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Interaction-induced breakdown of chiral dynamics in the Su-Schrieffer-Heeger model
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The effect of interparticle interactions on topological properties is difficult to experimentally probe and
quantitatively characterize. For ultracold atomic systems, although topological phases and phenomena have been
recently observed in various settings, the effect of atomic interactions has so far remained largely unexplored.
Here, we realize a Su-Schrieffer-Heeger model in the momentum lattice of a Bose-Einstein condensate with
tunable atomic interactions and measure the bulk dynamics of atoms in a synthetic topological wire subjected
to sudden quench under various interactions. We observe the breakdown of chiral dynamics in the atomic wire
with increasing strength of interaction, where the atoms are localized at the initial injection site under the strong
interaction. We show that the mean chiral displacement can be used to characterize the effect of interaction on
the atomic chiral dynamics by studying its variation with the interaction. Our results provide a benchmark for
exploring the interacting topological fluids.
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Introduction. Topological states of matter are a particular
class of non-Landau states characterized by global topological
invariants in the single-particle limit and have generated great
interest in many areas of physics [1–6]. The fundamental
topological phases in two dimensions are Chern insulator
phases induced by breaking time-reversal symmetry that are
characterized by topological Chern invariants [7,8]. The two
most well-known lattice models supporting such topologi-
cal phases are the Harper-Hofstadter model [9,10] and the
Haldane model [11], which have been realized in ultracold
atomic systems [12–15]. Moreover, several topological fea-
tures, including edge states [16,17], chiral current [18–20],
and quantized pumping [21,22], have been observed exper-
imentally. In one dimension, the seminal topological phase
is hosted by the paradigmatic Su-Schrieffer-Heeger (SSH)
model [23], which is protected by chiral symmetry and identi-
fied by topological winding number [7,8]. The SSH model has
attracted great interest for its easy implementation, as shown
by experiments in optical superlattices [24] and momentum-
state lattices [25]. Its chiral topological feature has been
intensively explored by measuring mean chiral displacements
[26–28].
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Beyond noninteracting systems, investigating the effect of
interaction on topological properties is of fundamental im-
portance for understanding many exotic physical phenomena
[29–31]. The interplay between topology and interactions has
led to the fractional quantum Hall effect in condensed-state
physics [32,33]. In photonic systems, nonlinearity, akin to
interparticle interactions in the mean-field limit, has induced
topological lasing [34,35], edge solitons [36,37], and quan-
tized nonlinear Thouless pumps [38]. For ultracold atomic
experiments, the highly tunable interactions offer a control-
lable knob to study the effect of interaction on topological
properties [39]. While topology experiments in ultracold
atoms have almost been restricted to the noninteracting
regime, or regimes in which the weak interactions have subtle
modifications, a recent experiment starts to study the impact
of interaction on the topological transport [40].

Here, we experimentally realized a SSH model based on
the one-dimensional (1D) momentum lattices of a Bose-
Einstein condensate (BEC) of 133Cs atoms with widely
tunable interactions. We measure the quench dynamics of the
SSH model under various interactions and study the effect of
interaction on the chiral dynamics of atoms in the synthetic
topological wire. The atomic chiral dynamics is broken down
with increasing strength of interaction, and the atoms are
localized at the initial injection site resembling a soliton state
under the strong interactions. We study the variation of mean
chiral displacement with the atomic interaction strength and
find that it can be used to characterize the effect of interaction
on the atomic chiral dynamics. Our observations show good
agreement with the numerical simulations based on the Gross-
Pitaevskii equation (GPE).
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FIG. 1. Synthetic chiral topological wires based on momentum states of atoms with tunable interactions. (a) Illustration of a dimerized
lattice, where the dimer cell index j ranges from −5 to 4 and the intra- and intercell tunneling energies are J ′ and J , respectively. At the bottom
the atomic distribution in the wire can be directly obtained by the momentum-resolved absorption image. (b) A momentum lattice is used to
realize the SSH model depicted in (a). A series of two-photon Bragg transitions are driven to couple the discrete atomic momentum states
p = 2nh̄k (k = 2π/λ) with n ∈ {−10, 9}. The dimerized momentum lattice is synthesized by precisely controlling the strength of each Bragg
transition with the alternating weak and strong forms. (c) Schematic of the experimental setup. A 133Cs Bose-Einstein condensate (BEC) with
tunable atomic interactions is confined in a cigar-shaped optical trap Vtrap combined with the potential of momentum lattice VBragg, which is
composed of a pair of counterpropagating laser beams, one with a single frequency ω and the other containing multiple-frequency components
ωn. The strength of atomic interaction is characterized by U . (d) Actual tunneling energy J as a function of atomic scattering length a. The
solid line is the theoretical calculation based on the GPE (1). Error bars indicate fitting errors [48].

