
PHYSICAL REVIEW RESEARCH 5, L032023 (2023)
Letter

Time-dependent ghost Gutzwiller nonequilibrium dynamics

Daniele Guerci ,1 Massimo Capone,2,3 and Nicola Lanatà 4,1,*

1Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
2Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy

3CNR-IOM, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Via Bonomea 265, 34136 Trieste, Italy
4School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, New York 14623, USA

(Received 24 March 2023; revised 29 June 2023; accepted 10 July 2023; published 17 August 2023)

We introduce the time-dependent ghost Gutzwiller approximation (TD-gGA), a nonequilibrium extension of
the ghost Gutzwiller approximation (gGA), a powerful variational approach which systematically improves on
the standard Gutzwiller method by including auxiliary degrees of freedom. We demonstrate the effectiveness
of TD-gGA by studying the quench dynamics of the single-band Hubbard model as a function of the number
of auxiliary parameters. Our results show that TD-gGA captures the relaxation of local observables, in contrast
with the time-dependent Gutzwiller method. This systematic and qualitative improvement leads to an accuracy
comparable with time-dependent dynamical mean-field theory which comes at a much lower computational cost.
These findings suggest that TD-gGA has the potential to enable extensive and accurate theoretical investigations
of multiorbital correlated electron systems in nonequilibrium situations, with potential applications in the field
of quantum control, Mott solar cells, and other areas where an accurate account of the nonequilibrium properties
of strongly interacting quantum systems is required.
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Introduction. The study of the nonequilibrium dynamics of
correlated electron systems has gained significant attention in
recent years, ranging from fundamental questions [1] to topics
triggered by the emergence of experimental techniques that
allow for the investigation of these systems under a variety
of conditions. Examples include ultrafast spectroscopy tech-
niques, which allow for the investigation of the dynamics of
solid state materials on the femtosecond timescale [2–4], and
the use of ultracold atoms in optical lattices [5–13], which
allows for the study of correlated quantum systems in a con-
trolled and tunable environment. The development of efficient
photovoltaic technologies such as Mott solar cells [14–18],
which exploit the peculiar properties of correlated electron
systems, is another example of the many directions calling for
theoretical tools and frameworks able to investigate quantum
many-body systems out of equilibrium.

The paradigmatic model in the study of correlated elec-
tron systems is the (single-orbital) Hubbard model, which
describes fermionic particles on a lattice experiencing the
effects of local repulsive interactions. A huge body of work
has focused on the equilibrium properties of this model,
while the investigation of the nonequilibrium physics is
severely limited by technical aspects. Current state-of-the-art
methods, such time-dependent dynamical mean-field theory
(TD-DMFT) [19–22], can be indeed computationally de-
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manding for many applications and they are typically limited
to relatively short timescales. This situation calls for the devel-
opment of computationally lighter, yet sufficiently accurate,
methods to study the dynamics of the Hubbard model and
possibly of more involved and richer models.

To address this challenge, here we exploit the so-called
ghost Gutzwiller approximation (gGA) [23–25], that gener-
alizes the standard Gutzwiller approximation (GA) [26,27]
systematically extending the variational space introducing
auxiliary degrees of freedom. This perspective introduces
similarities between this variational wave function and matrix-
product states or more recent neural network states [28] where
the number of “hidden” degrees of freedom is directly con-
nected with the amount of entanglement in the variational
wave function. Recently, the method has been formulated also
in terms of a formally exact rotationally invariant slave boson
theory (RISB) [29–32], that reduces to the gGA within the
mean-field approximation. In equilibrium, the addition of B
subsidiary fermionic degrees of freedom improves consis-
tently the accuracy of the wave function, and allows for a
faithful description of the Mott insulator which reproduces
the main results of DMFT already for small values of B �
7 [33–35].

In this Letter, we introduce a nonequilibrium exten-
sion of the gGA framework, that generalizes the standard
time-dependent Gutzwiller approximation [36–46]. We ap-
ply the method to an interaction quench in the half-filled
Hubbard model, a topic which attracted considerable inter-
est, both in experiments [47–49] and theoretical investiga-
tions [19–22,50,51].

We show that the improvement introduced by TD-gGA is
substantial and qualitative. In particular, this method captures
the relaxation of local observables, a crucial feature which
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is not accessible by the standard time-dependent Gutzwiller
approximation [36].

In addition, we show that, using a small number of auxil-
iary variables, the TD-gGA reproduces the dynamics obtained
within TD-DMFT for reasonably large timescales with a sig-
nificantly reduced computational cost. As we shall describe in
the following, the TD-gGA requires indeed to solve a set of
nonlinear differential equations as opposed to the integrodif-
ferential equations obtained within TD-DMFT.

