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Measuring the adiabatic non-Hermitian Berry phase in feedback-coupled oscillators
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The geometrical Berry phase is key to understanding the behavior of quantum states under cyclic adiabatic
evolution. When generalized to non-Hermitian systems with gain and loss, the Berry phase can become complex
and should modify not only the phase but also the amplitude of the state. Here, we perform the first experimental
measurements of the adiabatic non-Hermitian Berry phase, exploring a minimal two-site PT -symmetric Hamil-
tonian that is inspired by the Hatano-Nelson model. We realize this non-Hermitian model experimentally by
mapping its dynamics to that of a pair of classical oscillators coupled by real-time measurement-based feedback.
As we verify experimentally, the adiabatic non-Hermitian Berry phase is a purely geometrical effect that leads
to significant amplification and damping of the amplitude also for noncyclical paths within the parameter space
even when all eigenenergies are real. We further observe a non-Hermitian analog of the Aharonov-Bohm solenoid
effect, observing amplification and attenuation when encircling a region of broken PT symmetry that serves as
a source of imaginary flux. This experiment demonstrates the importance of geometrical effects that are unique
to non-Hermitian systems and paves the way towards further studies of non-Hermitian and topological physics
in synthetic metamaterials.
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Introduction. Geometrical phases play a fundamental role
across physics as they emerge from the cyclic adiabatic evo-
lution of a system, and depend only on certain intrinsic
geometrical properties within a given parameter space. In
quantum mechanics, a key example of this is the Berry phase
[1], which can be related, not only to the quantum geometry
of eigenstates but also to important topological invariants,
such as the Chern number and winding number [2,3]. Exper-
imentally, the Berry phase has profound effects on material
and transport properties, and it underlies Hall effects, polar-
ization, charge pumping, semiclassical dynamics, and many
other phenomena [2].

Following its discovery, the Berry phase was generalized
to systems with dissipation or gain, in which the Hamiltonian
becomes non-Hermitian [4–11]. Interest in such problems
has continued to grow, inspired by developments in
non-Hermitian experimental platforms, including in
photonics [12,13], mechanics [14–20], electric circuits
[21,22], and cold atoms [23,24] amongst many others
[25–27]. This progress has also been driven by interest in
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topological systems, in which non-Hermiticity leads to
new topological classifications and unusual boundary
phenomena [25,27].

Underlying these effects are fundamental differences
between Hermitian and non-Hermitian Hamiltonians; this in-
cludes that eigenstates can coalesce and become defective
at exceptional points, that the left and right eigenfunctions
will typically be different from each other, and that the
eigenenergies can become complex [13,26]. One important
consequence of these differences is that the Berry phase will,
in general, become complex- instead of real-valued, implying
that the amplitude as well as the phase of a state will vary
under adiabatic dynamical evolution [4–7,28–31].

In this paper, we measure the adiabatic non-Hermitian
Berry phase, demonstrating how non-Hermiticity leads to
gauge-invariant geometrical effects even for noncyclical paths
in parameter space. This goes beyond previous experiments
which observed the real part of a Berry phase for closed loops
around non-Hermitian exceptional points [32–34]; in those
cases, the Berry phase was parametric rather than adiabatic
as adiabaticity inevitably breaks down when an exceptional
point is dynamically encircled [35–37] and geometrical prop-
erties have therefore to be reconstructed from eigenmode
measurements. In contrast, here we study a two-site PT -
symmetric system, in a regime for which the eigenenergies
are real and adiabatic evolution is possible. To realize our
model, we employ a mapping between quantum evolution
and the classical dynamics of a pair of oscillators coupled
with real-time measurement-based feedback [20]. We evolve
our system adiabatically and experimentally demonstrate that
the imaginary part of the Berry phase leads to significant
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FIG. 1. Exploration of the non-Hermitian Berry phase in the two-site Hatano-Nelson model. (a) In non-Hermitian systems with PT
symmetry, adiabatic paths in parameter space generically results in amplification or attenuation of the time-dependent population N (t ). This
results directly from the imaginary portion of the adiabatic non-Hermitian Berry phase φ acquired by a state along its trajectory. (b) (Top)
The Hatano-Nelson (HN) dimer, a minimal non-Hermitian lattice model with nonreciprocal left/right hopping rates J ± δJ and an intersite
frequency imbalance 2�. (Bottom) Implementation of the HN dimer in a mechanical system via measurement-and-feedback. Nonreciprocal
coupling between mechanical oscillators, as well as shifts to their resonance frequencies, are realized through applied forces that are responsive
to real-time measurements. (c) PT -symmetry breaking phase diagram of the HN dimer. A conical surface of exceptional points in the J-δJ-�
parameter space separates regions of broken and preserved PT symmetry, respectively lying inside and outside of the conical surface.

