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Few-cycle vortices from superradiant nonlinear Thomson scattering by a relativistic chirped mirror
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We propose a scheme to generate few-cycle vortices based on nonlinear Thomson scattering by microbunched
electrons from a circularly polarized laser pulse with chirped frequency. At sufficiently high intensities, the
generation of harmonics that carry orbital angular momentum occurs. At the same time, the electrons collectively
act as a relativistic chirped mirror, which superradiantly reflects a chosen harmonic into a single localized beat.
Calculations show that a few-cycle soft x-ray vortex with gigawatt peak power can be generated if this scheme
is applied to a pC electron bunch with a few MeV kinetic beam energy.
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Electromagnetic fields with an azimuthal phase depen-
dence exp(i�φ) along the direction of propagation carry
orbital angular momentum (OAM) with quantum number �

[1]. In the optical regime, these so-called vortex beams are
an indispensable tool for fundamental research [2,3] and ap-
plications in optical manipulation, communication, imaging,
and quantum optics [4–10]. Extreme-ultraviolet and x-ray vor-
tices, owing to a significantly lower diffraction limit, extend
these applications to the atomic and molecular length scale,
and allow for sitespecific photoexcitation and ionization,
with important applications in spectroscopy and microscopy
[11–13]. Furthermore, due to the short wave cycle in the
extreme-ultraviolet and x-ray regime, pulses of attosecond
duration can potentially be generated, corresponding to the
timescale of electronic motion in atoms and molecules [14].

Conventionally, vortex beams are generated by inserting
an optical element, such as a spiral phase plate, into the
beam path [15,16]. However, for intense short-wavelength
radiation, the damage threshold and fabrication challenges
of these elements limit the use of this method. To over-
come this, in situ generation of vortex beams is favored.
High harmonics from laser-atom interaction allows for gen-
eration of bursts of attosecond vortices in a compact setup
[17–19]. The scaling of high harmonic efficiency, however,
limits application in the high photon energy regime [20,21]. In
contrast, relativistic electrons in an undulator can be made to
emit short-wavelength vortex beams with abundant intensity
[22–24]. Yet, this approach comes at the expense of a long
pulse length (>10 fs) and requires the use of large scale, costly
facilities with limited beam time.

Alternatively, nonlinear Thomson scattering by electrons
from an intense laser pulse allows for in situ creation of
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vortices with favorable scaling toward the x- and γ -ray
regime [25]. In nonlinear Thomson scattering, a relativistic
electron oscillates strongly due to coupling with the elec-
tromagnetic field of a laser pulse with a strength parameter
a0 = eE0/(mecω0) ∼ 1 (with e elementary charge, E0 the
electric field strength, ω0 the central frequency, me the electron
mass, and c the speed of light). Head-on collision of the
electron with an intense laser pulse results in the emission of
harmonics centered at upconverted frequency [26]:

ωn = nω0

1 − β1(1 + cos θ )
, (1)

where n is an integer, θ is the emission angle with re-
spect to the electron propagation axis, and β1 = {1 − (1 +
a2

0/2)/[(1 + β )2γ 2]}/2 with cβ the initial axial velocity and
γ = (1 − β2)−1/2 the Lorentz factor. Moreover, the short
wavelength of the laser pulse allows for significantly more
compact accelerator setups than undulator sources. However,
the shortest pulse length is limited by the convolution of the
electron bunch and laser pulse length, which typically is on
the order of ten to hundreds of femtoseconds, much longer
than the electronic time scales.

In this Letter, we propose an approach to generate attosec-
ond vortices via superradiant nonlinear Thomson scattering
by colliding an intense circularly polarized laser pulse with
a chirped frequency on a relativistic chirped electron mirror
such as illustrated in Fig 1. This mirror is an electron bunch
with a varying density modulation frequency such that the
superposed radiation pulses emitted by each electron form
a localized beat, strongly compressing the single electron
radiation fields [27]. Here, using the framework of classical
electrodynamics, we demonstrate in two steps that this method
is applicable in the nonlinear Thomson regime. First, we show
that chirped vortices are generated from a chirped laser pulse,
which are suitable for compression by a chirped electron mir-
ror. Then, taking into account superradiance by the mirror, we
find the conditions under which few-cycle vortices are gener-
ated and show that for these parameters multi-GW few-cycle
extreme ultraviolet pulses are attainable.
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FIG. 1. Schematic of few-cycle vortex generation by reflecting
a chirped circularly polarized laser pulse with a relativistic chirped
electron mirror.

