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Doniach phase diagram for the Kondo lattice model on square and triangular lattices
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In this study we systematically investigate the interplay between Ruderman-Kittel-Kasuya-Yosida (RKKY)
and Kondo couplings in the Doniach phase diagram on square and triangular lattices using advanced many-
body techniques. Our findings indicate that the simple Doniach phase diagram is inadequate to fully capture

the complexity of the competition even on these simple lattices. First, we discovered that the potential energy
arising from geometric frustration is comparable to that of RKKY coupling, effectively suppressing long-range
antiferromagnetic (AFM) order on the half-filled triangular lattice. Second, while long-range AFM order can
be successfully established on the square lattice, Kondo singlets begin to form within the long-range magnetic
phase. Upon doping with holes, geometric frustration on the triangular lattice is partially relieved, giving rise
to two distinct magnetic orders that emerge unexpectedly. These orders are intimately linked to the topology of
the interacting Fermi surface. Our comprehensive analysis of the Kondo lattice model on both lattices reveals a
significant interplay between geometric frustration as well as RKKY and Kondo couplings in low-dimensional
systems and offers valuable insights into the discovery of novel phases in related materials.
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Introduction. Heavy fermion compounds are strongly cor-
related electron systems with an extraordinarily large effective
electron mass, as experimentally reflected in the large linear
T dependence of the specific heat, i.e., Cy = yT, as well as
the enhanced Pauli susceptibility x (T") at temperatures below
the so-called Kondo temperature Tx [1-5]. An accepted low-
energy description of the heavy fermion systems is the Kondo
lattice model (KLM) [6]. In this model, conduction electrons
scatter from local moments with coupling strength J. There
are two fundamental energy scales in this model. One is the
superexchange coupling between local moments mediated by
the conduction electrons, which was first considered by Ru-
derman and Kittel [7] and then further elaborated by Kasuya
[8] and Yosida [9], which is now known as the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction K o J>. On the
other hand, when J is large, driven by the antiferromagnetic
coupling J, some conduction electrons form a spin singlet
with the local moment and lose their mobility below Tx. The
local moment is screened by the spin of these conduction
electrons as if it were effectively removed from the system.
This process is known as the Kondo screening. Other electrons
will no longer experience the presence of the local moment but
only scatter over an effective potential, leading to their Fermi
liquid behavior [10,11].
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The RKKY interaction and the Kondo screening dominate
in the small and large Kondo coupling J region and strongly
compete in the intermediate regime, qualitatively described
by the Doniach phase diagram [12,13]. In this Letter we
want to carefully compare the Doniach phase diagram of the
square and triangular lattices with an advanced many-body
algorithm, i.e., the dual-fermion (DF) approach [14-17]. It
is a nonlocal extension of the dynamical mean-field theory
(DMFT) [18-21] and has been verified against numerically
exact methods [22]. (See the Supplemental Material for more
details [23].) The different lattice geometries add an addi-
tional ingredient to the conduction electrons, which itself can
mediate their magnetic couplings. The qualitative difference
between the RKKY interactions and Kondo screening on the
two different lattices is an interesting issue to understand.
Although many theoretical studies have been conducted for
the KLM and other related models [19-21,24-33], a decent
comparison of the two lattices in the same theoretical frame-
work over a wide temperature and doping regime, from which
we expect to extract a convincing conclusion on their charac-
teristic difference, is still lacking.

Doniach phase diagram at half filling. The most striking
difference of the KLM on the square and triangular lat-
tices is the absence of the long-range magnetic order of the
conduction electrons in the RKKY regime on the triangular
lattice [see Fig. 1(b)]. On the square lattice, we observe a
well-defined antiferromagnetic (AFM) long-range order with
magnetic wave vector Q = (w,m) [Fig. 1(a)]. The finite-
temperature AFM phase is due to the approximation inherent
in our many-body algorithms (see the Supplemental Material
[23] for an introduction to the methodology). In real materials,
the presence of other types of magnetic interaction, for exam-
ple, spin anisotropy [34-36], can stabilize the AFM phase at
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FIG. 1. Doniach phase diagram for the half-filled square and triangular lattices. (a) On the square lattice, the RKKY coupling induces a
long-range AFM order in a small to intermediate J regime highlighted in color. The pink and red regions correspond to the AFM phase from
the DF and DMFT calculations, respectively. The different symbols denote the different solutions from the two methods. The Ty and Tx were
obtained from the AFM phase boundary and the inverse DMFT uniform susceptibility. On the right-hand side, the two spin susceptibility
plots correspond to two characteristic parameters for the paramagnetic metal and Kondo insulator with J/t = 0.2/2.2 and T = 0.05/0.10,
respectively. (b) On the triangular lattice, long-range AFM order is absent. The Kondo coupling is the only dominant energy scale. Two
characteristic spin susceptibility behaviors were observed and are denoted by type 1 and type 2, corresponding to the yellow and green circles,
respectively. Examples of the two susceptibilities are shown on the right plots with J/r = 1.2/1.6 and T/t = 0.1667. The hatched region
corresponds to the parameters where spin susceptibility displays a typical 120° AFM correlation (type 2), but no long-range order.