geometrical amplification and damping, which is intrinsically
non-Hermitian.

Non-Hermitian Berry phase. Before discussing our exper-
iment, we review the basic theory of non-Hermitian systems
[13,26] to motivate the non-Hermitian Berry phase. Various
related definitions exist for this phase [4–11]; here, we intro-
duce a formalism that is motivated by physical observables to
concisely include all relevant geometrical effects using Berry
connections. This definition has the advantage that its imag-
inary part is manifestly gauge-invariant and is immediately
related to measurements of the population. Detailed deriva-
tions are given in Ref. [38].

We consider a N-component state vector |ψ (t )〉, which
depends on time t and obeys the Schrödinger-type equa-
tion i∂t |ψ (t )〉 = H (λ)|ψ (t )〉, where the family of N-by-N
non-Hermitian matrices H (λ) are parameterized by a set of
real parameters λ = (λ1, λ2, . . . ). For a given value of λ,
H (λ) acts as a non-Hermitian Hamiltonian. It has right and
left eigenvectors, denoted by |Rn(λ)〉 and 〈Ln(λ)| respectively,
which are generally not complex conjugates of each other
[13,26], but which share the same complex eigenvalues εn(λ),
indexed by n = 1, 2, . . . , N . Within the parameter space
spanned by λ, four distinct geometrical Berry connections
can then be defined [30,39]; however, for the non-Hermitian
Berry phase, only the following two Berry connections will be
relevant:

ALR
n, j (λ) ≡ i〈Ln(λ)|∂λ j |Rn(λ)〉/〈Ln(λ)|Rn(λ)〉, (1)

ARR
n, j (λ) ≡ i〈Rn(λ)|∂λ j |Rn(λ)〉/〈Rn(λ)|Rn(λ)〉. (2)

Upon a generalized gauge transformation, which multiplies
|Rn(λ)〉 and |Ln(λ)〉 not just by a phase but also by arbi-
trary and independent nonzero factors, it can be shown that
the following combination of the above Berry connections is

invariant [30]:

δALR−RR
n, j (λ) ≡ ALR

n, j (λ) − ARR
n, j (λ). (3)

It is a distinguishing feature of non-Hermitian systems that
gauge-independent quantities can be constructed just from a
linear combination of Berry connections; in Hermitian quan-
tum mechanics, the different Berry connections coincide and
the gauge-invariant combination δALR−RR

n,i is always zero.
We now consider the adiabatic evolution of a state upon

changing the parameter λ(t ) as a function of time t to extract
the non-Hermitian counterpart of the Berry phase [4–7,28–
31,40]. Here, we focus on the situation where all the eigen-
values are real and nondegenerate so that we can apply the
adiabatic theorem [41,42]. Then if the initial state corresponds
to the nth right eigenstate, the state at time t can be written as

|ψ (t )〉 = c(t )
|Rn(λ(t ))〉√〈Rn(λ(t ))|Rn(λ(t ))〉 , (4)

where c(t ) is a complex-valued adiabatic factor that the state
acquires as λ(t ) is varied. In defining c(t ), we chose to
separate out the denominator, as we are interested in phys-
ical observables such as the population N (t ), which is then
given simply by N (t ) ≡ 〈ψ (t )|ψ (t )〉 = |c(t )|2. We note that
the final result is independent of the way the state |ψ (t )〉
is written as a product of a coefficient c(t ) and a basis
vector, as explained in detail in Ref. [38]. We formally
solve the Schrödinger equation i∂t |ψ (t )〉 = H (λ(t ))|ψ (t )〉 =
εn(λ(t ))|ψ (t )〉 by applying 〈Ln(λ(t ))| from the left, which
yields

c(t ) = c(0) exp

[
−i

∫ t

0
dt ′εn(λ(t ′)) + iφ[C]

