
PHYSICAL REVIEW RESEARCH 5, L032031 (2023)
Letter

Fast generation of high-fidelity mechanical non-Gaussian states via additional
amplifier and photon subtraction

Dong-Long Hu ,1 Jia-Jin Zou,1 Feng-Xiao Sun ,2 Jie-Qiao Liao,3 Qiongyi He,2 and Ze-Liang Xiang 1,*

1School of Physics, Sun Yat-sen University, Guangzhou 510275, China
2State Key Laboratory for Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-Optoelectronics, and Collaborative

Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
3Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter
Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and

Applications, Hunan Normal University, Changsha 410081, China

(Received 12 November 2022; accepted 25 August 2023; published 6 September 2023)

Non-Gaussian states (NGSs) with higher-order correlation properties have wide-range applications in quantum
information processing. However, the generation of such states with high quality still faces practical challenges.
Here, we propose a protocol to faithfully generate two types of mechanical NGSs, i.e., Schrödinger cat states and
Fock states, in open optomechanical systems, even when the cooperativity is smaller than one (g2/κγ < 1). In
contrast to the usual scheme, a short squeezed field is pumped to rapidly entangle with a mechanical resonator via
a beam-splitter-like optomechanical interaction, effectively reducing the mechanical decoherence. Furthermore,
by performing an additional amplifier and a following multiphoton subtraction on the entangled optical field,
one can selectively obtain the high-fidelity mechanical cat and Fock states. This protocol is robust to various
imperfections, allowing it to be implemented with state-of-the-art experimental systems with close to unit fidelity.
Moreover, it can be extended to generate a four-component cat state and provide possibilities for future quantum
applications of NGSs.
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Non-Gaussian states (NGSs) with Wigner negativity are
of paramount importance for their advantages in quantum
information processing, which cannot be simulated by clas-
sical resources [1–5]. Such states, including Schrödinger cat
states (CSs) and Fock states, are widely applied in quantum
error correction [6,7], quantum metrology [8,9], and quantum
sensing [10,11]. By now, one can prepare NGSs by using
four-wave mixing with Kerr nonlinearities in superconducting
circuits [6,7,12] or by performing non-Gaussian operations,
such as photon subtraction or addition, on given Gaussian
states in optical systems [13–19]. In addition, NGSs can be
remotely generated between distant sites through the shared
entanglement in optical and microwave systems, offering in-
trinsic security and efficiency [20–23].

Among different systems, the well-studied cavity op-
tomechanical system is a promising candidate for studying
NGSs [24,25]. This system, driven by the radiation pressure,
provides an important means to manipulate and detect me-
chanical motion in the quantum regime using light; hence
it has received substantial attention and intensive investi-
gations. So far, many fundamental quantum phenomena of
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mechanical motion have been experimentally observed in this
system, such as optical-mechanical [26–28] and mechanical-
mechanical entanglement [29,30], and mechanical squeezing
[31,32]. Fortunately, these results are incredibly favorable for
preparing the mechanical NGSs. Based on optomechanical
systems, various schemes have been proposed for the con-
trollable generation of mechanical NGSs with decent quality
[33–36]. However, the intrinsic mechanical dissipation and
the challenging realization of strong single-photon optome-
chanical coupling still hinder the practical implementation of
such schemes.

In this Letter, we present a protocol for faithfully preparing
near-perfect CSs and Fock states of mechanical motion in
an open optomechanical system, as shown in Fig. 1(a). Un-
like previous works [37,38], here a short squeezed vacuum,
as shown in Fig. 1(b), is pulsed to rapidly entangle with a
mechanical resonator via a beam-splitter-like optomechanical
interaction. This effectively reduces the mechanical decoher-
ence and can be achieved even when cooperativity is smaller
than one (g2/κγ < 1). Importantly, an engineered photon sub-
traction (EPS) is then performed on the entangled optical
mode, which consists of a phase-sensitive amplifier followed
by a multiphoton subtraction, as shown in Figs. 1(c) and
1(d). There always exists appropriate gains of the amplifier
to ensure the Wigner negativity of the mechanical mode after
photon subtraction and projective measurement. Interestingly,
specific gains of the amplifier enable the selective preparation
of high-fidelity mechanical CSs and Fock states, as shown in
Figs. 1(e) and 1(f). In addition, the significant experimental
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FIG. 1. (a) Sketch of the fast generation of mechanical NGSs,
where a short squeezed pulse interacts with the mechanical resonator
and propagates to a distant site. By performing an EPS and a further
projective measurement on the entangled optical mode, the desired
mechanical NGSs can be faithfully produced. (b) Schematic of a
squeezed vacuum. (c) Schematic of an optical parametric amplifier
(OPA) and (d) schematic of a controlled multiphoton subtraction
with cascaded Rydberg atom ensembles. (e),(f) Resulting mechanical
NGSs, a cat state and a Fock state (fidelities ∼0.99), with different
gains of a two-photon EPS, respectively.