finite temperature and be compatible with the Mermin-Wigner
theorem [37]. The access of the local uniform susceptibility
and its fluctuations calculated in DMFT allows us to extract
the Kondo temperature Ty ~ 1.87'/2¢=*!1// for the square lat-
tice and Tx ~ 1.57J'/2¢=*5/7 for the triangular lattice shown
as the blue dashed line in Fig. 1 [12,38]. The crossing point
of Tx and Ty nicely coincides with JPMFT estimated from the
destruction of the AFM phase in DMFT on the square lattice.

The obvious difference in the KLM on square and trian-
gular lattices highlights the underlying geometrical influence
on the conduction electrons. In addition to the competition
between the RKKY and Kondo couplings, the geometrical
frustration further competes with the two coupling strengths,
destroying the long-range AFM order in the weak-J regime
on the triangular lattice. Later in the discussion for the hole-
doping KLM, we will further see that hole doping partially
releases the geometrical frustration and the two lattices again
give unexpected differences in magnetic response.

After understanding the Doniach diagram, we further dis-
cuss the metal-insulator transition (MIT) phase boundary,
which is not shown in Fig. 1 but jointly determines the ground
state of the KLM with the Doniach phase diagram. The study
of the MIT amounts to calculating the local density of states,
which relates to the imaginary part of the single-particle
Green’s function as A(w) = — Z/E ImG(ié, w)/m. At half fill-
ing, the KLM on both the square and triangle lattices can
develop a charge gap, giving rise to the possibility of forming
both a Kondo metal and a Kondo insulator in the KLM.

In Fig. 2 the metallic and insulating solutions are shown
by different symbols shaded light red and light cyan. We
observe that the MIT phase boundary moves to a smaller
J. with the decrease of temperature on both lattices, dis-
playing a left-going phase boundary. On the square lattice,

the MIT phase boundary is under the dome of the AFM
phase in Fig. 1(a), separating it into two parts. In the weak-
J regime, the conduction electrons are itinerant and AFM
ordered corresponding to RKKY metals. For intermediate J,
where the RKKY and Kondo couplings strongly compete,
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FIG. 2. The MIT phase diagram and spectral functions of the
KLM on the square and triangle lattices. (a) The MIT phase boundary
for the KLM on the square and triangle lattices. (b) Spectral function
along I'-X-M-I" at T /t = 0.04 and with three different couplings J/¢
on the square lattice. (¢c) Same results as in (b) but for the triangular
lattice. All results in this figure are obtained with the DF method.
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the low-temperature states are insulating, which can be either
RKKY-type insulators with long-range AFM order or Kondo
insulators with spin singlets depending on the temperature.
For large J > JPMFT ~ 2.2 > JPF ~ 1.8, these states belong
to Kondo insulators on the square lattice. On the triangular lat-
tice, the situation becomes much simpler. As there is no AFM
long-range order on the triangular lattice, for any parameter
(J, T') the MIT boundary shown in Figs. 2(c) and 2(d) is then
the phase boundary for the Kondo metal and Kondo insulator
at sufficiently low temperature.

We note that the MIT boundary was obtained with a para-
magnetic condition. As magnetic long-range order can gap
the conduction electrons, we suspect that in a spin-polarized
calculation, the MIT will occur for a smaller critical J/¢ on the
square lattice [39]. However, due to the geometric frustration,
no magnetic order is stabilized on the triangular lattice. The
nature of the MIT on the triangular lattice is then a param-
agnetic phase transition. Kondo coupling becomes the only
dominant energy scale on the half-filled triangular KLM.

The presence of the AFM phase on the square lattice has
stimulated an interesting issue concerning the existence of the
Kondo screening inside the magnetic phase, which is not ade-
quately described by the simple Doniach phase diagram with
only one quantum critical point [40—42]. The RKKY-driven
long-range magnetic order may not break down at the same
J. where the Kondo singlets start to form. The Kondo singlet
already forms inside the long-range antiferromagnetic phase.
Only in the weak-coupling regime does the Kondo breakdown
occur [43].