]
, (5)

where the first term in the exponent is the dynamical contri-
bution to the adiabatic factor c(t ), whereas the second part is
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the non-Hermitian Berry phase that we define by

φ[C] ≡
∫
C

dλ · (
ALR

n (λ) − iImARR
n (λ)

)
, (6)

where ALR
n (λ) = (ALR

n,1(λ),ALR
n,2(λ), . . . ) and similarly for

ARR
n (λ). The non-Hermitian Berry phase depends on the path

C taken in parameter space and reflects the geometrical struc-
ture of the eigenstates, analogous to the well-known Berry
phase for Hermitian systems [1,2]. However, unlike the Her-
mitian Berry phase, the non-Hermitian Berry phase has both
real and imaginary parts. In particular, the imaginary part

Im(φ[C]) =
∫
C

dλ · ImδALR−RR
n (λ) (7)

depends solely on the imaginary part of δALR−RR
n (λ) =

(δALR−RR
n,1 (λ), δALR−RR

n,2 (λ), . . . ), which is the gauge-invariant
combination of Berry connections introduced in Eq. (3).
Therefore, it is then immediately obvious that the imaginary
part of the non-Hermitian Berry phase is gauge independent
even when the path C is not closed [40]. On the other hand,
the real part of the Berry phase is gauge invariant only when
the path C forms a closed path, just like in the Hermitian case
[2]. When the eigenvalues are all real, the evolution of the
population [as depicted in Fig. 1(a)] is thus determined purely
by the imaginary part of the Berry phase as

N (t ) = |c(t )|2 = N (0) exp [−2Im(φ[C])], (8)

which is directly observable in our experiment.
Experimental setup. To experimentally explore the effects

of non-Hermitian geometry, we implement the simple two-site
model Hamiltonian

H =
( −� J + δJ

J − δJ �

)
, (9)

as depicted in Fig. 1(b). The elements of H have units of fre-
quency, consistent with the aforementioned Schrödinger-type
equation describing the system dynamics. Physically, the real
parameters �, J , and δJ relate to relevant frequency shifts of
(�) and hopping rates between (J ± δJ) the oscillators. This
model is inspired by the Hatano-Nelson model for a 1D lattice
[43], which has nonreciprocal hoppings between neighboring
lattice sites and which can exhibit nontrivial topology and the
non-Hermitian skin effect [27]. The eigenvalues of Eq. (9) are
given by ε± = ±√

�2 + J2 − δJ2, which means that the two
eigenvalues are both real when �2 + J2 > δJ2, corresponding
to the PT -symmetric region. If �2 + J2 = δJ2, the eigen-
values coalesce at an exceptional point; within the parameter
space of (�, J, δJ ), the surface of exceptional points corre-
sponds to a double cone, with its apex at the origin [11], as
shown in Fig. 1(c).

The gauge-invariant combinations of the Berry connec-
tions within the PT -symmetric region [cf. Eq. (3)] are
all purely imaginary, and they diverge as we approach the
PT -symmetry breaking transition, where adiabaticity breaks
down. (Analytical expressions of the Berry connections and
associated Berry curvatures are derived in Ref. [38], and can
be interpreted in terms of a complex hyperbolic pseudomag-
netic monopole in parameter space [11,31].) This in turn
means that the only nonvanishing part of the non-Hermitian

FIG. 2. PT -symmetry breaking phase diagram of the unbiased
(� = 0) Hatano-Nelson dimer. (a) White points mark the experimen-
tally measured exceptional points (EPs). Critical δJ values for these
points are determined by detecting the breakdown of adiabaticity as
the EP is crossed. (b) Experimental energy dynamics of prepared
eigenstates along the ramp of δJ [dashed red line in (a)] for J = 6.0
mHz. The measured energy at site 1 decays (while the site 2 and
total energy grow) until the EP is reached at δJ ∼ J . Here, we plot
the site 1 (E1), site 2 (E2), and total energy (ET ) normalized to their
respective initial values (Ei). (c) Crossing of the EP is marked by the
onset of growth of the otherwise decaying site 1. The red dashed line
is an empirical fit to the data, with the fit minimum defining δJcrit.
Here, we plot the energy in oscillator 1 normalized to its initial value
(E1/E1,i).

