
PHYSICAL REVIEW RESEARCH 5, L032043 (2023)
Letter

Inference from gated first-passage times
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First-passage times provide invaluable insight into fundamental properties of stochastic processes. Yet, various
forms of gating mask first-passage times and differentiate them from actual detection times. For instance,
imperfect conditions may intermittently gate our ability to observe a system of interest, such that exact first-
passage instances might be missed. In other cases, e.g., certain chemical reactions, direct observation of the
molecules involved is virtually impossible, but the reaction event itself can be detected. However, this instance
need not coincide with the first collision time since some molecular encounters are infertile and hence, gated.
Motivated by the challenge posed by such real-life situations we develop a universal—model free—framework
for the inference of first-passage times from the detection times of gated first-passage processes. In addition,
when the underlying laws of motions are known, our framework also provides a way to infer physically
meaningful parameters, e.g., diffusion coefficients. Finally, we show how to infer the gating rates themselves
via the hitherto overlooked short-time regime of the measured detection times. The robustness of our approach
and its insensitivity to underlying details are illustrated in several settings of physical relevance.
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Introduction. The importance of first-passage processes is
recognized universally across scientific disciplines, owing to
their ubiquity and wide-ranging applications [1–7]. How long
does it take for a chemical reaction to be triggered? Or what
is the time taken for an order to be executed in the stock
market? These disparate examples fall under the purview of
first-passage processes, where the first-passage time is now
established as an indispensable tool to quantify the time taken
for a given task to be completed.

In several practically relevant scenarios, however, the com-
pletion of a task also relies on additional constraints. For
example, for a chemical reaction to be triggered, two reac-
tants must collide. Additionally, the collision must be fertile,
i.e., the reactants must be in a reactive internal state during
collision. This internal state acts like a “gate”: a reaction can
only happen when the gate is “open,” i.e., the molecules are
in their reactive internal state. The macroscopic kinetics of
these so called gated reactions has a history spanning over
four decades now [8–20], and more recently, the study of
single-particle gated reactions has gained interest [21–31].

While the terminology of “gating” is unique to reaction
kinetics, numerous examples fall under the wide umbrella of
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gated processes. An important one is that of intermittently ob-
served stochastic time series, where the underlying cause for
intermittent observations can include energy costs of continu-
ous observations, imperfect detection conditions, or simply a
faulty sensor [32–36]. Irrespective of the reasons behind such
intermittent observations, an important consequence is that
key features of the time series can be missed. In particular, in
the increasingly relevant field of extreme and record statistics
of time series, a crucial quantity is the time taken to cross a
specific threshold for the first time. However, intermittent de-
tection of the time series can lead to a gross mischaracteriza-
tion of the statistics of such events [37–41]. In such cases, the
relevant quantity is the first detection time, which denotes the
first time the time series is observed above the threshold [39].

Figure 1 exemplifies two instances where gating arises
naturally: (a) Single particle tracking of an intermittently ob-
served particle, which transitions between a visible state and
an invisible state. For example, a wide class of fluorophores
undergo photoblinking [42–51]. Other reasons for such gating
can be the intermittent loss of focus on a moving particle in
three dimensions [52] or slow frame acquisition rate [53]; (b)
A gated chemical reaction or target search, where tracking of
the particle is not possible, and the reaction time is the only
measurable quantity. Such instances may arise in cellular sig-
naling driven by narrow escape [54,55] and among fluorescent
probes [56].

In both examples illustrated in Fig. 1, the first-passage time
statistics carry invaluable information, but are inaccessible to
direct measurement. In such scenarios, a crucial challenge is
to reliably infer these statistics and other fundamental proper-
ties of interest.

In this Letter, we address this challenge and solve it. First,
we show how the first-passage time density can be inferred
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FIG. 1. Instances highlighting the need for inference in gated
first-passage processes. (a) Detection of threshold crossing under
intermittent sensing. Consider single particle tracking of a photo-
blinking particle. The first-passage properties of the particle can be
mischaracterized as the particle can cross the threshold while being
in its invisible state. (b) Gated chemical reaction or target search.
Imagine a situation where tracking of the particle is not possible,
and the only observable is the reaction time. In such settings, the
important task is to infer the first-passage time distribution, and other
observables of interest, from the observed detection/reaction times.
In this Letter, we present a general framework that addresses this
challenge and solves it.

from gated observations via a model-free formalism, which
upon specification of the underlying laws of motions can be
further used to infer physically meaningful parameters (e.g.,
the diffusion coefficient). Second, using the joint knowledge
of the gated (observed) and ungated (inferred) first-passage
time densities, we establish that the overlooked short-time
regime of the gated detection time distribution can be lever-
aged to obtain the gating rates.

