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Solvable model for discrete time crystal enforced by nonsymmorphic dynamical symmetry
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Discrete time crystal is a class of nonequilibrium quantum systems exhibiting subharmonic responses to
external periodic driving. Here we propose a class of discrete time crystals enforced by nonsymmorphic dynam-
ical symmetry. We start with a system with nonsymmorphic dynamical symmetry, in which the instantaneous
eigenstates become Möbius twisted, hence doubling the period of the instantaneous state. The exact solution
of the time-dependent Schrödinger equation shows that the system spontaneously exhibits a period expansion
without undergoing quantum superposition states for a series of specific evolution frequencies or in the limit
of a long evolution period. In this case, the system gains a π Berry phase after two periods’ evolution. While
the instantaneous energy state is subharmonic to the system, the interaction will trigger off decoherence and
thermalization that stabilize the oscillation pattern.
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Introduction. Recently, the spontaneous breaking of time
translation symmetry has attracted tremendous attention and
led to the idea of time crystal [1]. Although it has been
shown that no system can spontaneously break the continu-
ous time translation symmetry [2], it is possible to break the
discrete time translation symmetry in Floquet quantum many-
body systems [3–14]. This new nonequilibrium phase has
since been verified in a series of experiments [15–22]. Sub-
sequent studies in nonequilibrium Floquet quantum systems
further generalize to incorporate both spatial and temporal
dimensions, giving rise to a wide range of new phenomena,
including the space-time crystals [23–27]. In particular, it has
been shown that a nonsymmorphic symmetry can enforce
energy band crossings and create a Möbius twist as well as
additional topological properties [27–33]. It remains unclear
what will happen when a system hosts nonsymmorphic dy-
namical symmetry.

Here we propose a class of discrete time crystals (DTCs)
enforced by the nonsymmorphic dynamical symmetry. We
reveal the dynamic behavior of such systems by presenting
an exact solution to the time-dependent evolution of a two-
level system. The instantaneous eigenstates of the system are
Möbius twisted when the nonsymmorphic dynamical symme-
try is present. The exact time-dependent solution shows that
the quantum states of the system embrace evolution along
the twisted instantaneous state so that the period of the states
is doubled to that of the system Hamiltonian when the ratio
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between the width of the instantaneous energy band to the
evolution frequency of the system’s Hamiltonian equals a set
of discrete values, or when the system evolves in the long-
period limit. In addition, the system has a nontrivial topology
with a half-integer winding number and a π Berry phase in
two cycles of evolution. Also, we explore the system’s stabil-
ity in the presence of interactions and show the robustness
of this class of DTCs. The exact solution provides explicit
evidence to support the spontaneous breaking of the time
translation symmetry in discrete time crystals.

Model with a Möbius twist in instantaneous state. The
nonsymmorphic dynamical symmetry operation represents
a unique category of symmetry operations that integrates
both spatial transformations and nontrivial time transla-
tion operations, which cannot be performed independently.
When nonsymmorphic symmetry is incorporated, the result-
ing extension of the symmetry group exhibits topologically
nontrivial properties, leading to intriguing characteristics in
group representations. In the realm of group representa-
tion theory, the instantaneous state of the system adheres
to the irreducible representation of the symmetry group,
while the Hamiltonian aligns with the induced representation
of the nonsymmorphic symmetry. When the symmetry ex-
hibits nonsymmorphic symmetry, the period of the irreducible
representation does not consistently align with the period of
the induced representation. Consequently, this inconsistency
generates a mismatch between the periods of the instanta-
neous state and the Hamiltonian.

Specifically, we start with a time-dependent two-level
Hamiltonian with the dynamical glide symmetry [29],

H0(t ) = 1

2
h̄� sin(ωt )σx + h̄� sin2

(
ωt

2

)
σy, (1)

where σi (i = x, y, z) are the Pauli matrices. The Hamilto-
nian has a period of T = 2π

ω
. At time t , the instantaneous
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FIG. 1. Illustration of Möbius twist of the instantaneous state and
evolution process of DTC. The red and blue lines label different
eigenstates of the symmetry operator G. The vertical direction shows
the relativity energy of two states. The two eigenstates will swap after
one period of evolution and go back to themselves after two periods.
The green ball represents the quantum states’ evolution which will go
into a superposition state of instantaneous states (translucent balls)
and go to another instantaneous state after one period evolution.