Berry phase [Eq. (6)] is purely imaginary and therefore gauge-
invariant for any path.

To explore the two-site Hatano-Nelson model, we con-
struct a synthetic mechanical lattice consisting of two classical
oscillators artificially coupled by real-time feedback measure-
ments, based on our approach reported in Ref. [20]. The essen-
tial idea of this scheme is to map the Heisenberg equations of
motion for a desired tight-binding quantum Hamiltonian onto
Newtons equations of motion for classical oscillators in
phase-space within a rotating wave-approximation [44,45]. As
discussed in [20], the use of real-time feedback then means
that almost any two level non-Hermitian Hamiltonian can be
realized with this setup. Here, we use self- and cross-feedback
between the oscillators to realize the Hamiltonian described in
Eq. (9), as depicted at the bottom of Fig. 1(b). Self-feedback
terms proportional to the oscillator positions (Fi ∝ xi) allow us
to shift their frequencies by ±� from a nominal starting value
of f0 ≈ 3.05 Hz. Cross-feedback forces (Fi ∝ x j) allow us to
introduce independent left-to-right and right-to-left hopping
terms J ± δJ , with no intrinsic limitation to reciprocal energy
exchange. By applying self-feedback terms proportional to
the oscillator’s momenta (Fi ∝ pi), we cancel the oscillator’s
natural damping and explore coherent dynamics for well over
1000 s (>3000 periods). These long timescales are crucial
to performing the first explorations of adiabatic response in
a non-Hermitian system. Beyond single-body (quadratic, in
the operator sense) terms, we additionally apply higher-order
feedback to cancel nearly all native quartic nonlinearities.
However, small residual nonlinearities remain, serving to,
e.g., cap the energy growth in cases of broken PT symmetry.
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FIG. 3. Geometric energy amplification and attenuation in the Hatano-Nelson dimer. (a) (Left) Dynamics of the total energy ET = E1 + E2

for adiabatic transformations (normalized to its initial value ET,i). (Inset) Path of the adiabatic transformation, for fixed J = 6.5 mHz, ramping
from δJ = 0 to/from different maximum values of δJmax = 3.4 (yellow), 4.3 (red), and 5.2 mHz (blue). (Right) Plot of the total energy vs
the instantaneous δJ value, for the yellow and blue paths. The black dotted line shows the expected parametric dependence of ET /ET,i on
δJ for fully adiabatic evolution under H . (b) Dynamics of ET for CW (purple) and CCW (gold) paths as specified by the inset, centered at
(J, δJ ) = (6.5, 2.2) mHz and having a radius of 2.2 mHz. The colored dashed lines in the main panels relate to the time-dependent solutions of
the Schrödinger-type equation based on evolution under the ideal HN model, including nonadiabatic effects caused from finite ramp durations
of Tramp = 500 for (a) and 1000 s for (b).