Modeling gated processes. We start by modeling a gated
process consisting of two independent components. First,
an underlying process Xn0 (t ), initially at n0, modeled as a
continuous-time Markov process. Second, a gate modeled by a
two-state continuous-time Markov process, that intermittently
switches between an “open” active (A) state and a “closed”
inactive (I) state. This gate accounts for the additional con-
straint that needs to be satisfied for the task of interest to be
completed. The gate switches from state A to I at rate α, and
from I to A at β. For σ0, σ ∈ {A, I}, we define pt (σ |σ0) to be
the probability that the gate is in state σ at time t , given that
it was in state σ0 initially (see the SM for an explicit formula
[57]). Also, let πA = β/λ and πI = α/λ denote the equilib-
rium occupancy probabilities of states A and I, respectively,
where λ = α + β is the relaxation rate to equilibrium.

The central quantity of interest in our Letter is the
first-passage time Tf (m|n0), which is the time taken for Xn0 (t )
to reach state m for the first time, and we denote its probability
density by Ft (m|n0). In many scenarios the first-passage time
is not directly measurable, and instead we can only measure
the detection time Td (n0, σ0), of a reaction or threshold

crossing event. We denote by Dt (n0, σ0) the probability
density of Td (n0, σ0), which is the first time the underlying
process is detected in some target-set Q, given that the initial
state of the composite process (underlying + gate) is initially
at {n0, σ0}.

In this work, we focus on two widely applicable settings:
(i) the detection of threshold crossing events of a one-
dimensional intermittent time series with nearest-neighbor
transitions, where Q denotes all states above a certain thresh-
old m, and Td (n0, σ0) is the first time when Xn0 (t ) � m while
the detector is active (A); and (ii) gated reactions or target
search on an arbitrary network in discrete space or in arbitrary
dimension in continuous space. Here, Q is typically a single
target state/point m, and Td (n0, σ0) denotes the first time the
underlying process Xn0 (t ) is at m, while the gate is open (A).

First-passage times from gated observations. We begin our
analysis by noting that for n0 �∈ Q we have

Dt (n0, σ0) = Ft (m|n0)pt (A|σ0)

+
∫ t

0
Ft ′ (m|n0)pt ′ (I|σ0)Dt−t ′ (m, I ) dt ′, (1)

where the probability for a detection event occurring at time
t has two contributions: (i) the detection time coinciding with
the first-passage time; and (ii) the gate being closed during the
first-passage event (I), and detection happening strictly after
this moment in time. The Laplace transform of Eq. (1), can be
expressed in compact form as [57]

D̃s(n0, σ0) = [πA + πI D̃s(m, I )]F̃s(m|n0)

+ 1(σ0)(1 − πσ0 )[1 − D̃s(m, I )]F̃s+λ(m|n0),
(2)

where λ = α + β, and 1(σ0) takes values +1 or −1 when
σ0 = A or I , respectively. By explicitly writing down the equa-
tions for σ0 = A and I , and further eliminating F̃s+λ(m|n0)
from the equations, we arrive at [57]

F̃s(m|n0) = πAD̃s(n0, A) + πI D̃s(n0, I )

πA + πI D̃s(m, I )
, (3)

which is our first result. Equation (3) asserts that the first-
passage density can be obtained exactly in terms of detection
time densities and the gating rates. In [57], we further show
that Eq. (3) holds even when the underlying process in not
Markovian, and instead is a renewal process. Yet, inference of
the first-passage time density Ft (m|n0) using Eq. (3) requires
the detection statistics with initial conditions {n0, A}, {n0, I},
and {m, I}, and the equilibrium probabilities πA and πI . Such
information may not be accessible in experimentally realiz-
able scenarios where, e.g., it may not be possible to initialize
a gated molecule in a specific internal state σ0 = A or I , and
the values of πA and πI may also be unknown.

In such situations, the most practically realizable initial
condition is the equilibrium σ0 ≡ E , where the gate is in the
active state A with probability πA, and in the inactive state I
with probability πI . Note that this initial condition is naturally
achieved if the system is simply allowed to equilibrate. Inter-
estingly, the detection time density starting from the initial
condition (n0, E ) is given by Dt (n0, E ) = πA · Dt (n0, A) +
πI · Dt (n0, I ), whose Laplace transform is the numerator
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standing on the right-hand side of Eq. (3). Further noting that
the Laplace transform of Dt (m, E ) = πA · δ(t ) + πI · Dt (m, I )
gives the denominator on the right-hand side, we obtain an
elegant reinterpretation of Eq. (3):

F̃s(m|n0) = D̃s(n0, E )

D̃s(m, E )
. (4)

Strikingly, Eq. (4) asserts that the first-passage time density
can be inferred from the detection statistics, even without the
explicit knowledge of πA and πI , or control over the initial
state of the gate.