eigenstates are φχ (t ) = 1√
2
[χe−iωt/2, 1]T (T indicates the

transpose), with χ = ±1. The corresponding energy eigen-
values are Eχ (t ) = χ h̄� sin(ωt/2). The model possesses a
nonsymmorphic dynamical symmetry g̃, the square of which
will be a time translation symmetry with one period. The
matrix representation of g̃ in the basis of the two-level system
is the reduced representation of the whole group and has the
following form:

G(t ) =
(

0 e−iωt

1 0

)
. (2)

As a result, the Hamiltonian commutates with G(t ),
[H (t ), G(t )] = 0. Because G(t ) is the induced representation,
it has the same period T as the Hamiltonian, G(t + T ) =
G(t ). Furthermore, G2(t ) = e−iωt is the irreducible represen-
tation of the time translation symmetry with a period T .
Consequently, the eigenvalues of G(t ) are gχ (t ) = χe−iωt/2.
The corresponding eigenstates are the instantaneous eigen-
states of the system, φχ (t ). The eigenvalues gχ (t ) are in the
irreducible representations of the extended symmetry group
whose period is twice that of the system’s period. In addition,
it has the swapping property within one period as gχ (t + T ) =
g−χ (t ) and gχ (t + 2T ) = gχ (t ). The corresponding eigen-
states φχ (t ) share the same property. The swapping property
of the eigenvalues and eigenstates is a manifestation of the
group monodromy. It directly illustrates the periodic exten-
sion by introducing the nonsymmorphic symmetry. Another
consequence of this period mismatch is that the instanta-
neous eigenstates of the system automatically become Möbius
twisted. Figure 1 illustrates how the Möbius twist happens.
The two colored lines represent the two eigenstates of the
symmetry operator G(t ), which are also the instantaneous
eigenstates of the Hamiltonian. After one cycle of evolution,
the two eigenstates will swap. Since the instantaneous eigen-
states of the Hamiltonian still host the discrete time translation
symmetry, it is forced to undergo a symmetry-enforced cross-
ing in the evolution process. The two eigenstates are Möbius
twisted at t = T such that they only come back to themselves
after a two-period evolution, matching the period of the irre-
ducible representation of the symmetry group.

Besides period doubling in the two-level system with a dy-
namical glide symmetry, systems with other nonsymmorphic
symmetry can also have other ways of period expansion. For
example, dynamical screw symmetry in multilevel systems
allows the period expansion of more than two (see Supple-
mental Material [34]).

Exact solution and DTC. The exact solution �(t ) of the
time-dependent Hamiltonian in Eq. (1) can be obtained by
solving the time-dependent Schrödinger equation, ih̄∂t�(t ) =
H0(t )�(t ). In the basis of the instantaneous eigenstates
φχ (t ), an ansatz for the time-dependent solution is �(t ) =∑

χ cχ (t ) exp[i ωt
4 − i

h̄

∫ t
0 Eχ (t ′)dt ′]φχ (t ), where cχ (t ) are

two time-dependent coefficients. Substituting the wave func-
tion into the time-dependent Schrödinger equation, we find
that cχ (t ) satisfies

∂2
x cχ − iχα sin(2x)∂xcχ + cχ = 0, (3)

where x = ωt
4 and α = 8�

ω
. Note that cχ (t ) depend on χ , α,

and x. We denote the initial state as �(0) = ∑
χ cχ (0)φχ (0),

with c(x) ≡ [c+(x), c−(x)]T. The solutions for cχ (t ) are found
as follows:

c(x) =
(

H+
c (α, x) −i sin(x)H−

c (α, x)

−i sin(x)H−
c (α, x)∗ H+

c (α, x)∗

)
c(0).