Our results on the spectral function shown in Figs. 2(b)
and 2(c) support this idea [26,43—45]. On the square lattice,
at J/t = 1.5 where the AFM order is present, the spectral
function shows a clear flat band extending from X and I to M,
which is already similar to that in the Kondo insulating phase
with J/t = 2.0. Furthermore, on the triangular lattice, due to
the weak competition of the RKKY coupling, the flat bands
around the Fermi level are more easily established for the
same parameter, confirming the dominant role of the Kondo
coupling in the triangular lattice.

The appearance of the flat bands inside the conduction
electron spectra clearly shows that the simple Doniach phase
diagram is not sufficient in describing the competition be-
tween the RKKY and the Kondo couplings even on simple
lattices such as the square and triangular lattices studied in this
work. On one hand, there is no RKKY long-range order ob-
served on the half-filled triangular lattice. On the other hand,
on the square lattice, it is clear that the Kondo singlets appear
before the long-range antiferromagnetic order breaks down.
The induced flat bands in the conduction electron spectra also
lead to the appearance of the van Hove singularity (vHS) in-
side the local density of states (DOS). According to the study
and classification in Refs. [46,47], vHS can be of different
characters. After fitting the corresponding DOS of Figs. 2(b)
and 2(c) for J/t = 1.5 and 2.0, we found that vHS induced by
the flat bands below the Fermi level is better understood as a
high-order vHS with a power-law divergence. However, due to
the uncertainty introduced by the maximal entropy method for
analytical continuation [48,49], the character of the emerging
VvHS induced by the Kondo coupling cannot be determined
precisely and deserves more study in the future.
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FIG. 3. Magnetic phase diagram of the hole-doped KLM on the
square lattice. The magnetic phase boundary is shown for two hole-
doping levels. The phase boundary is obtained from a Curie-Weiss
fit of the spin susceptibility of the conduction electrons. All results
in this figure are obtained with the DF calculations.

Hole doping. After understanding the half-filled case, we
now move on to the hole-doped KLM to further understand
the persistence of the AFM phase and the emergence of other
types of order. One of these phases is the unexpected magnetic
long-range order on the triangular lattice. In the following,
we will separately discuss the doped KLM on the square and
triangular lattices in Figs. 3 and 4, respectively.

Figure 3 displays the magnetic phase diagram of the KLM
on the square lattice at two different hole doping levels. For
the doped one-band model, there are no correlation-driven or
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FIG. 4. Magnetic phase diagram of the hole-doped KLM on
the triangular lattice. (a) There are two different magnetic orders
discovered at different hole doping levels with J/t = 1.8. One is
the 120° AFM order at 0.6 < (n) < 0.9 and the other is row-wise
AFM order at 0.5 < (n) < 0.6. The spin susceptibility is illustrated
at (b) (n) =0.5 and (c) (n) = 0.7, displaying different magnetic
wave vectors. (d)—(g) Interacting Fermi surface at different electron
concentrations.

L032014-3



RUIXTANG ZHOU, XUEFENG ZHANG, AND GANG LI

PHYSICAL REVIEW RESEARCH 5, L032014 (2023)

filling-driven insulating states. States for all of the parameters
shown in Fig. 3 are metallic. We observed two characteristic
features of the doped KLM on the square lattice. The first one
is the shrink of the AFM phase space with the increase of
hole doping. With the increase of the hole-doping level, the
Néel temperature decreases. Our result is consistent with the
observation in the dynamical cluster approximation calcula-
tion [26]. Moreover, in the weak-J regime, the AFM phase
is completely suppressed. Our finite-temperature calculation
does not capture any signature of long-range RKKY order for
J/t < 0.5. We note that J,.x, where the AFM order vanishes,
becomes slightly larger for (n) = 0.9 as compared to Fig. 1(a).
This can be an artificial effect caused by the fact that we
only considered the second DF self-energy diagram and did
not employ a full charge self-consistency on both the DMFT
and DF levels. Employing the ladder DF self-energy scheme
[16] and the full charge self-consistency with the simultaneous
convergence of the DMFT and DF solutions will likely reduce
Jmax to a value smaller than that for half filling, as observed in
the single-band Hubbard model [50].

After demonstrating the destruction of the RKKY interac-
tions in the hole-doped KLM on the square lattice, we now
turn the focus to the hole-doped triangular lattice. Due to the
absence of long-range orders in the half-filled case, we do not
expect a considerable difference with hole doping. Similar
to the square lattice, we anticipated that hole doping would
further suppress the RKKY coupling such that the magnetic
phase diagram of the KLM on the triangular lattice would
remain completely featureless. Instead, we found a rich mag-
netic phase diagram as displayed in Fig. 4(a). We discovered
two long-range magnetic orders at different doping levels.
With the increase of hole doping, we first observe a 120° AFM
phase for a wide range of electron occupancy 0.6 < (n) <
0.9, shown as the pink region in Fig. 4(a). The Néel tempera-
ture reaches a maximum at (n) ~ 0.7. Further increasing the
hole doping, a new magnetic correlation with row-wise-type
spin arrangement appears when the electron occupancy is
below (n) < 0.6. The smallest electron occupancy studied in
our work is (n) = 0.5, which is in the row-wise AFM phase
as well.