The spectral electric field at far-field distance r radiated
from an arbitrary current density distribution J is given by
[28]

E(r, ω) = iωeiωr/c

4πε0cr
n × n ×

∫
J(x, t )eiω(t−n·x/c)dtdx, (2)

with ω the angular frequency of the radiation, ε0 the vacuum
permittivity, and n the propagation direction of the emitted
radiation. From the general expression, Eq. (2), we derive
more practical equations for a relativistic chirped mirror that
reflects a chirped laser pulse of pulse length T (full width)
described by vector potential A = meca0/(

√
2e)(cos 
ex +

sin 
ey), with 
 = ω0τ + ατ 2 + ϕi the laser phase with
Galilean time τ = t + z/c, α the chirp rate, and ϕi phase at
the center of the pulse where τ = 0.

The electric current of the mirror consisting of N electrons
is given by J = −∑N

j=1 ev jδ
(3)(x − x j ) with δ(3)(x) the three

dimensional Dirac delta function, x j the electron trajectory,
and v j the velocity. We find by solving the Lorentz force
equation that an electron during interaction has a constant
axial velocity and makes helical transverse oscillations that
are described by (see the Appendix)

x j = x0, j + r0

1 + ατ/ω0
(sin 
 ex − cos 
 ey) + cβ1τ ez, (3)

with x0, j the initial position and r0 = a0/[
√

2k0γ (1 + β )].
Here, the term between brackets describes the transverse spi-
ral motion induced by the laser pulse. The spiral radius is
proportional to the optical quasiperiod that changes linearly
along the laser pulse axis. At the center of the interaction
when τ = 0, the radius is equal to r0. The last term in
Eq. (3) describes the uniform axial motion during interac-
tion, with a velocity that is lower than the axial velocity
prior to interaction as a result of the relativistic transverse
motion. Since the particle velocity as function of time t is
given by v j = (dx j/dτ )dτ/dt , the axial velocity is given by
vz = cβ1/(1 − β1).

Substituting the electron trajectory, given by Eq. (3), and
the corresponding velocity into the general expression for the
field, given by Eq. (2), we find that the field emitted by a
single electron can be decomposed in harmonics such that
E j = ∑∞

n=1 En, j . The field of the nth harmonic is given by

(see the Appendix)

En, j (r, θ, φ, ω)

= ieωTeiωr/c−ϕ0, j

4πε0cr
Fn(ω, θ )

× [JJ+
n (θ )ei(n−1)φe+ + JJ−

n (θ )ei(n+1)φe−], (4)

with ϕ0, j = nϕi + ω(n · x0, j + z0, j )/c a constant phase off-
set, Fn the linewidth function, JJ±

n = [k0r0Jn±1(ζn) − (1 −
β1) sin θJn(ζn)]/

√
2, with ζn = ωnr0 sin θ/c, the emission

amplitudes and e± = (ex ± iey)/
√

2 complex unit vectors
describing circular polarization with positive and negative
helicity, respectively. The emitted electric field is thus an
elliptically polarized vortex field that can be decomposed
in components having positive helicity with orbital angular
momentum of � = n − 1 and negative helicity with � = n + 1
orbital angular momentum. The respective weight of the po-
larization states is determined by the emission amplitudes.
In Eq. (4) we neglected the longitudinal field component,
which in all practical cases is much smaller than the transverse
components.