progress of deterministic photon subtraction utilizing the
Rydberg-blockade effect [39–41] ensures that our protocol
can efficiently generate large-size NGSs. Furthermore, this
protocol can be extended to prepare a four-component cat
state with high fidelity and provides a possibility to explore
advanced NGSs. All the results here are obtained using the
accessible parameters from state-of-the-art experiments.

Cavity optomechanical system. We consider a typical cav-
ity optomechanical system, consisting of a mechanical mode
of a resonator coupled to an optical mode of a cavity via
the radiation pressure [24]. The mechanical mode is initially
prepared in the ground state at a low environment tempera-
ture [42]. The dynamics of the system can be described by
H = ωmm†m + ωcc†c + g0c†c(m + m†), where m (c) is the
annihilation operator of the mechanical (optical) mode with
the resonate frequency ωm(c), g0 denotes the single-photon op-
tomechanical coupling rate, and h̄ = 1. Under the red-detuned
drive on the optical mode, the effective Hamiltonian reduces
to (see the Supplemental Material [43])

Heff = ωmm†m + �c†c − ig(mc† − m†c), (1)

where � = ωc − ωp is the frequency detuning with ωp the
frequency of the driving field, and g = g0|β| is the linearized
optomechanical coupling rate with |β| the light amplitude
of the cavity mode. This interaction describes a beam-
splitter-type scattering between the optical photons and the
mechanical phonons. Unlike previous schemes that require
a strong optomechanical coupling, i.e., Com = g2/κγ > 1,
where γ represents the mechanical dissipation rate and κ

denotes the decay rate of the optical cavity, our protocol is
also valid in the weak-coupled regime. To show this, here we
consider a low optomechanical cooperativity Com = 0.8, with
the parameters g/2π = 3, κ/2π = 7, and γ /2π = 1.6 MHz,
which can be easily achieved in current experiments [44–47].

Because the optical cavity decay rate κ � g, the cavity
field is adiabatically eliminated, resulting in a direct inter-
action between the mechanical mode and the propagating
squeezed vacuum field in a waveguide, as described by the
input-output relation cout = cin + √

2κc [48,49]. This interac-
tion gives rise to an effective decay rate of the mechanical
mode G = g2/κ + γ , simultaneously, to the propagating pulse
(g2/κ) and the environment (γ ), as shown in Fig. 1(a). There-
fore, the quantum coherence feature of the mechanical mode
can be protected by pumping the squeezed vacuum with a
short duration,

τ � 1

2G
(R = e−2Gτ > e−1), (2)

where R is the reflectivity of the effective beam splitter that
plays the same role of the duration τ (see Supplemental Ma-
terial [43]). In this fast entanglement preparation regime, the
remote generation of mechanical NGSs is insensitive to the
decoherence of the mechanical mode, which we will show in
the following.

Squeezing-induced entanglement and EPR steering. Along
the squeezed vacuum propagates through and interacts with
the mechanical resonator, the excepted nonlocal correlations
between the cavity output mode (C) and the mechanical (M)
mode can deterministically produce. We assume the quadra-
ture XCin of the input pulse is squeezed with a strength
Sin, where the quadratures are Xa = (a + a†)/

√
2, Pa = (a −

a†)/i
√

2, and a is a generic bosonic annihilation operator.
The entanglement can be qualified by the logarithmic negativ-
ity EN [50] and the Einstein-Podolsky-Rosen (EPR) steering
from the mechanical mode to the cavity output mode, GM→C

[51] (see the Supplemental Material [43]). The EPR steering is
a quantum phenomenon that one party can remotely influence
the wave function of the other distant party by performing
suitable measurements [52]. Note that the EPR steering is
a necessary resource for the remote generation of Wigner
negativity in the mechanical mode via the photon subtraction
[53,54].

