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Activity-induced droplet propulsion and multifractality
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We elucidate the crucial role that confinement plays in collective and emergent behaviors in active- or
living-matter systems by developing a minimal hydrodynamic model, without an orientational order parameter,
for assemblies of contractile swimmers encapsulated in a droplet of a binary-fluid emulsion. Our model uses
two coupled scalar order parameters, φ and ψ , which capture, respectively, the droplet interface and the
activity of the contractile swimmers inside this droplet. These order parameters are also coupled to the velocity
field u. At low activity, our model yields a self-propelling droplet whose center of mass (CM) displays rectilinear
motion, powered by the spatiotemporal evolution of the field ψ , which leads to a time-dependent vortex dipole
at one end of the droplet. As we increase the activity, this CM shows chaotic superdiffusive motion, which we
characterize by its mean-square displacement; and the droplet interface exhibits multifractal fluctuations, whose
spectrum of exponents we calculate. We explore the implications of our results for experiments on active droplets
of contractile swimmers.
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Active matter comprises systems that are far from equi-
librium and in which the constituents extract energy from
their surroundings, do mechanical work, and dissipate energy
to the same environment [1–4]. The self-organization of the
constituents of such systems can lead to large-scale pattern
formation, observed in, e.g., crowds [5,6], fish schools [7],
bird flocks [8,9], and bacterial colonies [10]. They exhibit
a variety of fascinating emergent phenomena, e.g., motility-
induced phase separation (MIPS), in which an initially
uniform state of active swimmers separates spontaneously
into dense and dilute phases, driven by persistent motion and
repulsion [11–13]. These studies of MIPS have been limited
to unbounded domains; but most experiments, with motile
bacteria or synthetic microswimmers, use confinement—solid
immovable or soft, e.g., by a droplet boundary—that plays a
key role in the formation of spatiotemporal patterns in assem-
blies of active microswimmers [14–16].

We develop a phase-field model to study MIPS in assem-
blies of contractile swimmers encapsulated in a binary-fluid
emulsion droplet. At low activity, we obtain a self-propelling
droplet whose center of mass (CM) displays rectilinear mo-
tion, powered by the spatiotemporal evolution of an active
scalar field, which leads to a time-dependent vortex dipole
at one end of the droplet. With increasing activity, this CM
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displays superdiffusive motion that is driven by active turbu-
lence. Such motion is reminiscent of a Lévy walk [17], which
has been obtained in recent experiments on chemically active
droplets [18]. The droplet interface exhibits multifractal fluc-
tuations. This propulsion does not require any orientational
ordering, unlike that in studies with active droplets powered
by active nematics or polar gels [19–21]. Our results are
of direct relevance to droplets of contractile swimmers such
as Chlamydomonas reinhardtii [22,23] (C. reinhardtii) and
synthetic active colloids [24,25].

The phase-field theory that we develop has two conserved
scalar order parameters, φ and ψ . The former distinguishes
between two coexisting liquid phases, separated by an in-
terface at the droplet boundary; the latter is related to the
microswimmers concentration. φ and ψ are coupled to each
other and to the flow velocity u, as in the Cahn-Hilliard-
Navier-Stokes (CHNS) system or model H [26,27]. In the
absence of the direct coupling between the two order pa-
rameters, our model decouples into (a) the CHNS model,
for φ and u, that has been used to study multifractal
droplet dynamics [26] in a turbulent flow and (b) the active
model H, for ψ and u, that has been used to study MIPS
[11,28,29].