Implementation of the SSH model with tunable interactions.
For atoms hopping in a dimerized lattice with two sites per
unit cell in Fig. 1(a), the lattice system can be described by
a SSH model, where j is the index of cell and the intra-
and intercell tunneling energies are J ′ and J , respectively.
This model supports nontrivial topological phases protected
by chiral symmetry [7,23]. We implement the SSH model in
a dimerized momentum lattice of a 133Cs BEC with N = 4 ×
104 atoms [41–43]. A pair of counterpropagating laser beams
with wavelength λ = 1064 nm are used to illuminate the
atoms in a cigar-shaped trap for driving a series of two-photon
Bragg transitions between discrete atomic momentum states
p = 2nh̄k with the reduced Planck’s constant h̄ and wave vec-
tor k = 2π/λ [44–47] [Figs. 1(b) and 1(c)]. Then, a dimerized
lattice consisting of ten cells with j ∈ {−5, 4} is synthesized
by precisely controlling the strength of each Bragg transition
with the unique frequency difference (see Supplemental Ma-
terial [48]). The ratio of the intracell tunneling energy to the
intercell tunneling energy J ′/J with open boundary conditions
can be tuned to prepare the system to be in different topolog-
ical phases in the noninteracting regime [26,27]. Specifically,
for J ′/J < 1 the lattice system is in the nontrivial topological
phase; otherwise it is in the trivial phase [48].

When introducing the interaction of atoms in the trap
Vtrap combined with the momentum lattice potential VBragg

[Fig. 1(c)] by a broad Feshbach resonance [39], the time
evolution of condensate wave function �(r, t ) follows the
three-dimensional GPE

ih̄
∂�

∂t
=

(
− h̄2

2m
∇2 + Vtrap + VBragg + U |�|2

)
�, (1)

where the interaction strength is U = 4π h̄2(N − 1)a/m
with the s-wave scattering length a, m is the atomic
mass, and �(r, t ) fulfills the normalization condition of∫ |�(r, t )|2dr = 1 [49]. To avoid the significant decoher-
ence of BEC under strong interactions, our measurement
is restricted to a � 800 a0 (in units of the Bohr radius).
The interaction of far-detuned Bragg lasers with atoms
leads to a time-dependent lattice potential VBragg(z, t ) =∑

n 2h̄Jncos(2kz − �ωn + φn), where Jn, �ωn, and φn = 0
are the strength, detuning, and relative phase, respectively, in
every Bragg transition [50,51].

To clearly illustrate the dimerized lattice form and atomic
interactions in momentum lattices, we use the standard vari-
ational approach [48,49,52] to obtain the equation as the
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following set:

ih̄ψ̇A
j = J ′ψB

j + JψB
j−1 + U

(
2 − |ψA

j |2)ψA
j + V ψA

j ,

ih̄ψ̇B
j = J ′ψA

j + JψA
j+1 + U

(
2 − |ψB

j |2)ψB
j + V ψB

j , (2)

where ψA
j and ψB

j are the wave functions of atoms at sites
A and B of the jth cell. The mean-field interaction energy is
given by U = (4π h̄2a/m)ρ with the averaged atomic den-
sity ρ. As described in Refs. [53,54], the atomic interactions
for a > 0 in the momentum lattice give rise to a density-
dependent, local attractive potential, which is captured by a
nonlinear term in Eq. (2), and the localization occurs when
the interaction is strong enough. The additional term in Eq. (2)
is V = − h̄2∇2

2m − 2nh̄k
m ih̄∂z + Vtrap with n = 2 j (n = 2 j + 1) for

the sublattice site Aj (Bj) in the jth cell, and the i∂z term
denotes the spatial expansion of wave function. To take into
account the trap potential and the inhomogeneous atomic den-
sity in our experiment, we use the real-space GPE (1), from
which Eq. (2) is derived, to perform the numerical calculation.
Neglecting the trap potential Vtrap and the inhomogeneous
atomic density, Eq. (2) reduces to the nonlinear SSH model
[48], and its solution shows that the population dynamics of
atoms in the SSH model is reduced with increasing strength
of interaction even for U/J < 4. This is significantly different
from self-trapping, which predicts that the diffusive dynamics
of atoms in a general lattice with uniform tunneling strength is
suddenly reduced at the critical interaction U/J = 4 [53–56].