We attribute the emergence of magnetic orders in the hole-
doped triangular KLM to the partial release of geometric
frustration and the Fermi surface nesting effect. In compar-
ison to the square lattice, the Fermi surface is not perfectly
nested at half filling. There is no spontaneous spin instability
for the noninteracting tight-binding model on the triangular
lattice. In the Hubbard or periodic Anderson model, only
when the coupling between two electrons is strong enough,
the classical 120° AFM phase can establish [51-53]. In the
KLM, the effective coupling of conduction electrons stems
from the superexchange involving two scattering processes
at two neighboring sites and the coupling is proportional to
J?. It is easier for the conduction electrons to magnetically
order at larger values of J/¢, where, however, the formation
of the Kondo singlet will strongly compete. Thus, if it exists,
the 120° AFM phase will only appear at intermediate J/t at
half filling. However, as shown in Fig. 1(b), the superexchange
coupling between conduction electrons alone is not sufficient
to establish a long-range order before the formation of the
Kondo singlet. With hole doping though, the Fermi surface

starts to play a role and triggers the emergence of two different
magnetic orders.

Away from half filling, the interacting Fermi surface grad-
ually changes topology. We show in Figs. 4(d)—4(g) the
Fermi surface obtained as A(I;, w=Ef) = —ImG(l;, w)/m
at different electron concentrations. At (n) = 0.6 and 0.7,
the interacting Fermi surface shows a clear hexagonal shape
with the nesting vectors corresponding exactly to the I'-K
vector. Further increasing electron concentration changes the
hexagon at I' to six triangles located at the K point. The
strong density around the K point supports coherent scattering
between any two K points with the scattering vector the same
as the T'-K vector. The size of the Fermi surface at each K
becomes smaller with the further increase of concentration,
leading to reduced coherence scattering in this case. As a
consequence, we found that the Néel temperature reaches a
maximum around (n) = 0.7 and decreases with the increase
of electron concentration. At smaller electron occupancy, for
example, (n) = 0.5, the hexagon Fermi surface shrinks to a
circle around T point. A circular Fermi surface does not have
nesting vectors and usually does not trigger any magnetic
instability. In fact, at half filling the Fermi surface of the
tight-binding model on the triangular lattice is also a circle
and, as we know, no magnetic long-range order can be es-
tablished. Here, at (n) = 0.5, the diameter of the interacting
circular Fermi surface is the same as the I'-M vector. Both the
intra- and inter-Fermi surface scatterings with this wave vector
coherently contribute to the magnetic instability, leading to the
peak structure of the spin susceptibility with the same wave
vector shown in Fig. 4(b). At half filling, however, the intra-
and inter-Fermi surface scatterings correspond to different
wave vectors and cannot form coherence.

Discussion and conclusions. The square and triangular lat-
tices differ in their geometry and frustration to the long-range
spin arrangement. There have been many theoretical studies
of correlated models, such as the Hubbard model [52-65],
on these two lattices, which establish a fruitful understanding
of the different electronic and magnetic responses on them.
However, the KLM has not been thoroughly understood and
compared on the two lattices.

Our first important observation is the different magnetic
responses of the half-filled KLM on the square and triangular
lattices. The presence or absence of long-range AFM order
on the square and triangular lattices indicates that the RKKY
exchange coupling, as a superexchange coupling involving
multiple Coulomb scattering processes, is sensitive and com-
parable in energy scale to the potential created by geometric
frustrations. In comparison to the Hubbard model on the tri-
angular lattice, in which the strong Coulomb repulsion is able
to stabilize long-range AFM order, the KLM on the triangular
lattice is featureless, with the Kondo coupling being the only
dominant energy scale.

However, in doping with holes, more exotic differences
appear. The KLM on the square lattice shows the expected
destruction of the AFM long-range order with the increase
of hole concentration, while on the triangular lattice, two
magnetic phases appear unexpectedly at different hole dop-
ing levels. A 120° AFM phase emerges for a wide range
of electron occupancy 0.6 < (n) < 0.9. Within 0.5 < (n) <
0.6, a row-wise-type AFM phase with the magnetic wave
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vector Q = (7, 0) emerges. The analysis of the interacting
Fermi surface leads to our second important observation.
We found that the 120° AFM order is induced by the intra-
Fermi-surface scattering which shows clear nesting topology
and favors the coherent magnetic excitation with wave vec-
tor I'-K. At higher hole doping, the Fermi surface topology
transforms to a circular shape. The coherent scattering of
the intra- and inter-Fermi-surface scattering promotes a row-
wise AFM order. Due to the critical condition and the
less strong coherence scatterings, the row-wise AFM phase
demonstrates lower Néel temperatures and smaller phase
space.