We carry out pseudospectral direct numerical simulations
(DNSs) of our model to uncover the dependence of the spa-
tiotemporal evolution of an emergent active droplet on the
activity parameter A (defined below). For low values of A,
the center of mass (CM) of the droplet shows rectilinear
motion, associated with a time-dependent vortex dipole at
one of its ends; as A increases, the droplet fluctuates and
its CM exhibits a crossover from rectilinear to superdiffusive
motion, reminiscent of Lévy walks [18,30–33]. Furthermore,
at large values of A, the bacterial field generates low Reynolds
number, but turbulent flows and multifractal deformation of
the active-droplet boundary.
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where � is the region we consider and F is a Landau-
Ginzburg-type free-energy functional, whose first term is a
double-well potential, for the φ field, with minima at φ = ±1
corresponding to two pure binary-fluid phases, which are sep-
arated by a smooth interface of width ε1 and surface tension
σ1 [as in the statistical mechanics of binary mixtures (see,
e.g., Ref. [34])]. For binary-fluid mixtures, the CHNS equa-
tions were derived from phenomenological arguments (see,
e.g., Ref. [35], which referred to CHNS as model H). In the
generalized-CHNS model that we employ, the second term
in F is a double-well potential for the ψ field, with minima
at ψ = ±1 corresponding to dense and dilute phases of the
microswimmers, which are separated by a smooth interface
of width ε2 and surface tension σ2 (as, e.g., in the study of
MIPS in Ref. [28]). The attractive coupling β > 0 favors con-
figurations in which φ and ψ have the same sign. To address
experiments on active droplets carried out under planar con-
finement, we use the following two-dimensional (2D) active
CHNS equations [see the Supplemental Material (SM) [36]
for our CHNS formalism]:

∂tφ + (u · ∇)φ = M1∇2

(
δF
δφ

)
, (2)

∂tψ + (u · ∇)ψ = M2∇2

(
δF
δψ

)
, (3)

∂tω + (u · ∇)ω = ν∇2ω − αω + [∇ × (Sφ + Sψ )], (4)

∇ · u = 0 ; ω = (∇ × u), (5)

Sφ = −(3/2)σ1ε1∇2φ∇φ, (6)

Sψ = −(3/2)σ̃2ε2∇2ψ∇ψ, (7)

where the constant fluid density ρ = 1, the advection-
diffusion equations (2) and (3) use the constant mobilities M1

and M2 for φ and ψ , respectively, and the 2D incompressible
Navier-Stokes equations (4) and (5) use the vorticity ω, the
kinematic viscosity ν, and the bottom friction α. In addition,
the interfacial stress Sφ [Eq. (6)] from φ is derived from
F ; for the active stress Sψ [Eq. (7)] from ψ , we use the
active-model-H formulation for MIPS [11,28,29]; both ω

and [∇ × (Sφ + Sψ )] lie normal to the 2D plane. We refer
to ψ as the active scalar [37]. Note that the mechanical
surface tension σ̃2 �= σ2; and σ̃2 can take both negative and
positive values, unlike σ1 and σ2 which are always positive.
For contractile (extensile) swimmers, σ̃2 < 0 (σ̃2 > 0) and
the system shows arrested phase separation (complete
phase separation) [28]. The spatiotemporal evolution of the
fields in Eqs. (1)–(7) depends on the initial conditions (see
below) and the nondimensional Cahn numbers Cn1 = ε1/R0

and Cn2 = ε2/R0, Weber numbers We1 = R0U 2
0 /σ1 and

We2 = R0U 2
0 /σ2, Peclet numbers Pe1 = R0U0ε1/(M1σ1) and

Pe2 = R0U0ε2/(M2σ2), order-parameter couplings β ′
1 =

βε1/σ1 and β ′
2 = βε2/σ2, friction α′ = αR0/U0, Reynolds

number Re = R0U0/ν, where U0 = 〈UCM (t )〉t , with UCM the
speed of the droplet’s center of mass (CM) (see below and the
Supplemental Material (SM) [36]), and, most importantly, the
activity

A = |σ̃2|/σ2. (8)

We concentrate on contractile swimmers with σ̃2 < 0. In Ta-
ble I of the SM [36], we list the parameters for our DNS runs
R1–R7.

We consider an initially stationary and circular droplet, of
radius R0, and with its center at (x0,1, x0,2) = (π, π ),

u(x, t = 0) = 0 ,

φ(x, t = 0) = tanh

(
R0 − √

(x1 − x0,1)2 + (x2 − x0,2)2

ε1

)
,

ψ (x, t = 0) =
{
ψ0(x) for |x| � R0

−1 for |x| > R0 ,
(9)

and ψ0(x) is a random number distributed uniformly on the
interval [−0.1, 0.1]. Regions with negative (positive) values
of φ and ψ have low (high) densities of these scalars.

Our DNS of Eqs. (1)–(7) employs a standard Fourier pseu-
dospectral method [38], with the 1/2 rule for the removal
of aliasing errors. We use a square domain of side L = 2π ,
with periodic boundary conditions in both spatial directions,
and N2 collocation points. For time integration, we use the
semi-implicit exponential time differencing Runge-Kutta-2
(ETDRK-2) method [39]. Our computer program is written in
CUDA C and is optimized for recent GPU architectures, such
as the one used in the NVIDIA A100 processor.