The spectral response of the single electron emission is
expressed by the linewidth function

Fn =
√

π

2nαT 2
[Z (u+

n ) − Z (u−
n )]ei�n (ω−ωn )2

, (5)

where Z (x) = ∫ x
0 exp[−iπy2/2]dy is a complex Fresnel inte-

gral, u±
n = (ω − ωn)

√
�n/π ±

√
nαT 2/(4π ), and �n = [1 −

β1(1 + cos θ )]2/(nα) is the group delay dispersion of the
emitted radiation, which quantifies the spectral delay with
respect to the center of the pulse. For the quasimonochro-
matic case α = 0, the linewidth function is Fn � sinc[T1(ω −
ωn)/2], where sinc(x) = sin(x)/x is the cardinal sine and
T1 = T [1 − β1(1 + cos θ )] is the single electron radiation
(full width) pulse length, and Eq. (4) reduces to the spectral
field for nonlinear Thomson scattering from an unchirped
laser pulse [25,26]. On the other hand, for strongly chirped
laser pulses, i.e., when the frequency chirp αT is much larger
than the transform limited bandwidth T −1 of an unchirped
laser of the same length, the complex Fresnel integrals in
Eq. (5) can be approximated by a rectangular distribution
function Z (u+

n ) − Z (u+
n ) � �[(ω − ωn)/�ωn] with �ωn =

(nαT )/[1 − β1(1 + cos θ )] the spectral bandwidth. In this
regime, in contrast to the unchirped case, the amplitude de-
creases and the bandwidth of the emitted pulse increases with
n. The latter is an important feature for the generation of
monocyle vortices, which requires a large bandwidth.

Figure 2(a) shows the spectral angular energy distribution
d2Wj/(d�dω) = ε0cr2 ∑∞

n=1 |En, j (ω)|2 in the φ = 0 plane of
a single electron with 3.1 MeV kinetic energy reflecting a
head-on 1 ps chirped laser pulse with strength a0 = 1, central
wavelength of λ0 = 1 µm, and chirp rate α = 0.3 THz/fs.
The central wavelength of the fundamental emitted on-axis
is 7.5 nm in this scattering geometry. Due to the symmetry
of the electron trajectory the energy distribution is indepen-
dent of φ. The fundamental is most intense on-axis and is
contained within a half angle of approximately 1/γ . The
higher harmonics have an annular radiation pattern with no
emission on-axis, which is customary for vortex beams. The
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FIG. 2. (a) Spectral angular distribution of single electron non-
linear Thomson scattering from a chirped laser pulse. (b) Degree of
circular polarization.

angle of largest intensity increases with harmonic and, under
the assumptions that a0 � 1 and γ � 1, is found approx-

imately at angle γ θmax =
√

1 + a2
0/2

√
(n − 1)/(n + 3). The

figure also confirms that the bandwidth of the higher har-
monics increases. At harmonic order nmax = ω0/(αT ) − 1/2,
the spectral contributions will start to significantly overlap
making compression, discussed later on, impractical.

The degree of circular polarization dcirc = (|E+|2 −
|E−|2)/(E+|2 + |E−|2), with E± the electric field amplitude
of the positive and negative helicity component, is plotted
in Fig. 2(b). The degree of polarization is the same for all
harmonics. Near the electron propagation axis, the polariza-
tion is almost completely circularly polarized with positive
helicity. This implies that here the radiation carries orbital an-
gular momentum with quantum number � = n − 1. Off-axis,
the polarization first becomes elliptical, and then, for these
parameters, around θ = 1/γ , linear (dcirc = 0) corresponding
to a superposition of orbital angular momentum states. Note
that especially for lower order harmonics, the intensity has
reduced significantly at this point. At even larger angles, the
polarization goes from elliptical to fully circular with nega-
tive helicity (dcirc = −1) indicating that the � = n + 1 state is
dominant. These results coincide with the polarization from
the unchirped case found in [25,29].

So far, we described the spectral electric field emitted
by an individual electron that collides with a chirped laser
pulse. Now, we will take the coherent superposition of such
fields, also known as superradiance, from electrons in an
electron bunch with a chirped density modulation. Superra-
diance has been proposed to boost the yield of a Thomson
scattering source by orders of magnitude [30,31]. Further-
more, superradiant linear Thomson scattering from a chirped
electron mirror has been considered to generate attosecond
x-ray pulses [27]. Here, we will show that superradiance from
a chirped electron mirror in the nonlinear regime leads to
fewcycle soft x-ray pulse with orbital angular momentum.