Our systematic study of the KLM on the square and tri-
angular lattices provides deep insight into the underlying
competition of the RKKY coupling and the potential energy
created by the geometrical frustration. The Doniach phase dia-
grams and magnetic and electronic excitations of the KLM for
both half-filling and doped cases constitute a comprehensive

understanding of the KLM on low-dimensional lattices and
may pave the way for the study of related materials.

Acknowledgments. G.L. thanks H. Monien, A. Rubtsov,
P. Werner, F. Assaad, W. Hanke, R. Thomale, A. I. Lichen-
stein, and K. Held. This work was supported by the National
Key R&D Program of China (Grant No. 2022YFA1402703),
National Natural Science Foundation of China (Grant
No. 11874263), Shanghai 2021-Fundamental Research Aera
(Grant No. 21JC1404700), Shanghai Technology Innovation
Action Plan (Grant No. 20DZ1100605), and Sino-German
Mobility program (Grant No. M-0006). X.Z. acknowledges
Postdoctoral Special Funds for Theoretical Physics of the
National Natural Science Foundation of China (Grant No.
12147124). Some of the calculations were performed at the
HPC Platform of ShanghaiTech University Library and Infor-
mation Services and at the School of Physical Science and
Technology.

[1] K. Andres, J. E. Graebner, and H. R. Ott, 4 f-Virtual-Bound-
State Formation in CeAl; at Low Temperatures, Phys. Rev. Lett.
35, 1779 (1975).

[2] P. Fulde, J. Keller, and G. Zwicknagl, Theory of Heavy Fermion
Systems (Academic, New York, 1988), pp. 1-150.

[3] Y. Onuki and T. Komatsubara, in Anomalous Rare Earths and
Actinides, edited by J. Boucherle, J. Flouquet, C. Lacroix, and
J. Rossat-Mignod (Elsevier, Amsterdam, 1987), pp. 281-288.

[4] F. Steglich, U. Rauchschwalbe, U. Gottwick, H. M. Mayer, G.
Sparn, N. Grewe, U. Poppe, and J. J. M. Franse, Heavy fermions
in Kondo lattice compounds (invited), J. Appl. Phys. 57, 3054
(1985).

[5] G.R. Stewart, Heavy-fermion systems, Rev. Mod. Phys. 56, 755
(1984).

[6] P. Coleman, Introduction to Many-Body Physics (Cambridge
University Press, Cambridge, 2015).

[71 M. A. Ruderman and C. Kittel, Indirect exchange coupling of
nuclear magnetic moments by conduction electrons, Phys. Rev.
96, 99 (1954).

[8] T. Kasuya, A theory of metallic ferro- and antiferromagnetism
on Zener’s model, Prog. Theor. Phys. 16, 45 (1956).

[9] K. Yosida, Magnetic properties of Cu-Mn alloys, Phys. Rev.
106, 893 (1957).

[10] M. Lavagna and C. Pépin, The Kondo lattice model, Acta Phys.
Pol. B 29, 3753 (1998).

[11] M. Gulacsi, The Kondo lattice model, Philos. Mag. 86, 1907
(20006).

[12] S. Doniach, The Kondo lattice and weak antiferromagnetism,
Physica B+C 91, 231 (1977).

[13] S. Doniach, in Valence Instabilities and Related Narrow-Band
Phenomena, edited by R. D. Parks (Springer US, Boston, 1977),
pp. 169-176.

[14] A. N. Rubtsov, M. 1. Katsnelson, and A. I. Lichtenstein, Dual
fermion approach to nonlocal correlations in the Hubbard
model, Phys. Rev. B 77, 033101 (2008).

[15] A. N. Rubtsov, M. I. Katsnelson, A. I. Lichtenstein, and A.
Georges, Dual fermion approach to the two-dimensional Hub-

bard model: Antiferromagnetic fluctuations and Fermi arcs,
Phys. Rev. B 79, 045133 (2009).

[16] H. Hafermann, G. Li, A. N. Rubtsov, M. 1. Katsnelson, A. I.
Lichtenstein, and H. Monien, Efficient Perturbation Theory for
Quantum Lattice Models, Phys. Rev. Lett. 102, 206401 (2009).

[17] G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin, A. E.
Antipov, M. L. Katsnelson, A. I. Lichtenstein, A. N. Rubtsov,
and K. Held, Diagrammatic routes to nonlocal correlations be-
yond dynamical mean field theory, Rev. Mod. Phys. 90, 025003
(2018).