(4)
Here we define

Hχ
c (α, x) ≡ Hc

(
iα,−χ

2
,−1

2
,− iα

2
,

1

8
+ iα

4
; sin2 x

)
, (5)

where Hc is the confluent Heun function [35,36], which
satisfies the boundary conditions Hχ

c (α, x = 0) = 1 and
d
dx Hχ

c (α, x)|x=0 = 0. The complex conjugate of Eq. (3) re-
quires that Hχ

c (−α, x) = Hχ
c (α, x)∗. Assuming the initial

state is the eigenstate of σx with eigenvalue χ = +1, i.e.,
c+(0) = 1 and c−(0) = 0, we have c+(x) = H+

c (α, x) and
c−(x) = −i sin xH−

c (−α, x). The wave-function normaliza-
tion further requires that |H+

c (α, x)|2 + sin2(x)|H−
c (α, x)2

= 1.
The solution in Eq. (4) reveals a subharmonic behavior of

dynamical evolution to the H (t ) at a series of the specific ratio
α, i.e.,

�(t + 2T ) = −�(t ), (6)

which is a hallmark feature of a DTC. Although the instan-
taneous eigenstates are Möbius twisted and only return to
themselves after 2T , the quench dynamics starting from a
generic initial state usually does not follow the same behavior.
To analyze this question, we introduce the time evolution
operator U (t ), which satisfies �(t ) = U (t )�(0). By compar-
ing the initial condition cχ (0) = φ†

χ (0)�(0) with the exact
solution in Eq. (4), we can obtain the general expression for
the time evolution operator U (t ) (see Supplemental Material
[34]). Consider the initial state φ+(0). After one period t = T
or x ≡ ωT

4 = π
2 , the probability that the system still stays in

the initial state is given by

ρ(T ) = |φ†
+(0)U (T )φ+(0)|2 =

∣∣∣∣H−
c

(
αn,

π

2

)∣∣∣∣
2

.
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FIG. 2. The remaining probability ρ(T ) after one period evolu-
tion with different value of α. The red line is the H−

c (α, π

2 ), the green
line is π

2 J0( α

2 ) working as an asymptotic approximation, and the blue
dots are the value of numerical methods.

Specifically, H−
c (α, π

2 ) has an oscillatory decay with α, and
drops to zero for several α = αn, H−

c (αn,
π
2 ) = 0, as shown

in Fig. 2. According to the normalization condition, the other
Heun function satisfies |H+

c (αn,
π
2 )| = 1. Hence, we can write

H+
c (αn,

π
2 ) ≡ exp[iθn]. The first 10 αn and θn are listed in

Table I. For a large n, αn � 2nπ − π
2 and θn � π

αn
. Conse-

quently, we have c±( π
2 ) = exp[±iθn]c±(0), indicating that the

coefficients gain extra phases in one period of evolution. This
result shows that the state does not return to the initial one. In
this case, the time evolution operator has the form of

Un(T ) = −iσze
−iσx

(
αn
2 −θn

)
(7)

for specific values of α = αn. For t = 2T , it follows that
Un(2T ) = −1. Thus, after a two-period evolution, the quan-
tum state will return to its initial state and gains a π Berry
phase, as shown in Eq. (6). This manifests the presence of the
DTC.

When the period is long (α � 1), we can approximate
the confluent Heun function by the zeroth Bessel function,
H−

c (α, π
2 ) � ei α

2
π
2 J0( α

2 ), as shown in Fig. 2. The time evolu-
tion operator then has the form

U (T )�
[
− i

√
1 − π2

4
J2

0

(
α

2

)
σz + ei α

2
π

2
J0

(
α

2

)]
e−iσx

(
α
2 − π

α

)
.

(8)
If the initial state is one of the eigenstates of σx, say φ+(0),
the state will mainly evolve into the other eigenstate φ−(0),

TABLE I. The numerical value of the first 10 αn of the Heun
function and the phase factor θn. With n → ∞, they have asymptotic
behavior as αn � 2πn − π

2 and θn � π

αn
.

n 1 2 3 4 5 6 7

αn 4.21 10.73 17.11 23.44 29.75 36.07 42.36
θn 0.391 0.199 0.138 0.108 0.0889 0.0756 0.0664
n 8 9 10 11 12 13 14
αn 48.66 54.95 61.24 67.46 73.76 80.07 86.34
θn 0.0592 0.0535 0.0483 0.0459 0.0424 0.0396 0.0371

FIG. 3. The stroboscopic projection values in the first 300 peri-
ods. (a) The projections values at α = 8 (not one of αn) for the initial
state (1, 0)T, indicating no sign of periodicity in the time evolution.
(b) The projection values at α = 8 for (0.6, 0.8)T. (c) The projection
values at α = α3 = 17.11. The different color paired points indi-
cate, for the different initial states, (1, 0)T (red), (0.6, 0.8)T (purple),
(0.90, 0.436)T (blue), and (

√
2/2,

√
2/2)T. (d) The projection values

at α = 80 (large, but not one of αn). The initial state: (1, 0)T(blue)
and [0.6, 0.8]T(pink).

and the probability to stay in the state φ+(0) is just ρ(T ). In-
terestingly, the energy crossing here invalidates the adiabatic
theorem. Furthermore, after a two-period evolution, we have
U (2T ) � −1. In this limit, the system is still approximately a
DTC even if α is not equal to αn.