The superradiant field in the spectral domain is
given by the multiplication of the single electron
spectral angular distribution and the mirror bunching
factor, written as En(ω) = NEn, j=0(ω)b(ω), where
b(ω) = 1/N

∫ ∞
−∞ ne(x) exp[−iϕ(x)]dx is the mirror bunching

FIG. 3. Superradiant intensity and phase pattern for α =
0.3 THz/fs (a) and 0.75 THz/fs (b). The color corresponds to the
phase the pixel corresponds to the radiation intensity.

factor with ne(x) the electron density distribution and
ϕ(x) = ω(n · x + (1 − β1)z)/c the phase difference between
emission from different parts of the mirror separated by x.
For the following calculations we will use an infinitely thin,
strongly chirped electron mirror with density distribution
given by ne = N/(vzTe)[1 + 2b1 cos(ωez/vz + α2

e z2/v2
z )],

where Te is the (full width) mirror length, b1 = [0, 0.5]
the modulation depth, ωe the central angular modulation
frequency, and αe the chirp rate. Note that other microbunch
distributions or higher harmonic bunching can also be
considered, however, this does not significantly change any
of the relevant physics.

The bunching factor for this density distribution is
similar to the linewidth function of the single electron
radiation: For strong chirp, the positive nonzero frequency
component of the bunching factor is approximately given by

b(ω) =
√

b2
1π/(2mαeT 2

e )�[(ω − ω′
e)/�ωe] exp[−i�e(ω −

ω′
e)], with�e = β2

1 (1 + cos θ )2/(mαe) the group delay
dispersion determining the chromatic dispersion of the
mirror, �ωe = mαeTe/[β1(1 + cos θ )] the bandwidth of the
mirror, and central frequency of superradiance given by

ω′
e = ωe

β1(1 + cos θ )
. (6)

To overlap the superradiant emission of all frequencies
within harmonic n in time, the periodic density modulation
of the mirror should satisfy the following three conditions.
First, the variation in bunching frequency should be large
enough to support superradiant reflection of the full laser
bandwidth such that �ωe � �ωn. Second, the central su-
perradiant frequency should be centered around the central
emission frequency, leading to a bunching frequency of ωe =
nω0β1(1 + cos θ )/[1 − β1(1 + cos θ )]. Last, the superradiant
reflection of each spectral component should occur in a sin-
gle beat, which can only hold true if the dispersion of the
mirror is equal to the dispersion of the single electron ra-
diation pulse which occurs for a bunching chirp rate given
by αe = nαβ2

1 (1 + cos θ )2/[1 − β1(1 + cos θ )]2. To generate
ultrashort vortices, the latter conditions should hold off-axis.

In Figs. 3(a) and 3(b) the angular energy distribution
dW/d� = ε0cr2 ∑∞

n=1

∫
dω|En(ω)|2 and the phase of (the

part between squared brackets of) the electric field given by
Eq. (4) resulting from a Te = 9.1 fs chirped electron mirror
with 3.1 MeV kinetic energy, tuned to amplification of the
second harmonic at γ θmax � 0.54 from a 1 ps laser pulse of
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a0 = 1 with central wavelength of λ0 = 1 µm is shown for two
cases. First, the same chirping parameters are used as in Fig. 2.
In Fig. 3(a) the intensity pattern consists of spatially separated
rings of varying amplitude. The brightest ring, found at the
maximum scattering angle, is the amplified second harmonic
with a central wavelength of 4.5 nm close to the K-absorption
edge of carbon. Each ring farther out corresponds to a higher
order harmonic, which, due to the relativistic Doppler shift,
have a nonzero contribution in the superradiant bandwidth.
Second, the intensity pattern for a laser pulse with the largest
chirp α = 0.75 THz/fs that still allows for compression of the
second harmonic is shown in Fig. 3(b). The separate harmonic
rings join to form a single broadband annular radiation pulse.
The angular spread in this case has greatly increased resulting
from the larger bandwidth induced by the laser pulse. Note
that the intensity distribution is independent of dispersion
matching.