Our results highlight the potential of TD-gGA to substan-
tially reduce the computational cost of accurate studies of
the time-resolved dynamics of strongly correlated systems.
This opportunity can open the path to effective investigations
of multiorbital correlated electron systems in nonequilib-
rium situations, extending the scope to a number of different
correlated materials and enabling a variety of applications
ranging from energy-related materials [14–18] to quantum
control [52], and other areas where the accurate treatment of
strong correlations is required.

The plan of this Letter is as follows. First, we introduce the
model and we formulate the time-dependent ghost-Gutzwiller
approach, and then we apply the tools to study the dynamics of
the single-band Hubbard model. The comparison with DMFT
results that we thus obtain is discussed after, followed by
concluding remarks.

Model and method. We consider the time-dependent dy-
namics of the single-band Hubbard model at half filling,

Ĥ = U

2

∑
i

(n̂i − 1)2 − J
∑
〈i, j〉

∑
σ=↑,↓

(c†
iσ c jσ + H.c.), (1)

where U is the Hubbard on-site interaction strength, n̂i =∑
σ=↑,↓ c†

iσ ciσ is the local occupancy operator, and J the hop-
ping between nearest-neighbor sites. We consider the model
on a Bethe lattice with a semicircular density of states ρ(ω) =
2
√

D2 − ε2/(πD2) and we measure energy in the unit of the
half-bandwidth D ∝ J . From now on we set D as the energy
unit and D−1 as the time unit.

In this Letter, we focus on the time-resolved evolution
of the system in a popular nonequilibrium protocol, the in-
teraction quench, where the interaction is suddenly changed
from Ui to Uf . As a matter of fact, we will evaluate the time
evolution governed by Eq. (1) for U = Uf using as an initial
state the equilibrium solution for U = Ui.

Equilibrium gGA Lagrange function. Specializing the for-
malism of Refs. [23,24] to the single-orbital model Eq. (1)
and enforcing spin rotational invariance and translational in-
variance, we obtain that the gGA ground state is encoded in
the following Lagrange function,

L[�, Ec;R,�;D,�c; 	,
0, E ]

= 1

N 〈
0|Ĥqp[R,�]|
0〉 + E (1 − 〈
0|
0〉)

+ [〈�|Ĥemb[D,�c]|�〉 + Ec(1 − 〈�|�〉)]

−
[ ∑

σ=↑,↓

B∑
a,b=1

(
�ab + �c

ab

)
	ab

+
∑

σ=↑,↓

B∑
c,a=1

(DaRc[	(1 − 	)]
1
2
ca + c.c.)

]
, (2)

where N is the total number of unit cells, E and Ec are real
numbers, 	, �c, and � are B × B Hermitian matrices, and
D and R are rectangular B × 1 matrices (whose row entries
are Da and Ra, respectively). The auxiliary Hamiltonians Ĥqp

and Ĥemb, which are called the “quasiparticle Hamiltonian”
and “embedding Hamiltonian” (EH), respectively, are defined
as follows:

Ĥqp = −J
∑
〈i, j〉

B∑
a,b=1

∑
σ=↑,↓

RaR†
b f †

iaσ f jbσ

+
∑

i

B∑
a,b=1

∑
σ=↑,↓

�ab f †
iaσ fibσ

=
B∑

a,b=1

N∑
ω=1

∑
σ=↑,↓

(εω RaR†
b + �ab)η†

ωaσ η
ωbσ , (3)

Ĥemb = U

2
(n̂ − 1)2 +

B∑
a=1

∑
σ=↑,↓

[Da ĉ†
σ f̂aσ + H.c.]

+
B∑

a,b=1

∑
σ=↑,↓

�c
ab f̂bσ f̂ †

aσ , (4)

where εω are the eigenvalues of the hopping matrix for the
Bethe lattice, ηωσ are the corresponding eigenmodes, and n̂ =∑

σ=↑,↓ ĉ†
σ ĉσ is the impurity occupancy operator.

The integer parameter B controls the size of the variational
space and, in turn, the accuracy of the gGA solution. In partic-
ular, for B = 1, Eq. (2) reduces to the standard GA Lagrange
function, while for higher values of B the accuracy of the gGA
method is comparable to DMFT [23,24].