Results. We first experimentally establish the PT -
symmetry breaking phase diagram of the canonical two-site
Hatano-Nelson model, with tunable reciprocal (J) and nonre-
ciprocal (δJ) components of the real-valued intersite hopping,
but with no intersite bias (� = 0). In this case, for fixed J , an
exceptional point and PT -symmetry breaking phase transi-
tion are encountered at δJ = J , as previously demonstrated
with this platform by spectral analysis in Ref. [20]. In the
full (J, δJ) parameter space, there are two distinct regions of
conserved and broken PT symmetry, denoted by white and
grey in Fig. 2(a). We experimentally determine the excep-
tional line separating these regions by probing the breakdown
of adiabaticity and the rapid onset of energy growth as states
cross over into the PT -broken region, as shown in Fig. 2(b).
We prepare eigenmodes of the symmetric double-well for
various fixed values of the reciprocal hopping J , and then
linearly ramp δJ from 0 to 1.2 J over 400 s. We establish the
exceptional points (white circles) by determining the instanta-
neous δJ values for which there begins to be energy growth
at the otherwise decaying first site, as shown in Fig. 2(c).
Here, an observable proportional to the ith oscillator energy
Ei(t ) is reconstructed from the measured xi and pi signals
[20]. We can then associate the oscillators’ energy dynamics
with relative changes in the macroscopic mechanical energy
population Ni(t ) ∼ Ei(t )/h f0.

We now restrict ourselves to the PT -symmetric region
of Fig. 2(a), exploring the adiabatic gauge invariant non-
Hermitian Berry phase acquired (via the energy dynamics of
prepared eigenmodes), as we slowly evolve along controlled
paths in parameter space. In Fig. 3(a), we first prepare our sys-
tem as an eigenmode of the symmetric double well for a fixed
reciprocal hopping J = 6.45 mHz, and then we smoothly vary
the asymmetric hopping as δJ (t ) = δJmax sin2(πt/Tramp) over
a time Tramp = 500 s. From the left inset, this corresponds
to a closed linear path in parameter space from the black
dot at δJ = 0 to one of the colored dots (representing dif-

ferent values of δJmax), and back. It is seen in Fig. 3(a) that
the total energy increases as the trajectory moves closer to
the exceptional line, with the blue (δJmax = 5.16 mHz) path
showing the largest gain. For such a trajectory, the energy
in the system is determined by the instantaneous δJ value,
as confirmed by the parametric collapse of the energy vs.
δJ for the yellow and blue curves, shown in the right plot.
To note, slight wiggles in both the data (solid lines) and the
numerical simulation curves (dashed lines that include effects
of the finite ramp duration), arise primarily from nonadiabatic
deviations accumulated near the exceptional line. However,
for all curves the total energy returns to near its initial value at
the end of the trajectories, consistent with adiabatic evolution
along a time-reversed path that encloses zero non-Hermitian
flux.

In Fig. 3(b), we start from the same conditions but now
move along closed circular loops by also varying the sym-
metric hopping term J by a sinusoidal function over a time
period of 1000 s. Coordination between the variation of J
and δJ allows us to make either clockwise or counterclock-
wise paths in parameter space (inset). The energy dynamics
curves for the two path directions are essentially (up to small
nonadiabatic corrections) mirrored versions of each other with
respect to the time midpoint Tramp/2, as the gauge-invariant
Berry phase accumulated from the common starting point is
again uniquely determined by the instantaneous position in
parameter space. This is consistent with the fact that these
finite-area paths enclose zero non-Hermitian Berry phase. To
note, the curves in Figs. 3(a) and 3(b) do exhibit percent level
gain and loss over their respective evolution times of 500 and
1000 s, stemming from residual loss and gain terms at the
scale of a few μHz.

We now explore closed paths in parameter space that
enclose a region of broken PT symmetry, and which corre-
spondingly acquire a finite non-Hermitian Berry phase. We
accomplish this by introducing a site-to-site energy bias (�).
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FIG. 4. Cyclic amplification and attenuation along adiabatic paths enclosing PT -broken sources of non-Hermitian Berry phase. (a) Illus-
tration of the paths traversed in parameter space. For trajectories in the J-� plane at fixed and finite δJ , the paths enclose a conical PT -broken
region that acts as a source of non-Hermitian Berry flux. (b) Dynamics of the total energy ET = E1 + E2 for CCW (purple) and CW (gold)
paths in the J-� plane as specified in panel (a), shown for three values of the tunneling asymmetry δJ . The solid purple (gold) lines are the
measured trajectories from experiment for CCW (CW) paths. The long-dashed and short-dashed lines are theory comparisons, described below.
(c) Ratio of the final total energy ET, f to the initial total energy ET,i as a function of the tunneling asymmetry δJ . The upper and lower panels
show the energy ratios for one half cycle and one full cycle, respectively. The purple (gold) points are the experimentally measured ratios
for the CCW (CW) paths (with error bars smaller than the data points) and the long-dashed and short-dashed lines are theory comparisons.
For (b) and (c), the black long-dashed lines are the analytical predictions (detailed in Ref. [38]) for the amplification/attenuation under fully
adiabatic evolution according to Eq. (9). The dotted lines are the trajectories determined by numerical simulation of the experimental ramping
procedure, also incorporating weak nonlinear contributions that serve to capture the saturation observed for large amplification (detailed in
Ref. [38]).