The usefulness and validity of Eq. (4) is demonstrated in
Fig. 2, with the help of three case studies of wide interest and
applicability. First, a Markovian birth-death process which has
been extensively used to model threshold activated reactions
[58–61] and the dynamics of chemical reactions on catalysts
[62,63]. Second, the paradigmatic continuous-space diffusion
in a 1D confinement. Third, a gated chemical reaction/target
search modeled by a non-Markovian continuous-time random
walk (CTRW) [64,65] on a network [66], which is, e.g., used
to model the motion of reactants, cells, or organisms in com-
plex environments [30,66–72]. In all of these settings, we
show that the first-passage time distributions inferred from
Eq. (4) using a procedure described in [57] (circles) are in
excellent agreement with the true first-passage time distri-
butions. We stress that this inference was performed solely
using detection time histograms obtained from gated simu-
lations of 106 detection events, without assuming knowledge
of the analytical expressions of their probability densities or
model specific details (e.g., the network structure and the
waiting time distribution in the CTRW example). We note
that numerical errors start to appear in the tail region when
estimating very small probabilities [57]. These errors can po-
tentially be addressed through parametric inference methods
which use domain-specific knowledge (e.g., exponential tail
of first-passage time distributions in confined systems) to per-
form the inference. Moreover, when analytical expressions are
available, like in the case of the birth-death process [39], one
can directly perform the inference through Laplace inversion
of Eq. (4) [57].

Before moving forward, we note that Eq. (4) is reminiscent
of the seminal renewal formula F̃s(m|n0) = P̃s (m|n0 )

P̃s (m|m)
which re-

lates, in Laplace space, the first-passage time density and the
probability density Pt (ni|n j ) of finding the underlying process
in state ni at time t , given its initial state n j [1]. Clearly,
the right-hand side of this formula and that of Eq. (4) are
equal. In fact, we can obtain an even more general relation—
considering two different initial states n0 and n′

0, and after
some algebra, we uncover the fundamental relation [57]

D̃s(n0, E )

D̃s(n′
0, E )

= P̃s(m|n0)

P̃s(m|n′
0)

, (5)

asserting that the ratio of the detection time densities (in
Laplace space), starting from any two initial states n0 and n′

0,
is independent of the gating rates α and β. Note that this is true
despite the fact that the detection time densities themselves
depend on the gating rates. We remark that Eq. (5) holds
in both settings: when Dt (n0, E ) corresponds to gated target

FIG. 2. Inference of first-passage time distributions from gated
observations. We plot the first-passage time distributions of a Marko-
vian birth-death process (green), CTRW on a network (red), and
a continuous space diffusion (blue) using numerical simulations.
Details of the models and their parameters are given in Ref. [57].
Circles denote the values of the first-passage time distributions in-
ferred using Eq. (4) from histograms of 106 simulated gated detection
times. The inferred distributions are in excellent agreement with first-
passage time distributions that are computed directly by simulation.
In addition, the analytical first-passage time distribution (solid black
line) is also plotted for the birth-death process to show the overall
consistency of our results.

search and to the detection of threshold crossing events under
intermittent sensing.

Inferring the mean first-passage time. The Laplace trans-
form in Eq. (4) allows us to obtain all moments of the
first-passage time in terms of moments of the detection
time. Equation (4) further implies that all cumulants of the
first-passage time can be expressed as differences between
cumulants of detection times. For example, the mean first-
passage time is given by

〈Tf (m|n0)〉 = 〈Td (n0, E )〉 − 〈Td (m, E )〉. (6)

While simple, Eq. (6) carries utmost importance in practical
scenarios, where reliably estimating the full probability dis-
tribution is not a viable option, and only the mean can be
accurately measured. Apart from setting an important time
scale for a wide class of chemical reactions in confinement,
where the mean reaction time can be used to infer full reaction
time statistics [73], the mean first-passage time can also shed
light on fundamental properties of the system at hand [74,75].