The phase corresponding to previous cases is plotted in the
same figure. For the first case the phase makes one rotation
closest to the axis, corresponding to orbital angular momen-
tum of � = 1, for which the system is optimized. Going farther
off-axis one finds higher levels of orbital angular momentum
related to the increasing harmonic order. The harmonic orders
remains quite well separated until very large angles. In con-
trast, for the large bandwidth case, harmonics larger than the
second already overlap leading to a complex distribution of
phase indicating ill-defined orbital angular momentum. How-
ever, this undesired part of the beam can easily be removed
with a spatial filter.

If the dispersion is matched correctly along a chosen scat-
tering angle θV , a time-compressed vortex beam is generated.
The electric field in the temporal domain for this case can be
calculated analytically by taking the inverse Fourier transform
of the spectral field, which is given by

EV(r, θV , φ, t )

= i
Qb1

8ε0cr

T

Teβ1(1 + cos θV )
JJ+

n

∂

∂ (t − r/c)

× e−iωn (t−r/c)+i(n−1)φ+inϕi sinc

[
π

t − r/c

TV

]
e+, (7)

where we assumed that the compression occurs close to the
angle at which the single electron intensity is largest, so we
can neglect the components with negative helicity. The pulse
length—taken to be the first intensity node of the pulse—is
given by

TV = 2π
1 − β1(1 + cos θV )

nαT
, (8)

which is equal to Fourier-limited pulse length allowed by
the bandwidth of the corresponding harmonic emitted by a
single electron, and Q = −eN is the total charge of the mir-
ror. The compressed pulse length is fully determined by the
nonlinear Doppler shift, the harmonic number n, and the laser
bandwidth. Thus, the shortest vortex attainable is limited by
bandwidth overlap. Using the condition for nmax and Eqs. (1)
and (8), we find that the smallest number of cycles of a vortex
with � = nmax − 1 using the method described in this paper is
given by Nmin = ωnTV /(2π ) = nmax + 1/2. In Fig. 4 the time-
dependent electric field is plotted for the same parameters as

FIG. 4. Time-dependent electric field along matching angle at
φ = 0 for α = 0.3 THz/fs (a) and 0.75 THz/fs (b).

the previous cases. For the first case (a) the pulse length is
given by TV = 94 as, and the second case TV = 37 as (b)
corresponding to 6.3 and 2.5 cycles, respectively. The latter
has yet to be demonstrated in any kind of source even for pulse
carrying no orbital angular momentum. The uncompressed
single electron field has a pulse length of 9 fs, a few orders
of magnitude longer.

Well-compressed radiation is limited to the angular range
where the delay induced by the group delay dispersion
mismatching (�n − �e)�ωn becomes on the order of the
compressed pulse length TV. Assuming the mirror dispersion
does not change considerably, we find that the angular range
of compression is about �θc = π (1 + a2

0/2)/(γ 2θV nαT 2),
which for strong compression is much smaller than the an-
gular spread of the intensity.

One may raise the question if strongly compressed
vortices have abundant power. Therefore, we calculate
the pulse energy and peak power for this case. The
pulse energy of the compressed pulse is given by
W = ∫ 2π

0

∫ θV +�θV /2
θV −�θV /2 dωd�ε0cr2|E(ω)|2 � Q2b2

1JJ+2
n ω4

nTVθV

�θc/(16ε0cω2
0 ) with d� = sin θdθdφ is the differential

solid angle and JJ+
n is evaluated at θV . The vortex

pulse energy using the same parameters with a bunch
charge Q = 3 pC, and density modulation of b1 = 0.5
is W = 0.88 µJ for the first case and W = 0.14 µJ for
the few-cycle case. The latter contains less energy due to
the smaller angular spread of compression. The difference in
the resulting peak power P = W/TV, however, is smaller: 9.3
GW and 3.7 GW, respectively. Electromagnetic pulses at a
frequency near the water window with this amount of pulse
energy and peak power are only available in free electron laser
sources [32], without carrying orbital angular momentum.