[18] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996).

[19] S. Burdin, D. R. Grempel, and A. Georges, Heavy-fermion and
spin-liquid behavior in a Kondo lattice with magnetic frustra-
tion, Phys. Rev. B 66, 045111 (2002).

[20] J. Otsuki, H. Kusunose, and Y. Kuramoto, Evolution of a Large
Fermi Surface in the Kondo Lattice, Phys. Rev. Lett. 102,
017202 (2009).

[21] R. Peters, S. Hoshino, N. Kawakami, J. Otsuki, and Y.
Kuramoto, Charge order in Kondo lattice systems, Phys. Rev.
B 87, 165133 (2013).

[22] T. Schifer, N. Wentzell, F. gimkovic, Y.-Y. He, C. Hille, M.
Klett, C. J. Eckhardt, B. Arzhang, V. Harkov, F.-M. Le Régent,
A. Kirsch, Y. Wang, A. J. Kim, E. Kozik, E. A. Stepanov,
A. Kauch, S. Andergassen, P. Hansmann, D. Rohe, Y. M.
Vilk et al., Tracking the Footprints of Spin Fluctuations: A
MultiMethod, MultiMessenger Study of the Two-Dimensional
Hubbard Model, Phys. Rev. X 11, 011058 (2021).

[23] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.5.L.032014 for details.

[24] P. Fazekas and E. Miiller-Hartmann, Magnetic and non-
magnetic ground states of the Kondo lattice, Z. Phys. B 85, 285
(1991).

[25] C. Lacroix and M. Cyrot, Phase diagram of the Kondo lattice,
Phys. Rev. B 20, 1969 (1979).

L032014-5


https://doi.org/10.1103/PhysRevLett.35.1779
https://doi.org/10.1063/1.335212
https://doi.org/10.1103/RevModPhys.56.755
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1103/PhysRev.106.893
https://hal.science/hal-01896229
https://doi.org/10.1080/14786430500355045
https://doi.org/10.1016/0378-4363(77)90190-5
https://doi.org/10.1103/PhysRevB.77.033101
https://doi.org/10.1103/PhysRevB.79.045133
https://doi.org/10.1103/PhysRevLett.102.206401
https://doi.org/10.1103/RevModPhys.90.025003
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevB.66.045111
https://doi.org/10.1103/PhysRevLett.102.017202
https://doi.org/10.1103/PhysRevB.87.165133
https://doi.org/10.1103/PhysRevX.11.011058
http://link.aps.org/supplemental/10.1103/PhysRevResearch.5.L032014
https://doi.org/10.1007/BF01313231
https://doi.org/10.1103/PhysRevB.20.1969

RUIXTANG ZHOU, XUEFENG ZHANG, AND GANG LI

PHYSICAL REVIEW RESEARCH 5, L032014 (2023)

[26] L. C. Martin and F. F. Assaad, Evolution of the Fermi
Surface across a Magnetic Order-Disorder Transition in the
Two-Dimensional Kondo Lattice Model: A Dynamical Cluster
Approach, Phys. Rev. Lett. 101, 066404 (2008).

[27] L. C. Martin, M. Bercx, and F. F. Assaad, Fermi surface
topology of the two-dimensional Kondo lattice model: Dynam-
ical cluster approximation approach, Phys. Rev. B 82, 245105
(2010).

[28] J. Otsuki, H. Kusunose, and Y. Kuramoto, The Kondo lattice
model in infinite dimensions: I. Formalism, J. Phys. Soc. Jpn.
78, 014702 (2009).

[29] J. Otsuki, H. Kusunose, and Y. Kuramoto, The Kondo lat-
tice model in infinite dimensions: II. Static susceptibilities and
phase diagram, J. Phys. Soc. Jpn. 78, 034719 (2009).

[30] Y. Akagi, M. Udagawa, and Y. Motome, Hidden Multiple-Spin
Interactions as an Origin of Spin Scalar Chiral Order in Frus-
trated Kondo Lattice Models, Phys. Rev. Lett. 108, 096401
(2012).

[31] M. W. Aulbach, F. F. Assaad, and M. Potthoff, Dynamical
mean-field study of partial Kondo screening in the periodic
Anderson model on the triangular lattice, Phys. Rev. B 92,
235131 (2015).

[32] M. KeBler and R. Eder, Magnetic phases of the triangular
Kondo lattice, Phys. Rev. B 102, 235125 (2020).

[33] K. Inui and Y. Motome, Channel-selective non-Fermi liquid be-
havior in the two-channel Kondo lattice model under a magnetic
field, Phys. Rev. B 102, 155126 (2020).