In Fig. 2(a), we illustrate the quantum correlations as
functions of the reflectivity R with different squeezing lev-
els, where the photon-phonon entanglement can effectively
produce with low cooperativity (Com = 0.8). For a good ini-
tialization of the mechanical mode with negligible thermal
occupation, arbitrary Sin �= 0 dB (x → 10 log10 x dB) is fea-
sible for preparing effective entanglement. For example, we
choose Sin = − 6 dB in the following discussions for gen-
erating high-fidelity mechanical NGSs. In experiments, the
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FIG. 2. (a) The logarithmic negativity EN (solid line) and EPR steering GM→C (dashed line) vs the reflectivity R = e−2Gτ . The red (blue)
line corresponds to −6 dB (−3 dB) of the input squeezing. (b) The required gains gA of the amplifier for preparing a high-fidelity PM -direction
cat state (gp), Fock state (gF ), and XM -direction cat state (gx) vs the reflectivity R = e−2Gτ . (c)–(j) The resulting states by choosing the gains
of the amplifier from gA = 0 to gA = gx with R = 0.9 and R = 0.5, respectively. Here, a two-photon subtraction is adopted, and the effective
mechanical decay rate G = g2/κ + γ = 2.9 MHz with COM = 0.8.

squeezing strength Sin ≈ −15 dB for optical modes has been
achieved [55].

Remote state generation and manipulation. After perform-
ing an EPS and a further projective measurement on the
entangled optical mode, as shown in Fig. 1(a), the mechanical
mode will immediately collapse to an NGS, ρM . For inves-
tigating the precise relations between the resulting state ρM

and the EPS, we describe the n-photon EPS as a combined
operator, E(gA, n) := cnU (gA). Here the phase of the ampli-
fier U matches the input squeezing, which offers a direct
amplification for XC with gain gA, and n is the subtracted
photon number from the optical mode. With the outcome
XC = 0, the relation between ρM and the entangled state ρout

is ρM = 〈E(gA, n)ρoutE†(gA, n)〉XC=0. Ideally, with γ = 0, we
can analytically derive the wave function ψ (XM ) of ρM in the
representation of XM , as

ψ (XM ) ∝ φn,ξ (XM ) exp

(
− X 2

M

2σ−1
11

)
, (3)

φn,ξ (XM ) ∝ σ n
13�

[n/2]
k=0

(−1)kn!2n−2k

k!(n − 2k)!

⎛
⎜⎝ XM√

2σ−1
11

⎞
⎟⎠

n−2k

ξ k. (4)

Here the non-Gaussian features of ψ (XM ) are exhibited by
φn,ξ (XM ), which relates to the nth-order Hermite polynomial

φn,ξ (XM ) ∝ Hn(XM/

√
2ξσ−1

11 ) when ξ �= 0. Surprisingly, we
find that ξ intimately relates to the non-Gaussianity of ρM and
can be remotely controlled by the applied amplifier simulta-
neously, i.e., ξ = (σ33 − gA)/(σ 2

13σ
−1
11 ), where σ = 1/2V −1,

V is the covariance matrix of the entangled state ρout, and σi j

is the matrix element of σ (see Supplemental Material [43]).
From Eqs. (3) and (4), we find the following: (i) when ξ =

0 or ξ = 1, ψ (XM ) corresponds to a near-perfect squeezed CS
∼ŜNn(|α〉 + (−1)n| − α〉), with a coherent amplitude α =√

nei π
2 ξ squeezed by s = σ−e−iπξ

11 /2 and a high-fidelity F ≈
1 − 0.03/n (i.e., the overlap between actual and target states,
defined as F = 〈ψt |ρM |ψt 〉) [16]; (ii) when ξ = 0.5, a me-
chanical Fock state Ŝ|n〉 squeezed by s = σ−1

11 can be strictly

generated. Here, Ŝ is a formalistic squeezing operator, Nn is
the normalization coefficient, and σ11 ≈ R + T S−1

in indicates
the mechanical squeezing effect coherently transferred from
the optical squeezing, which increases with the duration τ (see
Supplemental Material [43]). This precise mapping allows the
faithful preparation of two typical mechanical NGSs, i.e., the
CS and Fock state, by simply adjusting the gain gA of the
amplifier. The required gain can be inversely solved by

gA = σ33 − ξσ 2
13σ

−1
11 . (5)

To be more intuitive, we rewrite the state preparation
conditions ξ = (1, 1/2, 0) into the gain domain as gA =
(gp, gF , gx ), and plot the curves of gp, gF , and gx versus
effective reflectivity R in Fig. 2(b).