Several physical considerations are in place for realization
of this scheme. First, compression is impacted when the de-
lay of the mirror changes significantly with respect to the
single electron radiation. The compression is not affected as
long as the electron beam energy spread �γ , the electron
beam angular spread �θe or the (transverse and longitudinal)
laser strength variation variation �a0 satisfies the condition
(4�γ 2/γ 2 + γ 4�θ4

e + �a4
0/4)1/2 � γ 2�θ2

c . For the extreme
case of few-cycle vortex generation, the relative energy
spread, for example, should be lower than 10−5. For the other
case, the condition for the energy spread is relaxed by an order
of magnitude.
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Second, the transverse mirror width might significantly
inhibit the superradiance at the scattering angles where the
OAM is present, due to destructive interference of the emit-
ted coherent light fields [31]. The superradiance along the
compression angle θV is not significantly affected as long as
the mirror width σ⊥ satisfies the condition σ⊥ � c/(ωnθV).
For both the previous cases, the waist should be smaller than
about 10 nm, which is difficult to attain at high charge due to
space charge forces or without allowing significant detrimen-
tal angular spread. This can be overcome by going to higher
electron beam energy or by tailoring the density distribution
such that an off-axis angle is favored by superradiance.

Last, it is challenging to generate the intricate density mod-
ulation required for compression. Methods have been have
proposed [33] and demonstrated [34] at high energy. At the
relevant beam energy, an energy modulation that converts into
a density modulation can be attained via the ponderomotive
force resulting from the beat wave formed two laser pulses
[35,36], which can be generalized to chirped modulation by
using a few-cycle and a chirped laser pulse. Another method
that potentially allows for the generation of the intricate den-
sity modulation is the use of dielectric laser accelerators [37].

In summary, we propose a method to generate few-cycle
vortex beams from nonlinear scattering by a chirped electron
mirror that acts simultaneously, as a frequency shifter, mode
converter, and compressor. We find that the higher order har-
monics are suitable for compression to few cycles, limited
by spectral overlap with neighboring harmonics. Calculations
show that soft x-ray vortices with gigawatt peak power are
attainable using this method using bunch charge of several
pC. These findings can have great impact for the development
of compact powerful soft x-ray sources. While we propose
the generation of soft x-ray vortices, the theory is universally
scalable over the electromagnetic spectrum.

This research was funded by the Ministry of Economic
Affairs in the Netherlands through a TKI grant.

APPENDIX: DERIVATION OF CHIRPED VORTEX
FOUR POTENTIAL

We describe the interaction between an electron and a
laser pulse in the framework of covariant electrodynamics,
using the metric gμν = diag(1,−1,−1,−1). In this clas-
sical description we neglect electron recoil, restricting the
initial central laser frequency ω0 to fulfill the condition
γ h̄ω0/(mec2) 	 1, where γ0 is the Lorentz factor of the elec-
tron prior to interaction, h̄ the reduced Planck’s constant, c the
speed of light, and me the electron mass.

We calculate the far-field vortex four potential in the time-
spectral domain from the solution to the inhomogeneous wave
equation in the Lorentz gauge, which in normalized form can
be written as

Aμ
rad(r, ω) = O(r, ω)

Ne∑
j=1

∫
uμ

j eikνx jν dτ (A1)

with O(r, ω) = (re/r) exp(iωr/c) a quasiinvariant describing
the spatial component of a spherical wave at position r far
from the center of interaction, ω the angular frequency, and re

the classical electron radius. The summation over Ne electrons

describes the spectral four current of the mirror, where uμ
j is

the four velocity of the jth electron, xμ
j the four position, and

kμ = ω/c(1, er ) the four wave vector of the radiation field.
The present section is organized as follows: First, the trajec-
tories of a single electron in a CPC laser pulse are calculated.
Then, an expression for the single electron four potential is
derived to show azimuthal phase dependence.