To recall, the exceptional surface in the full (�, J, δJ ) param-
eter space of Eq. (9) corresponds to a double cone with an
apex at the origin [11]. As depicted in Fig. 4(a), this admits
closed paths within the PT -symmetric region that enclose
areas of broken PT symmetry. The PT -broken region can,
in a sense, serve as a source of non-Hermitian Berry flux,
analogous to how a magnetic solenoid serves as a source
of flux in the canonical Aharonov-Bohm thought experiment
[46]. Indeed, our procedure can be viewed as measuring the
imaginary Aharonov-Bohm phase in parameter space.

We explore the dynamics of the total energy ET as we
traverse counterclockwise (CCW) and clockwise (CW) paths
in the J-� plane, starting from several fixed values of δJ . We
start by preparing eigenmodes of the system with J = 0 and
then ramp, over 1000 s, about an ellipse in the J-� parameter
space as displayed in Fig. 4(a). As we see from Fig. 4(b), the
dynamics of the total energy are strongly dependent on δJ .
In the fully symmetric case, δJ = 0, we find no significant
change to the total oscillator energy, as expected from the lack
of an enclosed PT -broken region. For increasing values of δJ ,
we find that the CCW (CW) paths in parameter space lead to
an increasing growth (decay) of the energy upon completing
one cycle. Figure 4(c) summarizes the δJ-dependence of the
measured gain (attenuation) of the total energy experienced
upon completing one cycle in the CCW (CW) direction. The
near-exponential dependence of the measured gain (attenua-
tion) with δJ is in qualitative agreement with the expected
variation of the acquired non-Hermitian Berry phase for cyclic
paths. The non-Hermitian Berry phase accumulated around
such paths grows with the size of the PT -broken region,

having a form that is nearly proportional to δJ , as presented in
Ref. [38]. For the experimentally traversed path in the CCW
(CW) direction, the system picks up a negative (positive)
contribution of this imaginary phase, and the state of the
oscillators thus experiences a corresponding growth (decay)
in its energy. At short times or for small values of the hopping
asymmetry δJ , the observed amplification and attenuation are
in fair agreement with the analytical form expected based on
pure geometric contributions of an imaginary Berry phase.
However, clear deviations can be found, most prominently
in situations where very large growth of the total energy
are expected (CCW orbits for large δJ values). On physical
grounds, deviations from the expected response can be ex-
pected for very large oscillator displacements due to natural
anharmonicities. We qualitatively capture the observed satu-
ration of growth by comparing to a dynamical evolution that
incorporates small but non-negligible (empirical) nonlinear
contributions, described further in Ref. [38].

Conclusion. We have experimentally measured the non-
Hermitian Berry phase for adiabatic evolution in a two-site
Hatano-Nelson model. We have demonstrated significant ge-
ometrical contributions to amplification and damping along
both closed and open paths, and shown that these effects
are observable in a synthetic mechanical metamaterial. Going
further, we will be able to add different types of nonlin-
earities to the two-site Hatano-Nelson model, allowing us
to explore the interplay of interactions with PT symmetry
[47,48]. As active mechanical metamaterials are scaled up to
larger systems with dozens of oscillators, they will enable con-
trollable explorations of the effects of quantum geometry and
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topology in non-Hermitian Chern insulators, such as, for ex-
ample, the anomalous velocity contributions predicted to arise
from the non-Hermitian Berry phase [30] and the breakdown
of the canonical bulk-boundary correspondence of Hermitian
models [49–51].
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