[34] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R.
Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire,
D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu,
Layer-dependent ferromagnetism in a van der Waals crystal
down to the monolayer limit, Nature (London) 546, 270 (2017).

[35] C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W.
Bao, C. Wang, Y. Wang, Z. Qiu, R. Cava, S. G. Louie, J.
Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in
two-dimensional van der Waals crystals, Nature (London) 546,
265 (2017).

[36] J. Zhang, X. Cai, W. Xia, A. Liang, J. Huang, C. Wang, L.
Yang, H. Yuan, Y. Chen, S. Zhang, Y. Guo, Z. Liu, and G.
Li, Unveiling Electronic Correlation and the Ferromagnetic Su-
perexchange Mechanism in the van der Waals Crystal CrSiTes,
Phys. Rev. Lett. 123, 047203 (2019).

[37] N. D. Mermin and H. Wagner, Absence of Ferromagnetism
or Antiferromagnetism in One- or Two-Dimensional Isotropic
Heisenberg Models, Phys. Rev. Lett. 17, 1133 (1966).

[38] P. Coleman, 1 expansion for the Kondo lattice, Phys. Rev. B
28, 5255 (1983).

[39] S. Hoshino, J. Otsuki, and Y. Kuramoto, Itinerant antiferromag-
netism in infinite dimensional Kondo lattice, Phys. Rev. B 81,
113108 (2010).

[40] V.Y. Irkhin and M. 1. Katsnelson, Scaling picture of magnetism
formation in the anomalous f-electron systems: Interplay of the
Kondo effect and spin dynamics, Phys. Rev. B 56, 8109 (1997).

[41] V. Y. Irkhin and M. 1. Katsnelson, Scaling theory of magnetic
ordering in the Kondo lattices with anisotropic exchange inter-
actions, Phys. Rev. B 59, 9348 (1999).

[42] V. Y. Irkhin and M. 1. Katsnelson, Non-fermi-liquid behavior
in Kondo lattices induced by peculiarities of magnetic ordering
and spin dynamics, Phys. Rev. B 61, 14640 (2000).

[43] M. Raczkowski, B. Danu, and F. F. Assaad, Breakdown of

heavy quasiparticles in a honeycomb Kondo lattice: A quantum
Monte Carlo study, Phys. Rev. B 106, L161115 (2022).

[44] H. Watanabe and M. Ogata, Fermi-Surface Reconstruction
without Breakdown of Kondo Screening at the Quantum Criti-
cal Point, Phys. Rev. Lett. 99, 136401 (2007).

[45] B. Danu, Z. Liu, F. E. Assaad, and M. Raczkowski, Zooming in
on heavy fermions in Kondo lattice models, Phys. Rev. B 104,
155128 (2021).

[46] A. Chandrasekaran, A. Shtyk, J. J. Betouras, and C. Chamon,
Catastrophe theory classification of Fermi surface topologi-
cal transitions in two dimensions, Phys. Rev. Res. 2, 013355
(2020).

[47] N. F. Q. Yuan and L. Fu, Classification of critical points in
energy bands based on topology, scaling, and symmetry, Phys.
Rev. B 101, 125120 (2020).

[48] R. N. Silver, D. S. Sivia, and J. E. Gubernatis, Maximum-
entropy method for analytic continuation of quantum Monte
Carlo data, Phys. Rev. B 41, 2380 (1990).

[49] M. Jarrell and J. Gubernatis, Bayesian inference and the an-
alytic continuation of imaginary-time quantum Monte Carlo
data, Phys. Rep. 269, 133 (1996).

[50] J. Otsuki, Competing d-Wave and p-Wave Spin-Singlet Super-
conductivities in the Two-Dimensional Kondo Lattice, Phys.
Rev. Lett. 115, 036404 (2015).

[51] B. Kyung and A.-M. S. Tremblay, Mott Transition, An-
tiferromagnetism, and d-Wave Superconductivity in Two-
Dimensional Organic Conductors, Phys. Rev. Lett. 97, 046402
(2006).

[52] G.Li, A. E. Antipov, A. N. Rubtsov, S. Kirchner, and W. Hanke,
Competing phases of the Hubbard model on a triangular lattice:
Insights from the entropy, Phys. Rev. B 89, 161118(R) (2014).

[53] X. Gao, C. Hu, J. Sun, X.-Q. Wang, H.-Q. Lin, and G. Li,
Reentrant metal-insulator transition and competing magnetic
interactions on a triangular lattice with second nearest-neighbor
hopping, Phys. Rev. B 103, 235134 (2021).

[54] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E.
Gubernatis, and R. T. Scalettar, Numerical study of the two-
dimensional Hubbard model, Phys. Rev. B 40, 506 (1989).

