (top) = −2dC

(
∂ρb

xy(x)

∂x

∂ρt
xy(x)

∂n0
+ ρb

xy(x)
∂

∂x

∂ρb
xy

∂n0

)

+ 2dC

(
ρb

xy(x)
∂

∂x

∂ρb
xy

∂n0

)

+ 2dC

[
ρt

xy(x)
∂

∂x

(
∂Rxy

∂n0
+ ∂ρb

xy

∂n0

)]

= R(2)
xx (bot) − 2dC

[(
ρt

xy − ρb
xy

) ∂

∂x

(
∂ρb

xy

∂n0

)]

− 2dC

(
∂ρb

xy

∂x

∂Rxy

∂n0

)

= R(2)
xx (bot) + 2CRxx

∂Rxy

∂n0
. (D17)

In the transformation from the second line to the third line
in Eq. (3), Euler’s chain rules are applied for a given func-
tion of R(n, B) [16,18], that is, ( ∂Rxy

∂n0
)B = −( ∂B

∂n0
)Rxy ( ∂Rxy

∂B )n =
−B

n ( ∂Rxy

∂B )n.
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