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Critical gradient turbulence optimization toward a compact stellarator reactor concept
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Integrating turbulence into stellarator optimization is achieved by targeting the onset for the ion-temperature-
gradient mode, highlighting effects of field line curvature, parallel connection length, local magnetic shear,
and flux surface expansion. The result is two compact quasihelically symmetric stellarator configurations,
one of which admits a set of modular coils, with significantly reduced turbulent heat fluxes compared to a
known stellarator. This new configuration combines low values of neoclassical transport, good alpha particle
confinement, and Mercier stability at a plasma beta of almost 2%.
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Introduction. A primary obstacle for the success of
magnetic confinement fusion is the transport caused by in-
stabilities such as the ion temperature gradient (ITG) mode,
which is thought to significantly reduce plasma confinement
in experiments such as the Wendelstein 7-X stellarator [1–3].
To overcome the losses from such turbulence, a given configu-
ration can be scaled up in size and heating power. A less costly
alternative, currently explored, is to shape the magnetic field
to alleviate the turbulence. This option could be particularly
appealing for reactor scenarios, in which it will likely be
difficult to achieve density gradient stabilization of turbulence
via pellet injections [4,5], since the penetration distance of
pellets may be limited in comparison to the minor radius of
a reactor.

To achieve turbulence optimization via shaping, several
strategies have been developed to reduce the rate that turbu-
lent transport increases (“stiffness”) as a function of the ion
temperature gradient [6–10]. Another approach is to target
the onset (“critical”) gradient of significant turbulent trans-
port [11–13], which relies primarily on linear physics of ITG
modes themselves [14–17] and avoids the hard problem of
solving turbulence in the full range of toroidal geometries.
Here we demonstrate optimization using a critical gradient
(CG) approach, which even leads to reduced stiffness of ITG
turbulence in the nonlinear regime [12], albeit with some
implied trade-offs for integrated stellarator optimization.

In this Letter, we first show CG optimization targeting the
absolute threshold for ITG modes, producing the largest crit-
ical gradient of all stellarators known to us, while sacrificing
magnetohydrodynamic (MHD) stability. We then show that
without compromising MHD stability, or other key properties
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needed by a stellarator design, one may target the CG of only
the toroidal branch of the ITG mode, based on the assumption
that turbulence intensity will be small below this threshold.
This model highlights the familiar stabilizing effects of local
shear, but gives greater emphasis to short connection lengths
between regions of “good” and “bad” magnetic curvature. The
resulting objective function is used via optimization to pro-
duce a quasihelically symmetric configuration with strongly
reduced ITG turbulence compared to a known stellarator
experiment (HSX) [18], in addition to acceptable levels of
neoclassical losses, alpha particle confinement, coil complex-
ity, and MHD stability, thus completing the picture for an
initial stellarator concept with improved ion confinement.

Definitions. Following [19], we use the standard gy-
rokinetic system of equations [20] to describe electrostatic
fluctuations destabilized along a thin flux tube tracing a mag-
netic field line. The ballooning transform [21,22] is used to
separate out the fast perpendicular (to the magnetic field)
scale from the slow parallel scale. The magnetic field rep-
resentation in field following (Clebsch) representation reads
B = ∇ψ × ∇α, where ψ is a flux surface label and α labels
the magnetic field line on the surface. The perpendicular wave
vector is then expressed as k⊥ = kα∇α + kψ∇ψ , where kα

and kψ are constants, so the variation of k⊥(�) stems from
that of the geometric quantities ∇α and ∇ψ , with � the field-
line-following (arc length) coordinate.