The saddle point of the Lagrangian L defined in Eq. (2) is
given by the following equations,∫ D

−D
dω ρ(ω)[n(ω)]ab = 	ab, (5)

∫ D

−D
dω ρ(ω)ω[R† t n(ω)]1a =

B∑
c,a=1

Dc[	(1 − 	)]
1
2
ac, (6)

B∑
c,b=1

∂

∂ds
([	(1 − 	)]

1
2
cbDbRc + c.c.) + [l + lc]s = 0, (7)

Ĥ emb|�〉 = Ec|�〉, (8)

F (1)
a = 〈�|ĉ†

σ f̂aσ |�〉 −
B∑

c=1

[	(1 − 	)]
1
2
caRc = 0, (9)

F (2)
ab = 〈�| f̂bσ f̂ †

aσ |�〉 − 	ab = 0, (10)

where Eqs. (5) and (6) are evaluated for the Bethe lattice at
N → ∞ and the limit of infinite coordination number, t M
indicates the transpose of a matrix M,

[n(ω)]ab = 〈
0|η†
ωaσ η

ωbσ |
0〉 = [ f
(
RωR† + �

)
]ba (11)

is the quasiparticle ground-state single-particle density matrix
in the Bethe lattice eigenmodes basis, f is the zero-
temperature Fermi function, and we expressed the matrices 	,
�, and �c in terms of the following expansion with respect to

L032023-2



TIME-DEPENDENT GHOST GUTZWILLER … PHYSICAL REVIEW RESEARCH 5, L032023 (2023)

an orthonormal basis of Hermitian matrices {hs} (with respect
to the canonical scalar product (A, B) = Tr[A†B]),

	 =
B2∑
s=1

ds
t hs, (12)

� =
B2∑
s=1

ls hs, (13)

�c =
B2∑
s=1

lc
s hs, (14)

where ds, ls, and lc
s are real-valued coefficients.

Algorithmic structure of the gGA. Equations (5)–(10) can
be solved numerically as follows: (1) Starting from an initial
guess for the entries R and �, compute 	 from Eq. (5). (2)
Compute D using Eq. (6). (3) Determine the coefficients lc

s
from Eq. (7) and construct the matrix �c from Eq. (14). (4)
Construct Ĥ emb from Eq. (4) and calculate its ground state
|�〉 within the subspace with 1 + B fermions (i.e., at half
filling). (5) Compute F (1) and F (2) from Eqs. (9) and (10). The
parameters (R,�) such that Eqs. (9) and (10) are satisfied are
computed numerically.

Time-dependent gGA Lagrange function. As explained in
Refs. [23,24], the equilibrium gGA Lagrange function and
equations summarized above can be obtained by applying the
standard standard multiorbital GA formulation of Ref. [27]
within an enlarged Hilbert space, including additional aux-
iliary fermionic degrees of freedom. Equivalently, the same
equations can be derived from the standard multiorbital for-
mulation of Ref. [30], by introducing additional auxiliary
fermionic and bosonic degrees of freedom [29]. The TD-gGA
framework is straightforwardly obtained by applying the stan-
dard TD-GA formalism of Ref. [36], simply by including such
auxiliary degrees of freedom mentioned above, either from
the GA perspective [53] or, equivalently, from the RISB [29]
perspective. The resulting dynamics is obtained by extremiz-
ing the following Lagrange function, previously introduced in
Ref. [29],

L = 1

N 〈
0|i∂t − Ĥqp|
0〉 + 〈�|i∂t − Ĥemb|�〉

+
⎡
⎣ ∑

σ=↑,↓

B∑
a,b=1

�c
ab	ab

+
∑

σ=↑,↓

B∑
c,a=1

(
DaRc[	(1 − 	)]

1
2
ca + c.c.

)⎤
⎦, (15)

where Ĥqp and Ĥemb are given by Eqs. (3) and (4), respectively,
setting � = 0.

As for the equilibrium case, the stationarity conditions with
respect to 	, D, and �c are Eqs. (7), (9), and (10), respec-
tively. Instead, from the Dirac-Frenkel principle it follows that
the stationarity conditions with respect to |
0〉 and |�〉 are
the corresponding time-dependent Schrödinger equations. In

summary, the dynamics of the gGA variational parameters is
governed by the following equations,

[i∂t − Ĥemb]|�〉 = 0, (16)

i∂t nab(ω) = ω

B∑
c=1

[RbR†
c nac(ω) − RcR†

a ncb(ω)], (17)

∫ D

−D
dω ρ(ω) ω[R† t n(ω)]1a =

B∑
c,a=1

Dc[	(1 − 	)]
1
2
ac, (18)

B∑
c,b=1

∂

∂ds
([	(1 − 	)]

1
2
cbDbRc + c.c.) + lc

s = 0, (19)

〈�|ĉ†
σ f̂aσ |�〉 −

B∑
c=1

[	(1 − 	)]
1
2
caRc = 0, (20)

〈�| f̂bσ f̂ †
aσ |�〉 − 	ab = 0, (21)

where Eq. (17) describes the time evolution of the quasiparti-
cle single-particle density matrix corresponding to the follow-
ing time-dependent Schrödinger equation [i∂t − Ĥqp]|
0〉 =
0.