To illustrate the periodicity of the evolution of the quantum
state, we project the state �(t = nT ) ≡ U (nT )�(0) onto the
two basis states φχ (0), where n is a positive integer. We
denote the two resulting projection parameters as a±(n) =
|〈φ±(0)|�(nT )〉|, which satisfies a2

+(n) + a2
−(n) = 1 because

of the wave-function normalization. Consequently, the points
[a+(n), a−(n)] should all locate on a quarter circle with a unit
radius. The results for different values of α and the initial
states are plotted in Fig. 3. For general α and initial states,
the time evolution of the state does not exhibit any periodicity
since all quantum states will be visited as n increases. The
points [a+(n), a−(n)] are expected to fill the entire quarter
circle, indicating ergodicity for an arbitrary initial state, as
shown in Fig. 3(a). We also find that there are limitations to
the ergodicity because a portion of states near the axis will
not be visited for some specific initial states and the value
of α after a large number n periods of evolution, as shown
in Fig. 3(b). However, for α = αn, we note that �(t = nT )
have just two states: �(t = nT ) = ±�(0) for an even n, and
�(t = nT ) = ±U (T )�(0) for an odd n. The state �(t = nT )
just bounces back and forth between �(0) and U (T )�(0), as
shown in Fig. 3(c). The period of the state becomes 2T , indi-
cating the formation of a DTC. If the initial state happens to be
one of the eigenstates of U (T ), we have U (T )�(0) ∝ �(0).

L032024-3



HU, FU, LI, AND SHEN PHYSICAL REVIEW RESEARCH 5, L032024 (2023)

FIG. 4. (a) 〈σx (t )〉 and its Fourier spectrum for noninteracting system for the first 40 periods. (b) 〈mx (t )〉 and its Fourier spectrum for the
interacting system in the x direction with an initial state polarized in the x direction with length L = 10. (c) Z (n) at the stroboscopic time,
with different length chains showed in the legend. The inset shows the lifetime via the size L of the system. τ ∝ exp(bL), with b = 1.56
for α = 81.60 (slightly deviated from α13 = 80.07). (d) Z (n) at the stroboscopic time for α = α13. b = 2.49. Here we set the interaction
J = 0, 2h̄ω.

The evolution period is the same as that of the Hamiltonian.
In this case, the time translation symmetry is respected. For α

slightly deviating from the αn or α � 1, as shown in Fig. 3(d),
the system approximately keeps the two-period oscillation for
a relatively long time.

Stability of the DTC. Upon deviating from the αn, the
quantum states no longer return to their initial state after two
cycles of evolution, causing the off-diagonal term of σx to
dominate and inevitably leading to the dynamical chaos of
relevant observables. As illustrated in Fig. 4(a), we depict
〈σx(t )〉 = 〈�(t )|σx|�(t )〉 for the noninteracting model when
α diverges from αn. Notably, the off-diagonal term of σx in
the instantaneous state basis can be represented as

〈φ+1|σx|φ−1(t )〉 = e−iα sin2 ωt
4 sin

ωt

2
. (9)

With a significantly large α, the dynamical phase factor
e−iα sin2 ωt

4 prompts rapid oscillation in the observable quantity
〈σx(t )〉. Furthermore, multiple peaks emerge in the Fourier
spectrum of 〈σx(t )〉. Thus, no time translation symmetry is
respected in this case.