We assume Boltzmann-distributed (adiabatic) electrons,
thus solving for the perturbed ion distribution gi(v‖, v⊥, �, t ),
defined to be the nonadiabatic part of δ fi (δ fi = fi − fi0) with
fi the ion distribution function and fi0 a Maxwellian. The
electrostatic potential is φ(�), and v‖ and v⊥ are the particle
velocities parallel and perpendicular to the magnetic field,
respectively. The gyrokinetic equation reads

iv‖
∂g

∂�
+ (ω − ω̃d )g = ϕJ0(ω − ω̃∗T ) f0, (1)

where ω is the mode frequency, ω̃∗T = (T kα/q)d
ln T/dψ (v2/vT

2 − 3/2) is the diamagnetic frequency, and
J0 = J0(k⊥(�)v⊥/
(�)) is the Bessel function of zeroth
order. The thermal velocity is vT = √

2T/m, the thermal
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ion Larmor radius is ρ = vT/(

√

2), n and T are the
background ion density and temperature, q is the ion charge,
ϕ = qφ/T is the normalized electrostatic potential, and

 = qB/m is the cyclotron frequency, with B = |B|. The
magnetic drift frequency in the low β approximation is
ω̃d = (1/
)(k⊥ · b × κ)(v2

‖ + v2
⊥/2) = ωd (�)(v2

‖ + v2
⊥/2),

with κ = b · ∇ b and b = B/B. For simplicity in this
analysis, we set kψ = 0. We rewrite the drift frequency as
ωd (�) ∝ Kd (�) ≡ a2∇α · b × κ, referring to Kd (�) as the
“drift curvature” and to individual regions of bad curvature
along the field line (where Kd > 0) as “drift wells.” We
define a radial coordinate r = a

√
ψ/ψedge, with a the minor

radius corresponding to the flux surface at the edge, and
ψedge the toroidal flux at that location. The temperature
gradient scale length is measured relative to the minor
radius, a/LT = −(a/T )dT/dr. To study the most unstable
ITG mode conditions, we have neglected certain stabilizing
factors such as the density gradient [23,24] and plasma beta
(electromagnetic effects) [25].

Finally, the gyrokinetic system is completed by quasineu-
trality, ∫

d3v J0g = n(1 + τ )ϕ, (2)

with τ = |qe|T/(qTe), Te the electron temperature, and qe the
electron charge.

Thresholds for ITG modes. As argued in [12], the CG can
be estimated by using the model

a

LT,crit,abs
= 2.66

(
a

Reff
+ 8.00

a

L‖Floquet

)
, (3)

where Reff is the local effective radius of curvature determined
by the profile of Kd (�) and the effective parallel connection
length for modes near the absolute threshold, L‖Floquet [see
discussion above Eq. (4) in [12]], is determined by the rela-
tive size of good curvature outside the drift well, which may
stabilize extended Floquet-like modes. The effect we seek to
enhance is contained in the first term proportional to a/Reff

and thus to the size of “bad” curvature on the outboard mid-
plane.

It is expected, however [13,26,27], that the onset of toroidal
ITG modes, as can be inferred from linear spectra in gyroki-
netic simulations [17], should lead to noticeable increases in
nonlinear heat fluxes at a second, larger CG. The turbulence
found below this onset (in the Floquet-like or slablike regime)
is thought to be more benign. We therefore also focus on
the toroidal ITG mode [14,17,19,28] with strongly peaked
eigenmode structure that decays within a single drift well. In
the local (in �) theory of toroidal ITG modes [14,15,19], the
CG is set by the drive parameter κd = Reff/LT . This threshold
can be computed for general parameter b = k⊥2ρ2 by solving
the local dispersion relation

0 = 2 − 2√
π

∫ ∞

0
dx⊥ x⊥

∫ ∞

−∞
dx‖

[
ω − ω̃∗
ω − ω̃d

]
J2

0 exp(−x2),

(4)
which upon substitution of Kd = a/Reff yields Reff/LT,crit =
F (b), where F (b) can be obtained numerically and is fairly

well approximated by

F (b) = 2.84 + 4.926 b, b < 0.755,

0.0371 + 7.51
√

b, b � 0.755. (5)