1. Electron dynamics in chirped laser pulse

The trajectories of an electron in a laser pulse can be
calculated by integrating the Lorentz force equation ∂τ uμ =
uν (∂νAμ − ∂μAν ). For any four-potential Aμ that only de-
pends on laser phase variable ϕ = kν

0 xν , with kμ
0 the four wave

vector of the laser pulse, the solution to the Lorentz force is
given exactly by

uμ = uμ
0 + Aμ − 1

κ

[
1

2
AνAν + uv

0Av

]
kμ

0 , (A2)

where uμ
0 is the initial four velocity normalized to the speed

of light, and κ = ∂τϕ = kν
0 u0ν is the light cone variable, which

describes the central wave number of the laser in the instanta-
neous rest frame of the electron prior to interaction. The terms
scaling linearly in Aμ describe the coupling of the electron to
the electric and magnetic field. The quadratic term describes
the momentum resulting from the ponderomotive force.

In earlier work, expressions for the electron trajectories
induced by a counterpropagating intense circularly polarized
laser pulse have been found analytically [25]. Here, we ex-
tend those calculations to a circularly polarized laser pulse at
linearly chirped angular frequency � = ω0(1 + αϕ), where α

is the normalized chirp rate. The normalized four potential of
the chirped laser pulse is given by

Aμ
CCP = a0 exp

[
−i

(
ϕ + α

2
ϕ2

)]
�

(
ϕ

�ϕ

)
εμ, (A3)

where a0 is the laser strength parameter, the function
�(ϕ/�ϕ) = �(ϕ + �ϕ/2) − �(ϕ − �ϕ/2), with �(x) the
Heaviside step function, describes the rectangular envelope
of the laser pulse of length �ϕ, and εμ = (0, 1, i, 0)/

√
2

is the polarization four vector. For circular polarization, the
ponderomotive term in Eq. (A2) is a constant AνAν = −a2

0/2,
reducing the longitudinal momentum of the time-averaged
four velocity ūμ = uμ

0 + a2
0/(4κ )kμ

0 during interaction. Physi-
cally, this results from the ponderomotive force from the front
of the laser pulse.

The electron trajectories can be calculated as function of
optical phase ϕ by plugging Eq. (A3) into (A2) using the rela-
tion ∂τ x = κ∂ϕx. For a counterpropagating electron uν

0Aν = 0,
the four position is written as

xμ = xμ
0 + 1

κ

[
ūμϕ + iAμ

CPC

ω0

�

(
1 +

∞∑
n=1

χn

)]
(A4)

with χn = (iαω2
0�

−2)n(2n − 1)!! terms resulting from inte-
grating by parts iteratively. Here, xμ

0 is the initial four position
of the electron in respect to the laser phase. The second term
describes the uniform motion by the average velocity of the
electron in the laser field. The last accounts for the quiver mo-
tion with an amplitude that is proportional to the quasiperiod
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T = 2π/�. In the following we assume that there is a notion
of a quasiperiod, such that the condition |χn| 	 1 holds and
the higher order correction terms can be neglected. It is impor-
tant to note here that xμ depends on ϕ and vice versa. Hence,
it is a recursive relation, which we must readdress for a correct
description of superradiance by the mirror later on.

2. Single electron four potential

We can now calculate the time-spectral radiation four po-
tential (A1). By filling in the real part of Eq. (A4), the phase
of the integrand can be written in the form

kνx jν = kν ūν

κ
ϕ − ζ sin

(
ϕ + α

2
ϕ2 − φ

)
(A5)

with ζ = a0ω sin θ/(
√

2cκ (1 + αϕ)), θ the scattering angle,
and φ the azimuthal angle. The sinusoidal part of Eq. (A5)
in the exponent can be written as the sum of Bessel func-
tions Jn of integer n using the Jacobi-Anger expansion
exp(−iz sin x) = ∑∞

n=−∞ Jn(z) exp(−inx). After sorting the
indices, the integrand of Eq. (A1) can be written as