We demonstrate that incorporating many-body interactions
can stabilize the subharmonic response, thereby achieving
a prethermal DTC. This prethermal DTC is expected to
endure in the thermodynamic limit and exhibit robustness

against perturbations and imperfect single-spin driving fields.
Specifically, we consider a spin chain by comprising multiple
identical Floquet two-level spin systems with uniform nearest-
neighbor Ising couplings. The Hamiltonian can be expressed
as

H (t ) = H0(t ) + J
∑

i

σ i
μσ i+1

μ , (10)

with H0(t ) given by Eq. (10) and J representing the Ising
interaction between nearest-neighbor sites, σ i

μ denoting the
spin operator of the ith site, and μ taking the values of x, y,
or z. We assume that the interaction strength J is consid-
erably smaller than the driving term, such that |J| 
 h̄�.
This interaction induces decoherence and thermalization of
the Floquet system [37,38]. If the system initiates in one of
the instantaneous eigenstates of H0(t ), decoherence among
subsystems suppresses the rapid oscillation caused by off-
diagonal terms, resulting in a smoother oscillation pattern.
To demonstrate the interaction’s impact, we assess the aver-
age value of σ i

x for all sites, i.e., 〈mx(t )〉 = 1
N

∑
i〈σ i

x (t )〉, and
display the oscillation of 〈mx(t )〉 over the initial 40 periods.
Considering Ising interactions at direction μ = x, we find that
the model exhibits a persistent oscillation with a 2T period in
both cases, even when α deviates from αn. We also exhibit
more results with more parameters and longer time behavior.
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The DTC reinforced by nonsymmorphic symmetry is resilient
to various initial states and site-resolved measurements (see
Supplemental Material [34]). The oscillation’s Fourier spec-
trum also presents an isolated peak at ω

2 in Fig. 4(b). This
explicitly substantiates the existence of the DTC phase in the
presence of the interaction. To further verify that the system
constitutes a prethermal DTC, we evaluate the finite-scaling
behavior of 〈mx(t )〉 at stroboscopic time t = nT (n is an
integer), defined as 〈mx(nT ) = (−1)nZ (n), with the initial
state polarized in the x direction, and present the results for
different lengths in Fig. 4(c). The calculated Z (n) show that
it drops to ∼0.8–0.9 and maintains for a short time before
starting to drop drastically to around zero, which allows us to
define the lifetime τ = ncT for the DTC with certain length
and parameters. The inset of Fig. 4(c) illustrates that the life-
time τ grows with the size L of the system in an exponential
law. This characteristic is a key feature of a prethermal DTC
with spontaneously broken symmetry [3]. Remarkably, the in-
teraction preserves the DTC phase even when the symmetry is
slightly disrupted by a minor symmetry breaking perturbation
term. For comparison, we also present the lifetime and finite
scaling for α = α13 in Fig. 4(d). It is noted that the stability of
〈mx(t )〉 and the lifetime of the DTC are enhanced drastically
for one αn. Thus the interacting multiple Floquet spin system
is a prethermal DTC for α = αn and even for α deviating
slightly from αn in the case of interaction.

Discussion. In the previous section, we demonstrated that
nonsymmorphic symmetry enforces the instantaneous state
into a Möbius twist, resulting in the period-doubled evolution.
This period expansion is attributed to the realization of a
DTC. The Hamiltonian in Eq. (1) possesses an additional

chiral symmetry, defined as � = σz, such that {�, H} = 0.
The topological property of the system can be character-
ized by the winding number, defined as ν = ∫

dk
2π

(hy∂t hx −
hx∂t hy), if we decompose the Hamiltonian into Pauli matrices
as H = h · σ. When the instantaneous energy bands exhibit a
single crossing, the winding number becomes a half integer
[29]. This unique winding number is intimately connected to
the system’s period expansion.

In contrast to gapped systems where the adiabatic theorem
applies, the quantum state of the DTC returns to its initial state
after two periods, acquiring an extra π Berry phase when the
frequency equals certain values or in the long-period limit.
Experimentally, a DTC quantum simulation can be performed
using qubits in a quantum computer, such as quantum super-
conducting and nuclear magnetic resonance systems [22,39–
41]. These systems enable spin manipulation for arbitrary
Hamiltonians. The period extension can be directly measured
by monitoring the corresponding observable quantities. Addi-
tionally, the unique Berry phase can also be measured in these
systems. By selecting an initial state polarized in the x direc-
tion, the π Berry phase can be measured from the 2T periodic
oscillation of 〈σx〉 when α = αn or in the long-period limit.
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