In realistic geometry, the threshold is controlled by the extent
of drift wells, i.e., the parallel connection length L‖, but this
can be related to finite Larmor radius (FLR) stabilization as
follows: note that a toroidal mode must have a drift frequency
ωd ∝ kα that exceeds the parallel transit rate k‖vT ∼ πvT /L‖.
Although this can always be satisfied by choice of kα , the
increase of kα comes at the cost of increasing b as L‖ is
reduced. Thus, to estimate the critical gradient, we simply
determine the minimum value of b for which the resonance
condition is satisfied, namely that for which ωd ∼ πvT /L‖,
yielding bmin = (πa|∇α|Reff/L‖)2, and

a

LT,crit
= a

Reff
F ((πa|∇α|Reff/L‖)2), (6)

with F (b) defined as above. Reff is determined by the peak of
a quadratic fit to Kd and L‖ by the distance between points
where the sign of Kd reverses [12] within a drift well of “bad”
curvature, while a|∇α| is evaluated at the center of the fitted
drift well, effectively approximating it as a constant. In the
small-b limit, F (b) is dominated by the constant term 2.84,
close to the value of 2.66 in Eq. (3), and as found in other
works [12,14,29] for the case τ = 1. In the large b limit,
we find, ignoring the small constant 
0.04, that the formula
effectively predicts a/LT,crit ∼ a2|∇α|/L‖. Perhaps unsurpris-
ingly, then, the threshold for toroidal modes in this regime
is dominated by both the gradient of the binormal coordinate
(linked to expansion of surfaces as well as local magnetic
shear [30]) and the parallel connection length, which can be
reduced by simply increasing the number of field periods in a
configuration. Indeed, an experimental realization of this strat-
egy can already be seen in the 10 field-period LHD heliotron,
whose favorable ITG turbulence properties relative to W7-X
have been demonstrated [31]. More generally, Eqs. (3) and (6)
can now be used to rapidly estimate the absolute and toroidal
ITG thresholds on a given magnetic field line.

Optimization results. We use the SIMSOPT software
framework [32] to generate two QHS vacuum stellara-
tor configurations. Each stellarator magnetic field is de-
scribed by a boundary surface given in the Fourier repre-
sentation R(ϑ, φ) = ∑

m,n Rm,n cos(mϑ − n f pnφ), Z (ϑ, φ) =∑
m,n Zm,n sin(mϑ − n f pnφ). Optimization proceeds by treat-

ing the above-mentioned Fourier coefficients as parameters
and varying them in a series of steps in order to find a least-
squares minimization of the specified objective function f ,
increasing the number of boundary surface modes with each
step. Both optimizations used the “warm start” configuration
from SIMSOPT with approximate QHS and n f p = 4. Global
zero-β equilibria are constructed at each iteration by running
the VMEC [33] code, which solves the MHD equations using
an energy-minimizing principle, setting the angular resolution
to be Mpol = Ntor = 7.

For the first result, which we call “HSK,” f = fQS +
(A − 4.10)2 + fabs, where fQS is the quasisymmetry resid-
ual defined in [34] for QHS with n f p = 4 at the surfaces
(r/a)2 = [0.1, 0.2, 0.3, 0.4, 0.5], fabs = (a/LT,crit,abs − 2.00)2
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FIG. 1. Above: the boundary surface of HSK showing the con-
tours of B, with one-half of a field period removed. Below: Fig. 1 of
Roberg-Clark, Xanthopoulos, and Plunk [30] plotting critical gradi-
ents found with GENE versus the model equation (3), with the point
for HSK added.

is the critical gradient evaluated at the flux tube [(r/a)2 =
0.5, α = 0], and fA = (A − 4.10)2 is the aspect ratio target
with A = R/a the aspect ratio output by VMEC. The boundary
modes varied for the three optimization steps went up to
mpol = ntor = [3, 5, 6]. Linear flux tube gyrokinetic simula-
tions with GENE [35] reveal that HSK has the largest critical
gradient of any stellarator that we know of, a/LT,crit,abs = 1.75
(Fig. 1), as well as relatively low nonlinear ion heat fluxes
above that threshold. Further details of HSK and the nonlinear
simulations are presented in [30]. The caveat is that the large
“bad” curvature of destabilizing sign for HSK (a small Reff

linked to enhancement of |∇α|) produces a vacuum magnetic
hill, rendering it Mercier unstable [36,37] at all values of β

tested.
In the second optimization we choose n f p = 6 and target

the toroidal ITG threshold in the hopes of reducing turbulent
transport while preserving MHD stability. The objective func-
tion is

f = fQS + fA + fcrit + fwell + fι, (7)

where fA = [�(A − 7.50)]2 is the aspect ratio penalty, �(x)
is defined to be xH (x) with H (x) the Heaviside step function,
fQS is again the quasisymmetry residual but with n f p = 6,
and fcrit = ∑