To monitor the spatiotemporal evolution of the initial
droplet [Eq. (9)], we obtain pseudocolor plots of φ and ψ

(Fig. 1) and we compute

UCM (t ) =

√√√√√ 2∑
i=1

⎡
⎣ ∑

x�φ(x,t )>0

ui(x, t )

⎤
⎦

2

,

E (k, t ) = 1

2

∑
k−1/2<k′<k+1/2

[
û(k′, t ) · û(−k′, t )

]
,

Sψ (k, t ) =
∑

k−1/2<k′<k+1/2

|ψ̂ (k′, t )|2,

Sφ (k, t ) =
∑

k−1/2<k′<k+1/2

|φ̂(k′, t )|2,

L(t ) = 2π
∑

k

Sψ (k, t )/
∑

k

kSψ (k, t ),

M(t ) =
〈

2∑
i=1

[xCM,i(t ) − xCM,i(t0)]2

〉
,

�(t ) = [S (t )/S0(t )] − 1, (10)

which are, respectively, the speed of the droplet’s CM, the
fluid energy spectrum, the spectra of ψ and φ, a length scale
that follows from Sψ , the mean-square displacement of the
droplet’s CM, and the normalized perimeter of the φ = 0
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FIG. 1. Illustrative pseudocolor plots of ψ , with the φ = 0 con-
tour shown in magenta, at different representative times (increasing
from left to right) for (a) A = 0 (no droplet propulsion), (b) A = 0.15
(rectilinear droplet propulsion), and (d) A = 1 (turbulent droplet
propulsion). In (c), we show, for A = 0.15, vector plots of the ve-
locity field u, with the φ = 0 contour line (magenta), overlaid on
a pseudocolor plot of the vorticity ω normalized by its maximal
value; the lengths of the velocity vectors are proportional to their
magnitudes. (See videos V1–V4 in the SM [36].)

contour that bounds the droplet [S (t ) is the perimeter of the
droplet at time t and S0(t ) is the perimeter of a circular droplet
of equal area at time t]. The subscripts i and CM denote Carte-
sian components and the droplet’s CM, respectively, carets
indicate spatial Fourier transform, and k and k′ are the moduli
of the wave vectors k and k′.

In Fig. 1, we illustrate the evolution of the initial droplet
[Eq. (9)] via pseudocolor plots of ψ and the φ = 0 contour
(in magenta), at different representative times and A = 0 [row
(a)], A = 0.15 [row (b)], and A = 1 [row (d)]; in row (c), we
show, for A = 0.15, vector plots of the velocity field u, with
the φ = 0 contour line, overlaid on a pseudocolor plot of the
vorticity ω normalized by its maximal value. Case A = 0 [row
(a)]: there is no mean flow, i.e., UCM (t ) = 0 for all t ; however,
as time increase (from left to right), the initially homogeneous
mixture of active matter becomes unstable and undergoes
phase separation via the formation of self-organized alternat-
ing rings of regions with positive and negative values of ψ

(cf. oil-water phase separation in a microfluidic droplet [40]).
Eventually, complete phase separation occurs, via successive
ring collapses, and we obtain a ψ > 0 region (red) surrounded
by a ψ < 0 ring (blue) inside the φ = 0 contour.

As we increase A, we find a remarkable transition to a
self-propelling droplet, whose motion we depict, for the il-

lustrative value A = 0.15, via pseudocolor plots in Figs. 1(b)
and the video V2 in the SM [36]. Initially, phase separation
tries to set in, but is partially arrested. At this stage the flow
field is dominated by a vortex quadrupole [second panels in
Figs. 1(b) and 1(c)]. Thereafter, an umbilicus, which forms
at one end of the droplet, oscillates periodically in time as
it shoots out a tiny blue bead, with ψ < 0 [third and fourth
panels in Fig. 1(b)]. The associated flow patterns contain an
oscillating vortex dipole (third and fourth panels in Fig. 1(c)
and the video V3 in the SM [36]) that propels the droplet
along a straight line [the orange trajectory in Fig. 2(b)] [41].
These oscillations are mirrored in the periodic time depen-
dence of L(t )/R0 [magenta curve in Fig. 2(a)] and UCM (t )
[magenta curve in Fig. 3(a)], and also in a limit cycle whose
projection can be viewed in the L(t ) − UCM (t ) plane (magenta
curve in Fig. 1(a) in the SM [36]). Thus, as we increase A,
the initial transition from a static to a self-propelling droplet
can be associated with the formation of a stable limit cycle.
Self-propulsion is a consequence of the arrested phase sepa-
ration, which leads to a nonisotropic distribution of the active
field ψ .