To implement the dynamics governed by Eqs. (16)–(21)
the integrals over ω are approximated by discretizing the
interval [−D, D] with a series of frequencies ωn. The real and
imaginary components of the vector � and of the matrices
n(ωn) are encoded into a real-valued vector Y. Since R, D,
	, and �c can be all determined as a function of |�〉 and n(ω)
using Eqs. (19)–(21), and ∂t |�〉 and ∂t n(ω) can be determined
in terms of these parameters using Eqs. (16) and (17), the
dynamics of Y can be expressed as follows,

∂t Y(t ) = F(Y(t )), (22)

which is a nonlinear first-order differential equation that
can be integrated numerically with standard methods. In
particular, our calculations were performed using the the
Runge-Kutta library RKSUITE [54].

It is important to note that the function F used in our
study of Hubbard quenches is independent of time when the
Hamiltonian is not explicitly time dependent after the sudden
change in U . However, the equations we derived can still be
used even if the Hamiltonian has an explicit time dependence.
In this case, the TD-gGA equations take the form

∂t Y(t ) = F(Y(t ), A(t )), (23)

where A(t ) represents a time-varying external perturbation,
such as an electromagnetic field. This characteristic of the TD-
gGA framework is particularly interesting, because it opens
the possibility of using standard frameworks, such as classical
optimal control algorithms [52], for manipulating the dynam-
ics of electronic states. In fact, such techniques are broadly
applicable to dynamical systems governed by ordinary dif-
ferential equations such as Eq. (23), while frameworks for
controlling the TD-DMFT dynamics, governed by integrod-
ifferential equations, are not currently available.

Interaction quench in the half-filled Hubbard model. We
now turn to the application of the formalism to discuss
the out-of-equilibrium evolution in the half-filled single-band
Hubbard model (1). The quantum quench protocol consists of
preparing the system in the initial variational ground state of
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FIG. 1. Period of the coherent oscillations in the dynamics of the
single-band Hubbard model in the conventional Gutwiller approxi-
mation (B = 1) as a function of Uf . The divergence at U dyn

c = Uc/2
defined by the dashed gray vertical line shows the critical slowing
down at the dynamical transition [37,56].

the model with interaction U (t � 0) = Ui. Then, for t > 0,
the state evolves under an Hamiltonian characterized by the
value of the interaction U (t > 0) = Uf = Ui + δU 
= Ui.

We focus our analysis by considering as initial condition
a weakly correlated metal Ui � 0 and the final interac-

tion strength is larger than the initial value Uf > Ui [55].
Under these circumstances, the standard TD-GA dynamics
(corresponding to B = 1 in our formalism) is character-
ized by the presence of a dynamical quantum critical point
that identifies three different dynamical regimes of weak
Uf < U dyn

c , intermediate Uf ∼ U dyn
c , and strong Uf > U dyn

c

quenches [37]. Within this framework (B = 1) different
regimes were identified by computing the period of os-
cillation of the time-dependent double occupancy d (t ) =
〈�(t )|n↑n↓|�(t )〉 following the quench, which is purely
monochromatic (see Fig. 1).

Below we show the TD-gGA time evolution of the double
occupancy d (t ) as a function of B, in comparison with the
numerically exact TD-DMFT results of Ref. [20], for different
values of Uf , spanning all the different dynamical regimes
[see Fig. 2(a)]. In order to better interpret the results we also
show the time evolution of the eigenvalues of �c and

√
D†D,

which are both gauge-invariant quantities associated with the
dynamics of the EH [see Fig. 2(b)]. Specifically, the eigenval-
ues of the matrix �c are the energies of the bath in the EH [see
Eq. (4)]. The quantity

√
D†D is the sum of the absolute square

values of the tunneling couplings Da between the impurity

FIG. 2. (a) Evolution of the double occupancies as a function of time for different values of δU , in sequence δU = 1.25, 1.5, 2.0, 2.5,
respectively. The dotted data show the DMFT result taken from Ref. [20]. Different colors correspond to different values of B (number of bath
sites). (b) The top row shows the evolution of the eigenvalues of the �c for B = 7. The bottom row displays the evolution of

√
D†D for B = 7.
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and its environment, acting as a measure of the hybridization
strength between them as a function of time. Note that plotting
the evolution of eig �c and

√
D†D allows us to detect the

physical dynamics of the embedding parameters, decoupling
it from irrelevant time-dependent gauge transformations.