Prior to studying the effect of interaction on the quench
dynamics of the SSH model, we measure the influence of
interaction on the tunneling energy J in Fig. 1(d). The data
are obtained by fitting the population dynamics of atoms at
two adjacent lattice sites for various a [48]. We find that the
fitted J is almost invariant within our measurement range, and
this indicates that the interaction will not affect the tunneling
energy, whereas its change has an impact on the tunneling
dynamics.

Breakdown of chiral dynamics. The mean chiral dis-
placement has been recently used to characterize the chiral
topological features in the SSH model in the photonic system
and ultracold atomic experiments in the noninteracting regime
[26–28,57]. Such an observable quantity is defined as

C(t ) =
∑

j

2 j
(
PAj − PBj

)
, (3)

where PAj and PBj are the atomic populations at sites A and B
of the jth cell with the normalization to the total atom num-
ber. For a nontrivial topological phase, C(t ) generally shows
an oscillation behavior. The mean chiral displacement C =
limT →∝1/T

∫ T
0 dtC(t ) converges to the topological winding

number and can be used to measure the Zak phase [57,58].
When the ratio is tuned from J ′/J < 1 to J ′/J > 1, the value
of C calculated by referring to the injection site A0 in Fig. 1(a)
varies from 1 to 0 [26,27].

To study the effect of interaction on the chiral dynamics
of atoms in the synthetic topological wire, we measure the
dynamical evolution of atomic populations in the dimerized
lattice after a sudden quench under different interactions. We
initialize all atoms at site A0 with zero momentum and then
quench on the tunnel couplings with J ′/J = 0.5 and J/h̄ =
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FIG. 2. Bulk dynamics and time evolution of chiral displacement
under different interactions. (a)–(c) Bulk dynamics in the synthetic
atomic wire are obtained by measuring the population dynamics of
atoms in the dimerized lattice after a sudden quench with the tun-
neling energy ratio of J ′/J = 0.5 and J/h̄ = 2π × 500 Hz for three
different scattering lengths. The momentum distribution is taken by
the integrated absorption image after 22 ms time of flight. (d)–(f)
Dynamical evolution of chiral displacement C(t ) extracted from the
data in (a)–(c), respectively. The solid red curves are the numerical
simulations based on the GPE (1). All error bars denote standard
errors.

2π × 500 Hz. The subsequent dynamics in Figs. 2(a)–2(c)
for three different interactions are obtained by taking a series
of absorption images after the variable evolution time t (in
units of the tunneling time h̄/J ≈ 320 µs) and 22 ms time
of- flight. In the noninteracting regime with a = 3 a0, the
population dynamics of atoms is supported by the alternating
weak and strong hoppings, since the initial state is projected
on the eigenstate of the quenched lattice system. For a = 400
a0, the atomic diffusion is reduced significantly. For a = 800
a0, the atoms become localized at the initial injection site.
The blurred boundary between the adjacent sites in Figs. 2(b)
and 2(c) is likely caused by the broadening of the atomic
width at lattice sites under the strong interaction. We also
show the effect of interaction on the atomic chiral dynamics
for two different dimerizations, J ′/J = 0.25 and 0.75, in the
Supplemental Material [48].

From the data in Figs. 2(a)–2(c), we extract the evolution
of C(t ) in Figs. 2(d)–2(f) according to Eq. (3). For a = 3 a0,
the strong dimerization produces a large energy gap in the

L032035-3



YUQING LI et al. PHYSICAL REVIEW RESEARCH 5, L032035 (2023)

0.5 1.50 1 2

0.5

0

1
 t

ne
mecal

psi
d lari

hc 
nae

M
C

Tunneling ratio J' / J

3 a0

400 a0

800 a0

FIG. 3. Effect of interaction on the variation of mean chiral dis-
placement with the tunneling energy ratio J ′/J . The mean chiral
displacement C as a function of J ′/J is shown for three different
scattering lengths. Each C is obtained by the time-averaged C(t ) in
the time range from 4 h̄/J to 9.4 h̄/J . Solid lines are the numerical
simulations based on the GPE (1), and the gray dashed line is the
prediction from a tight-binding model in the noninteracting limit. All
error bars denote the standard deviations of the mean. The intercell
tunneling energies are fixed at J/h̄ = 2π × 500 Hz.