α j
{�[3.00 − a/LT,crit(α j )]}2 [Eq. (6)] is taken at

the surface r/a = 0.5 and summed over the field lines α =
[0, π/8, π/4], with each field line extending for eight poloidal
turns, in order to sample the surface. The vacuum mag-
netic well penalty is fwell = ∑

rk
{�[1 + V ′′(rk )/0.001]}2 with

the surfaces (r/a)2 = [0, 0.1, . . . , 0.9] targeted and V ′′(r)
the second derivative of the flux surface volume with ra-

FIG. 2. Boundary surface of QSTK (one field period removed),
showing contours of B in color. Inset: cuts at constant toroidal angle
of the boundary surface in the cylindrical (R, Z) plane.

dius. We calculate the residual fQS on the surfaces (r/a)2 =
[0.1, 0.2, . . . , 0.9] and target the axis and boundary iota via
fι = [ι(r = 0) − 1.6]2 + [ι(r = a) − 1.7]2, with ι the rota-
tional transform. The “warm start” file was first optimized for
increased |∇α| on the outboard side (see, e.g., Refs. [30,38])
and increasing nfp to 6. The final optimization proceeded in
two steps, with the boundary Fourier coefficients varied up to
mpol = ntor = [3, 4].

The boundary surface for “QSTK” (Quasi-Symmetric Tur-
bulence Konzept) is shown in Fig. 2. QSTK has an aspect

FIG. 3. Properties of QSTK with no coils, in vacuum (solid
curves) and at β = 1.61% with bootstrap current included (dashed).
(a) Rotational transform profile. (b) Neoclassical transport coefficient
εeff as a function of radius. (c) Collisionless alpha particle losses at
r/a = 0.50.
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FIG. 4. Full-surface nonlinear gyrokinetic simulations of ITG
turbulence comparing HSX to QSTK. (a) Log plot of ion heat
flux multiplied by the respective aspect ratio of each configuration.
(b) ITG density fluctuations ñ/n0 in one field period of HSX with
a/LT = 2, plotted in Boozer toroidal (φ) versus poloidal (θ ) angles.
(c) Same as in (b) but for QSTK.

ratio of 7.5, a volume-averaged magnetic well (0.7%), large
rotational transform >1.6, a neoclassical transport coefficient
εeff < 1% [39] up to roughly half radius, unusually expanded
flux surfaces, and (
5%) alpha particle losses for particles
initialized at (r/a) = 0.50 when QSTK is rescaled to an
ARIES-CS-equivalent [40] minor radius and volume aver-
aged magnetic field strength, using the NEAT code [41,42]
[Fig. 3(c)]. Increased neoclassical transport at the edge [reach-
ing εeff = 4.5%, Fig. 3(b)] may in fact be beneficial, as it
can prevent a particle transport barrier from forming, which
might otherwise hinder plasma refueling in an experimental
scenario [43]. All flux tubes evaluated for QSTK, using the
model equation (6), are predicted to have a/LT,crit � 3.0.

ITG turbulence. To evaluate the performance of QSTK in
vacuum with regard to ITG turbulence we run full-surface
nonlinear electrostatic gyrokinetic simulations using the GENE

code [35,44] in comparison with the HSX stellarator. We
assume adiabatic electrons, zero density gradient, Te = T ,
and temperature gradients a/LT = [1.5, 2.0, 2.5, 3.0] at half
radius. In Figs. 4(a) and 4(b) we plot the ion heat fluxes in
gyro-Bohm units times A for each configuration to adjust for
the dependence of energy confinement time on aspect ratio
implied by the gyro-Bohm scaling of heat fluxes (a factor of
4/3 in favor of QSTK). We find that the adjusted heat flux is