Our results show that, while within the standard TD-GA
(B = 1) the evolution of d (t ) is accurate only at very short
times and does not capture the relaxation of the double oc-
cupancy at long times which is observed in TD-DMFT, for
B � 3 we develop a clear trend towards a relaxation of the
local observables which replaces the oscillations obtained for
B = 1. The improvement introduced by introducing the auxil-
iary degrees of freedom approaches the TD-DMFT dynamics
with increasingly high accuracy. Indeed, the TD-gGA dynam-
ics follows the DMFT reference on a timescale that increases
as we increase B. For instance, we note that for values as small
as B = 7 the method achieves nearly perfect agreement with
TD-DMFT for t � 6, for all quenches considered. The recur-
rence of oscillations after a characteristic timescale at finite
B can be interpreted as a “finite-size” effect of the EH bath.
Following this argument, we expect that in the TD-gGA dy-
namics local observables will eventually approach the steady
state as B tends to infinity. We leave a detailed exploration of
the time evolution in the limit of large B to future studies. It
is interesting to note that the TD-gGA dynamics of the double
occupancy arises from the time-dependent Schrödinger equa-
tion [Eq. (16)], and the parameters of the corresponding EH
shown in the middle and right columns of the figure evolve
in time even when d (t ) appears to be essentially stationary.
This is consistent with the general fact that the equilibration
arises for local quantities, such as the double occupancy, even
though the quantum dynamics of the many-body electronic
function, here encoded in the time evolution of the TD-gGA
variational parameters, is unitary.

Conclusions. In this Letter, we introduced a time-
dependent extension of the ghost Gutzwiller approximation
(gGA) for the study of correlated electron systems in nonequi-
librium situations. We have benchmarked the method for an
interaction quench of the half-filled Hubbard model, com-
paring explicitly with one of the state-of-the-art approaches,
TD-DMFT.

Our results clearly show that this approach, already for a
small number B of auxiliary parameters, improves qualita-
tively on the standard Gutzwiller approximation, since it can
describe the relaxation of local observables, and it achieves a
remarkable quantitative agreement with TD-DMFT for a wide
range of model parameters and timescales already for small
values of B.

A crucial point is that an accuracy comparable with TD-
DMFT is thus obtained at a hugely smaller computational

cost since the TD-gGA requires to solve a nonlinear ordinary
differential equation as opposed to the integro-differential
equation required by TD-DMFT. The computational burden
of each TD-gGA time step [as per Eqs. (16)–(21)] is consid-
erably lower than that of each static gGA iteration [as per
Eqs. (5)–(10)]. The primary reason is that the key source of
computational complexity in each TD-gGA time step—the
matrix-vector multiplication in Eq. (16)—is less taxing than
the embedding-Hamiltonian eigenvalue problem of Eq. (8),
which is the main computational demand in the static gGA. As
a result, the overall cost of a TD-gGA computation is largely
determined by the number of time steps and the tightness of
the mesh used by the adaptive Runge-Kutta method, which
depend on the desired numerical accuracy and the specific
dynamics of the system under study. Importantly, these opera-
tions are, in principle, parallelizable, which leads to additional
computational cost reductions.

In particular, all calculations performed in this Letter
have been performed serially on a single CPU, highlight-
ing the method’s computational efficiency. Utilizing methods
such as time-dependent density matrix renormalization group
(DMRG) [57,58] or matrix products states (MPS) [59–62]
to solve the time-dependent Schrödinger equation of the EH
would allow us to reduce the computational complexity even
further, allowing us to perform calculations with more bath
sites, even for multiorbital strongly correlated systems. Fur-
thermore, the very fact that TD-gGA ultimately reduces to
a finite-dimensional first-order nonlinear differential equa-
tion, allows one to employ, e.g., optimal control methods to
steer a given dynamical system to desired outcomes. These
observations suggest that the TD-gGA has the potential to
advance our ability to study the nonequilibrium properties
of a variety of systems of great interest, ranging from the
general study of multiorbital correlated electron materials to
quantum devices including Mott solar cells [14–18], or more
in general to any problem which requires a proper treatment
of electronic correlations while accessing nonequilibrium
properties.
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