By using the above precise mapping in a concrete example,
we illustrate the Wigner functions of the resulting mechan-
ical NGSs caused by a two-photon EPS [43], as shown in
Figs. 2(c)–2(j). Figures 2(c)–2(f) are the resulting mechanical
states generated with R = 0.9 (τ ≈ 3 ns). Instead of directly
performing photon subtraction [Fig. 2(c)], a prior amplifier
allows one to selectively obtain the PM-direction squeezed
CS [Fig. 2(d)], the two-phonon state [Fig. 2(e)], and the XM-
direction squeezed CS [Fig. 2(f)] with fidelity F > 0.98, by
choosing the corresponding gains gA that are shown in the
inset of Fig. 2(b). Furthermore, we show the resulting states
generated with R = 0.5 (τ ≈ 19 ns) in Figs. 2(g)–2(j), where
the EPR steering reaches its maximal value. It shows that a
longer duration will lead to an increased squeezing and deco-
herence effect of our desired mechanical NGSs. Here, the two
more-separated “cats” [Fig. 2(h)] on PM and the two closer
“cats” [Fig. 2(j)] on XM are obtained with fidelity F > 0.88.

Feasibility and imperfections. In experiments, the amplifier
U can be implemented by a cavity (with frequency at ωc) that
contains a χ (2) gain medium [56], as shown in Fig. 1(a). By
pumping the gain medium with driving frequency ωd = 2ωc,
amplitude � and phase �d . The Hamiltonian of the cavity
is HA = iχ (2)�(a2ei�d − a†2

e−i�d ) in a frame rotating with
ωc. The phase �d = ωcl/c is used to match the phase of the
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propagated optical field. From the input-output theory, the
amplitude quadrature XC of the optical field passing through
the cavity will obtain a gain,

gA = (1 + χ (2)�/κA)2/(1 − χ (2)�/κA)2, (6)

where κA is the decay rate of the cavity mode, and the gain gA

can be modulated via the external driving for a desired ξ that
determines the mechanical NGSs. However, the noise of the
practical amplification process and the photon loss during the
optical pulse transits to the amplifier both lead to a reduction
of the photon-phonon entanglement. Here we quantify these
two imperfections by optical transmission efficiency η and
amplification noise nA that describes an incoherent squeezing
s = (1 + nA)/gA of phase quadrature PC when the amplitude
quadrature XC obtains a gain gA.

In addition, the usual photon subtraction event is imple-
mented by a beam splitter with high transmittance which
has a low probability of success [13,17–19]. To address this
issue, we introduce the deterministic photon subtraction im-
plemented using the Rydberg-blockade effect [39], and the
corresponding experiment of three-photon subtraction has re-
cently been achieved by cascaded cold atomic ensembles [41].
The dark counts of the photon subtraction are considered here,
which leads to a negligible imperfection.

Finally, an imperfect homodyne detection with an effi-
ciency μ is considered. By taking into account all of the
above imperfections for the generation of mechanical NGSs
with two-photon EPS, we analytically obtain the final Wigner
function of the mechanical state,

WρM ≈ N exp
( − aX 2

M − bP2
M

)
× [(2F+ − 2e − 2 f )2 − 4(e − f )F− − λ], (7)

where F± = (cXM )2 ± (dPM )2 and λ = e2 + f 2 + 6e f . The
Wigner function is described by the six parameters a − f that
relate to the total optical detection efficiency � = μ + η and
the amplification noise nA, and their analytical expressions can
be found in the Supplemental Material [43].