band structure in a topological phase; C(t ) exhibits a damping
oscillation, and the mean chiral displacement C converges to
1. The atomic chiral dynamics is broken down with increasing
strength of interaction, where C is slightly below 1 for a =
400 a0 and C � 1 for a = 800 a0. These data qualitatively
agree with the numerical simulation based on the GPE (1).
Compared with the noninteracting case, the reduction in chiral
dynamics at a = 400 a0 can be reflected by the value of the
mean chiral displacement with C < 1.

Effect of interaction on mean chiral displacement. Based on
the dynamics of C(t ) under various interactions, we study the
effect of interaction on the variation of mean chiral displace-
ment C with the ratio J ′/J for J/h̄ = 2π × 500 Hz in Fig. 3. C
is determined by averaging C(t ) in time over the range from
4 h̄/J to 9.4 h̄/J [26,48]. In the noninteracting regime, we
observe a phase transition from topological (C = 1) to trivial
(C = 0) when the ratio is tuned from J ′/J < 1 to J ′/J > 1,
as shown in previous experiments [26–28]. Different from
the ideal case (dashed line), the observed transition exhibits
a smooth crossover with finite evolution time (t ∼ 9.4 h̄/J)
and small lattice size.

However, for a = 400 a0, C begins to drop below 1 at low
J ′/J , and the values of C are significantly smaller than the
noninteracting cases for J ′/J < 1. When the interaction is in-
creased to a = 800 a0, we find C < 0.5 even for J ′/J � 1, and
the topological phase transition induced by the change in J ′/J
collapses. This is mainly attributed to the breakdown of chiral
dynamics in the atomic wire under the strong interaction. Our
experimental data agree well with the numerical simulations
based on the GPE (1).

We further study the dependence of C on the interaction
for three different J ′/J in Fig. 4. The value of C is close
to 1 in the range U/J � 1, but C starts to decrease with
increasing strength of interaction for U/J > 1. For the atoms
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FIG. 4. Effect of interaction on the mean chiral displacement for
three different tunneling energy ratios. The mean chiral displacement
C is shown as a function of scattering length a for J ′/J = 0.25, 0.5,
and 0.75 with J/h̄ = 2π × 500 Hz. For each a, C is obtained by
averaging the dynamical C(t ) in time over the range from 4 h̄/J to
9.4 h̄/J . The mean-field energy U/J is calculated with the averaged
atomic density. The solid line represents the numerical simulation
of the GPE (1). The error bars denote the standard deviations of the
mean.

in the nonlinear SSH model, the momentum width starts to
decrease at the weaker interaction [48] compared with C,
where the momentum width has been used to characterize the
localization degree in a study of self-trapping in momentum
lattices [54]. Thus C can be used to characterize the effect of
interaction on the atomic chiral dynamics in the SSH model
rather than the self-trapping. Compared with the nonlinear
SSH model that predicts a large reduction in C at U/J = 4
[48], the experimental data are in good agreement with the
numerical simulations based on the GPE (1), where the influ-
ence of trap potential and inhomogeneous atomic density in
the experiment is accurately taken into account.

In addition, considering the widely tunable range for the
interactions of 133Cs atoms, we show the influence of the
attractive interaction on C by measuring the dynamics of
the SSH model for a < 0 [48]. Both the data and theoret-
ical calculation show that C begins to decrease under the
weakly attractive interactions. The discrepancy between the
experiment and theory is likely caused by the excitation of
condensate in Feshbach tuning to a < 0 [39], which generates
thermal atoms and then reduces the coupling efficiency in
Bragg transitions.

Conclusion. We have performed an experimental study of
the effect of interaction on the dynamics of the SSH model
by tuning atomic interactions and tunneling energies in a
dimerized momentum lattice. Based on the population dy-
namics of atoms under different interactions, we have found
the breakdown of atomic chiral dynamics with increasing
strength of interaction. We also show that the mean chiral
displacement allows us to characterize the effect of interaction
on the chiral dynamics in a synthetic atomic wire. Our study
paves the way for understanding the effect of interaction on
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topological phases and further exploring many exotic physical
phenomena.
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