FIG. 5. Bootstrap current and MHD stability of QSTK with an
applied pressure profile (see text) at volume-averaged β = 1.65%.
The dashed curves correspond to the case without bootstrap current
and the solid curves to the case with current. (a) Enclosed toroidal
bootstrap current. (b) Rotational transform profile. (c) Mercier sta-
bility criterion with a dotted line at DM = 0.

significantly reduced (by a factor of 2–5) in QSTK compared
to HSX for the range of gradients studied, demonstrating the
success of the optimization strategy. The density fluctuations
in QSTK [Fig. 4(d)] are relatively weak and also less local-
ized on the surface, compared to HSX (and most optimized
stellarators, e.g., W7-X [5,45]), where such fluctuations lie
within a strip near the outboard midplane [Fig. 4(c)], owing
to the more pronounced “bean-shaped” plane. In contrast, the
optimization for QSTK has altered the bean-shaped plane,
expanding the surfaces in regions of bad curvature where the
toroidal ITG mode resides. We also find L‖ 
 6a in QSTK
versus 12a in HSX, suggesting the shortened parallel con-
nection length plays a significant role in the increased value
of bmin,QSTK ∼ 9bmin,HSX predicted for QSTK by the model
[Eq. (6)].

MHD stability and coils. The QSTK configuration, as a
result of the fwell objective in the optimization [Eq. (7)],
possesses a vacuum magnetic well and satisfies V ′′ < 0
at all radial locations. An artificial, nearly linear (in r2)
pressure profile T = Te = 1 keV × [1 − (r/a)2], ni = ne =
4.4 × 1020 m−3 × [1 − (r/a)10], corresponding to a volume-
averaged β = 1.65% (with volume-averaged B 
 1 T), is
applied to the configuration. The resulting bootstrap current
profile calculated with DKES [46–48] amounts to an inte-
grated current of roughly 72 kA [Fig. 5(a)]. Both the vacuum
and bootstrap configurations produce rotational transform
profiles that avoid crossing the resonance m/n = 6/4 = 3/2
[Figs. 3(a) and 5(b)]. The method of [49], which relies on
the isomorphism between quasisymmetry and axisymmetry,
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FIG. 6. Boundary surface of QSTK (part of one field period
removed) surrounded by electromagnetic coils.

was found to produce a similar bootstrap current profile for
QSTK, although the results were not in as good agreement as
in cases with “precise” quasisymmetry [34]. Alpha losses are
slightly reduced to roughly 4% at half radius for the case with
bootstrap current [Fig. 3(c)]. Evaluations [50] of the Mercier
criterion indicate that, for the configuration with pressure and
bootstrap current included, the Mercier criterion is satisfied
[Fig. 5(b)] and the bootstrap current produces a stabilizing
up-shift in DM [51]. Certain radii become Mercier unstable for
larger values of β. We also apply the coil optimization features
of SIMSOPT to produce the magnetic field of QSTK, finding
that the relative maximum field error can be reduced to 5.1%
and the relative mean error to 1.1% with four unique coils (48
coils in total) while penalizing coil length. (See Fig. 6.) The
initial coil and MHD studies show that QSTK has potential
for finite-β (reactor-relevant) operation scenarios.

Discussion and conclusions. Other microturbulence, such
as trapped electron modes and electron temperature gradient
(ETG) turbulence, remain to be studied in QSTK. ETG turbu-
lence is likely to benefit from the ITG optimization for QSTK
both linearly (from the isomorphism with ITG modes [14])
and nonlinearly (from the short connection length [52]) with
regard to ETG losses. At high β values, turbulence is expected
to transition from ITG to kinetic ballooning mode turbulence
[25,53]. This physics is delegated to a separate publication, in
the framework of a QSTK reactor study. Despite these open
challenges, the present work demonstrates the possibility of
modifying the current design of magnetic flux surfaces toward
a drastic suppression of turbulence in the parameter range
usually encountered in modern stellarator experiments. Our
method integrates salient physics properties, such as good
MHD stability and particle confinement, low neoclassical
transport, and bootstrap current, together with the feasibility
of modular coils. The QSTK configuration introduced here is
thus a contender for a future compact fusion reactor based on
the stellarator concept.
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