Inferring the diffusion coefficient. We now illustrate how
one can utilize our framework to infer physically meaningful
parameters like the diffusion coefficient D. Importantly, we
show that this can be done even when the actual motion
of the particle cannot be tracked. Imagine a scenario like
that depicted in Fig. 1(b), namely we inject an unobservable
particle—whose detection is possible only upon reaction—at
a known location x0. Assume that the internal state of the par-
ticle is initially equilibrated (σ0 = E ), and further assume that
it is freely diffusing inside an effectively one-dimensional box
[0, L] with reflecting boundaries and a gated target located at
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FIG. 3. Inference of the diffusion coefficient. Equation (7) is
used to infer the diffusion coefficient of an unobservable particle
that is injected at a known location x0 = 0 into a box [0, 5µm]
with reflecting boundaries. The initial internal state is equilibrated
σ0 = E , and a gated point target is located at m = 4 µm, with gating
rates α = β = 102 s−1.

x0 < m < L. Utilizing Eq. (6) we find that [57]

D = 1

2

m2 − x2
0

〈Td (x0, E )〉 − 〈Td (m, E )〉 . (7)

Equation (7) asserts that the diffusion coefficient can be in-
ferred from the difference in the measurable detection times
〈Td (x0, E )〉 and 〈Td (m, E )〉.

To corroborate this finding, we simulate the aforemen-
tioned scenario and test it for a wide range of possible
diffusion coefficients (Fig. 3). As implied by Eq. (6), the
difference in the detection times is independent of the tran-
sition rates, the box size L, and the target size (the same
equation will hold for threshold crossing). It is thus up to
the experimentalist to tune these parameters such that the de-
tection times can be measured with sufficient accuracy. Here
we set α = β = 102 s−1 and L = 5 µm. For each value of D,
the corresponding mean detection times were estimated from
averages of N = 102 and 103 simulations, and the diffusion
coefficient was inferred via Eq. (7). The error bars were esti-
mated by repeating this procedure 102 times and noting the
standard deviation. In Fig. 3 we plot the ratio between the
inferred values and the actual ones. We find this estimation
procedure robust, even when the number of measurements is
relatively small (N = 102). For the parameters used here, the
estimation is especially accurate for smaller diffusion coeffi-
cients, where mean detection times are longer.

Inferring the gating rates. Equation (4) states that the
first-passage time density can be inferred from its gated coun-
terparts, even without any prior knowledge of the gating rates
α and β or control over the initial internal condition. We will
now illustrate how the inferred first-passage time distribution
can be used together with the observed detection time distri-
bution to infer the gating rates, thus providing insight into the
dynamics of the gating process.

To proceed, we shift our focus to short-time asymp-
totics analysis which, despite several recent applications in
stochastic thermodynamics [76–78] and chemical kinetics
[79,80], has not yet been used to further our knowledge
on gated processes. In the short-time limit, the dominant
contribution to Dt (n0, E ) comes from trajectories where the

(a) (b)

FIG. 4. Inference of the gating rates α [panel (a)] and β [panel
(b)] from the short-time asymptotics of Eqs. (8) and (9), respectively.
Results are for the birth-death model used in Fig. 2, and various
values of α and β. Details of the model and parameter values are
given in [57].

detection occurs upon first arrival. This insight translates
to the limiting equation πA = limt→0 Dt (n0, E )/Ft (m|n0).
Similarly, the short-time asymptotics of Dt (m, E ) is given
by πI = β−1 limt→0 Dt (m, E ), owing to the fact that when
the underlying process starts on m, the dominant contribu-
tion to detection comes from events where the gate opens
before the particle leaves the target or falls below the
threshold.

These limiting representations of the probabilities πA and
πI , along with their normalization, allow us to obtain the
gating rates as follows:

α = lim
t→0

Dt (m, E )Ft (m|n0)

Dt (n0, E )
, (8)

β = lim
t→0

Dt (m, E )Ft (m|n0)

Ft (m|n0) − Dt (n0, E )
. (9)

Equations (8) and (9) are corroborated in Fig. 4 for the
birth-death process with parameters described in [57]. Fur-
thermore, in [57] we also show that these relations hold even
for an arbitrary (nonequilibrium) initial condition of the gate.
We then derive simpler inference relations for the gating
rates, which are obtained at the cost of perfect control over
σ0. Finally, we discuss the widely applicable case of simple
diffusion and derive inference relations for α and β, which
only differ by a factor of two from Eqs. (8) and (9).

Discussion. Using the unified framework of gated first-
passage processes, we demonstrated how the first-passage
time distribution can be inferred from gated measurements,
and using these quantities, key features of the process can
be extracted. The exact results obtained in this Letter can
help inform statistical inference frameworks designed to deal
with situations pertaining to imperfect observation conditions,
including sparsely sampled time series or missing data prob-
lems. The asymptotic results presented in this Letter moreover
provide a systematic approach to the inference of gating rates
which, depending on the accessible timescales of the problem,
can be improved upon by considering higher-order corrections
to the asymptotics.
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