In order to demonstrate the performance of the protocol
with the finite cooperativity and the above imperfections, we
numerically evaluate the values of the quality of two resulting
NGSs versus the reciprocal of the optomechanical cooper-
ativity C−1

OM = γ κ/g2 in Figs. 3(a) and 3(b), with a fixed
reflectivity R = 0.5. Additionally, the impacts of the total
optical detection efficiency � and the amplification noise nA

on the quality are illustrated in Figs. 3(c) and 3(d). The quality
of the resulting states is qualified by the following: the fidelity
F , the size of mechanical CSs |α|2, and the Wigner negativity
δ that is defined as [37]

δ =
∫∫ ∞

−∞
[|W (XM, PM )| − W (XM, PM )]dXMdPM . (8)

Here a larger value of δ and |α|2 indicate a better quantum
feature and more distant two coherent states, respectively, and
δ = 0 means that the nonclassicality has vanished.

This result shows that our protocol is surprisingly robust to
mechanical decay. Note that since a larger mechanical decay
corresponds to a shorter interaction duration τ for a fixed
reflectivity R, this can reduce mechanical decoherence but
also decrease the size of the CSs. In addition, the quality
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COM = 0.8. (c),(d) The two resulting NGSs’ qualities vs the total op-
tical detection efficiency � = η + μ. Solid (dashed) lines correspond
to the amplification noise nA = 0 (nA = 0.1), and |α|2 is the size of
the resulting CSs.

of the resulting states, not surprisingly, decreases with the
increase of various imperfections. However, the quality of the
resulting states can be further improved by decreasing the
propagation distance of the cavity output light and the input
squeezing level. Furthermore, the impact of imperfection in
the homodyne is minor here since the homodyne detection
efficiency for the optical field is usually close to unit, and
we find that high-fidelity CSs can be well prepared with an
arbitrary outcome, once the direction of the measurement is
fixed to XC (see Supplemental Material [43]).

Extension and discussion. This protocol can also be ex-
tended to rapidly prepare a four-component CS, which is
widely used as cat codes in quantum error correction, by
simply performing the two-photon EPS twice on the optical
mode (C), as shown in Fig. 4(a). This construction allows
the resulting mechanical NGSs to be manipulated by both
U (gA1) and U (gA2). With the conditions ξ1 = 1 and ξ2 = −2,
or ξ1 = 0 and ξ2 = 3, the mechanical mode will collapse into
a four-component state, �4

n=1|1.6ei(2n−1)π/4〉, after the projec-
tive measurement, as shown in Fig. 4(b) (see Supplemental
Material [43]). The fidelity of this state reaches a value of
∼0.98, which far exceeds the corresponding fidelity in the
achieved experiments [6]. This extension implies that the
process of EPS can be repeated and designed for preparing
advanced NGSs, which provides an attractive strategy for
implementing complex operations on NGSs.

Since the squeezing technology, photon subtraction, and
homodyne measurement employed here are well developed in
various quantum systems, the current protocol is also promis-
ing to be promoted to other physical platforms, including
superconducting circuits [57–60], spin ensembles [61,62],
etc. For example, in superconducting systems working in the
microwave domain, field squeezing (the strength can reach
∼ − 10 dB) [63], single-photon subtraction, and microwave
homodyne measurement (with efficiency ∼0.5) have been
achieved [64,65]. Note that in addition to optical systems,
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FIG. 4. (a) Sketch for preparing a four-component CS at the
mechanical mode. (b) The resulting state with a high fidelity, ∼0.98,
where the four cats locate at the positions with α = 1.6einπ/4, n =
1, 3, 5, 7. P(XM ) is the probability distribution of the quadrature XM .
Here, Sin = −6 dB, R = 0.9, and Com = 0.8.

superconducting circuits require a low environment temper-
ature to get a negligible thermal occupation.

Conclusion. We have shown how mechanical non-
Gaussian states can be faithfully generated and manipulated
in weak-coupled cavity optomechanical systems (Com =
g2/κγ < 1). The key ingredient is to use a squeezed pulse
with a short duration to rapidly generate the EPR steering
and an additional amplifier on the entangled optical mode

to remotely control the mechanical states. Our protocol is
robust to the mechanical dissipation and promises to deter-
ministically generate mechanical cat states with the photon
subtraction implemented by Rydberg atomic ensembles. With
the parameters in state-of-the-art experiments, we simulated
the preparation of various large-size mechanical non-Gaussian
states, all of which maintain a high fidelity. Furthermore, the
successful preparation of the four-component cat state con-
vinces us that the cascaded construct of multiple EPSs may
be used to generate high-quality advanced NGSs. Such capa-
bilities can be promoted to various quantum systems and may
have a wide-ranging impact on future quantum information
processing strategies.
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