[55] C. Grober, R. Eder, and W. Hanke, Anomalous low-doping
phase of the Hubbard model, Phys. Rev. B 62, 4336 (2000).

[56] H. Lee, G. Li, and H. Monien, Hubbard model on the triangular
lattice using dynamical cluster approximation and dual fermion
methods, Phys. Rev. B 78, 205117 (2008).

[57] C. N. Varney, C.-R. Lee, Z. J. Bai, S. Chiesa, M. Jarrell,
and R. T. Scalettar, Quantum Monte Carlo study of the two-
dimensional fermion Hubbard model, Phys. Rev. B 80, 075116
(2009).

[58] N. Bulut, D. J. Scalapino, and S. R. White, One-Electron Spec-
tral Weight of the Doped Two-Dimensional Hubbard Model,
Phys. Rev. Lett. 72, 705 (1994).

[59] M. Laubach, R. Thomale, C. Platt, W. Hanke, and G. Li, Phase
diagram of the Hubbard model on the anisotropic triangular
lattice, Phys. Rev. B 91, 245125 (2015).

[60] J. Kokalj and R. H. McKenzie, Enhancement of thermal ex-
pansion of organic charge-transfer salts by strong electronic
correlations, Phys. Rev. B 91, 205121 (2015).

[61] G. Rohringer and A. Toschi, Impact of nonlocal correlations
over different energy scales: A dynamical vertex approximation
study, Phys. Rev. B 94, 125144 (2016).

[62] T. Shirakawa, T. Tohyama, J. Kokalj, S. Sota, and S. Yunoki,

L032014-6


https://doi.org/10.1103/PhysRevLett.101.066404
https://doi.org/10.1103/PhysRevB.82.245105
https://doi.org/10.1143/JPSJ.78.014702
https://doi.org/10.1143/JPSJ.78.034719
https://doi.org/10.1103/PhysRevLett.108.096401
https://doi.org/10.1103/PhysRevB.92.235131
https://doi.org/10.1103/PhysRevB.102.235125
https://doi.org/10.1103/PhysRevB.102.155126
https://doi.org/10.1038/nature22391
https://doi.org/10.1038/nature22060
https://doi.org/10.1103/PhysRevLett.123.047203
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevB.28.5255
https://doi.org/10.1103/PhysRevB.81.113108
https://doi.org/10.1103/PhysRevB.56.8109
https://doi.org/10.1103/PhysRevB.59.9348
https://doi.org/10.1103/PhysRevB.61.14640
https://doi.org/10.1103/PhysRevB.106.L161115
https://doi.org/10.1103/PhysRevLett.99.136401
https://doi.org/10.1103/PhysRevB.104.155128
https://doi.org/10.1103/PhysRevResearch.2.013355
https://doi.org/10.1103/PhysRevB.101.125120
https://doi.org/10.1103/PhysRevB.41.2380
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1103/PhysRevLett.115.036404
https://doi.org/10.1103/PhysRevLett.97.046402
https://doi.org/10.1103/PhysRevB.89.161118
https://doi.org/10.1103/PhysRevB.103.235134
https://doi.org/10.1103/PhysRevB.40.506
https://doi.org/10.1103/PhysRevB.62.4336
https://doi.org/10.1103/PhysRevB.78.205117
https://doi.org/10.1103/PhysRevB.80.075116
https://doi.org/10.1103/PhysRevLett.72.705
https://doi.org/10.1103/PhysRevB.91.245125
https://doi.org/10.1103/PhysRevB.91.205121
https://doi.org/10.1103/PhysRevB.94.125144

DONIACH PHASE DIAGRAM FOR THE KONDO LATTICE MODEL ... PHYSICAL REVIEW RESEARCH 5, L032014 (2023)

[64] P. Sahebsara and D. Sénéchal, Hubbard Model on the Triangular
Lattice: Spiral Order and Spin Liquid, Phys. Rev. Lett. 100,
136402 (2008).

[65] S. Li and E. Gull, Magnetic and charge susceptibilities in the
half-filled triangular lattice Hubbard model, Phys. Rev. Res. 2,

013295 (2020).

Ground-state phase diagram of the triangular lattice Hubbard
model by the density-matrix renormalization group method,
Phys. Rev. B 96, 205130 (2017).

[63] M. Qin, T. Schifer, S. Andergassen, P. Corboz, and E. Gull,
The Hubbard model: A computational perspective, Annu. Rev.
Condens. Matter Phys. 13, 275 (2022).

L032014-7


https://doi.org/10.1103/PhysRevB.96.205130
https://doi.org/10.1146/annurev-conmatphys-090921-033948
https://doi.org/10.1103/PhysRevLett.100.136402
https://doi.org/10.1103/PhysRevResearch.2.013295