∞∑
n=−∞

aμ
n exp

[
i(kν ūν/κ − n)ϕ − in

α

2
ϕ2

]

with vector amplitude

aμ
n (ζ ) = Jn(ζ )einφ ūμ + 1

2 a0Jn−1(ζ )ei(n−1)φεμ

+ 1
2 a0Jn+1(ζ )ei(n+1)φε∗μ,

which already clearly shows azimuthal phase dependencies.
In contrast to the complex exponent, the vector amplitude is
slowly varying in ϕ. The largest part of the integral will there-
fore come from stationary phase ϕs = (kν ūν/(nκ ) − 1)/α.
Expanding aμ around ϕs to zeroth order changes the argument

of the Bessel functions to ζn = na0k sin θ/(
√

2kν ūν ), result-
ing in

A(1)μ
rad,n(r, ω) = �ϕ

κ
O(r, ω)aμ

n (ζn)Fn, (A6)

where Fn is the linewidth function that describes the spectral
response of the single lecron radiation to the chirped laser
pulse, given by

Fn = 1

�ϕ

∫ �ϕ/2

−�ϕ/2
exp

[
i(kν ūν/κ − n)ϕ − in

α

2
ϕ2

]
dϕ,

=
√

π

2nα�ϕ2
ei(ω/ωn−1)2n/α[Z (u+

n ) − Z (u−
n )], (A7)

where Z (x) = ∫ x
0 exp[−iπy2/2]dy is a complex Fresnel in-

tegral and u±
n = (ω/ωn − 1)/

√
nαπ ± √

nα/(4π )�ϕ. For
unchirped laser pulses α = 0, the linewidth function re-
duces to the conventional form Fn = sinc[n�ϕ(ω/ωn −
1)/2], where sinc(x) = sin(x)/x is the cardinal sine. For
strongly chirped laser pulse, i.e., when the relative frequency
chirp α�ϕ is much larger than the transform limited relative
bandwidth �ϕ−1, the complex Fresnel integrals in Eq. (A7)
can be approximated by a rectrangular function �[(ω/ωn −
1)/(α�ϕ)].

3. Single electron electric vortex field

In the far field, the differential operator dμν = iωgμν −
ickμuν

obs, where uμ
obs is an observer four velocity, can be used

to calculate the spectral four field Eμ
rad = dμ

ν Aν
rad. In the labo-

ratory frame, where uμ
obs = (1, 0), application of this operator

to the general expression for the radiation four potential, given
by Eq. (A1), gives a temporal component equal to zero and the
spatial part equal to Eq. (2) in the manuscript. Applying the
differential operator to the (spatial part of the) single electron
vortex potential results in the following (normalized) spectral
electric field

E(1)
rad,n(r, θ, φ, ω) = iω

�ϕ

κ
OFn

[
Jn(ζn)einφ (ū − ū0er ) + 1

2
a0Jn−1(ζn)ei(n−1)φe+ + 1

2
a0Jn+1(ζn)ei(n+1)φe−

]
,

= iω�ϕOFn

{
Jn(ζn)einφ (β1 − (1 − β1) cos θ )ez

+
[

a0

2κ
Jn−1(ζn) − 1√

2
(1 − β1) sin θJn(ζn)

]
ei(n−1)φe+

+
[

a0

2κ
Jn+1(ζn) − 1√

2
(1 − β1) sin θJn(ζn)

]
ei(n+1)φe−

}

= iω�ϕOFn
[
JJz

neinφez + JJ+
n ei(n−1)φe+ + JJ−

n ei(n+1)φe−
]
, (A8)

where we used ū3 = κβ1 and ū0 = κ (1 − β1) with β1 =
1
2 (1 − (1 + a2

0/2)/(γ 2
0 (1 + β0)2)). Equation (A8) for the

unchirped case α = 0 reduces to the expression found in [25].

Evidently, harmonic n is a superposition of � = n − 1, � = n,

and � = n + 1 orbital angular momentum, each with different
polarization and emission amplitude.
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