For sufficiently large A (� 0.5), statistically steady active-
fluid turbulence develops inside the droplet and leads to
important modifications in its structure and propulsion: (a)
We find a significant suppression of the phase separation
of the active scalar [Figs. 1(d)], which is reminiscent of
turbulence-induced coarsening arrest in a binary-fluid mixture
[27]; (b) chaotic temporal fluctuations in L(t )/R0 [Fig. 2(a)];
(c) convoluted trajectories of the CM of the droplet [e.g.,
the blue-purple trajectory in Fig. 2(b)], which are accompa-
nied by chaotic temporal fluctuations in UCM (t ) [Fig. 3(a)],
and the projections of the phase-space trajectories in the
L(t ) − UCM (t ) plane (red and green curves in Fig. 1(a) in the
SM [36]); (d) multifractal fluctuations of �(t ) [Figs. 3(d)–
3(f)]; (e) the energy, φ, and ψ spectra that extend over a
large range of the wave number k (Figs. 2(a)–2(c) in the
SM [36]).

The transition from rectilinear to chaotic-droplet trajecto-
ries is apparent in the illustrative plots of droplet-CM paths,
for A = 0.15 (orange) and A = 1 (blue-purple), in Fig. 2(b),
which we compute as in Ref. [42] (see the SM [36]). From
such paths, we obtain the normalized mean-square displace-
ment M(t )/R2

0, which we present in log-log plots versus the
nondimensional time t in Fig. 2(c): rectilinear droplet motion
leads to M(t ) ∼ t2 (red curve for A = 0.15). As we increase
A, we obtain crossovers to superdiffusive behaviors, which are
consistent with M(t ) ∼ t5/3 (green curve for A = 0.5) and
M(t ) ∼ t4/3 (magenta curve for A = 2), which suggest Lévy
walks for the droplet’s CM (cf. the experimental results on
chemically active droplets [18] and swarming bacteria [30]).
The activity-induced transition from rectilinear to chaotic
droplet motion is also mirrored in the time dependence of
UCM (t )/U0 that we depict in Fig. 3(a): the oscillatory behavior
at A = 0.15 (magenta curve) gives way to a chaotic times
series as we move from A = 0.5 (green) to A = 1 (blue).
We characterize these chaotic fluctuations by computing the
probability distribution function (PDF) P (UCM/U0), which
we show in the semilogarithmic plots of Fig. 3(b). These PDFs
collapse onto each other, for different values of A, because we
use the scaled speed UCM/U0; if we use the unscaled UCM ,
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FIG. 2. (a) Plots of L(t )/R0 [Eq. (10)] vs (t − t0)ν/R2
0 for A = 0 (red curve), A = 0.15 (magenta curve), A = 0.5 (green curve), and and

A = 1 (blue curve), with t0 is a nonuniversal offset that depends on A. (b) Illustrative trajectories of the droplet’s CM for A = 0.15 (orange) and
A = 1 (blue-purple), with color bars indicating the simulation time. (c) Log-log plots of the mean-square displacement M(t ) vs tν/R2

0 (after
the removal of initial transients) for droplet-CM trajectories: A = 0.15 (red), A = 0.5 (green), A = 1 (blue), A = 1.5 (dark orange), and A = 2
(magenta). Initially these plots show ballistic regimes, but, at large times, we see M(t ) ∼ t ζ , with ζ = 2 (rectilinear motion for A = 0.15), and
superdiffusive regimes with ζ = 1.67 ± 0.02 	 5/3 (for A = 0.5) and ζ = 1.28 ± 0.05 	 4/3 (for A = 2) via local-slope analysis (the inset
shows plots of ζ vs t). Plots for different values of A are displaced vertically for ease of visualization.

then the skewness of this PDF increases with A (Fig. 1(c) in
the SM [36]). Furthermore, U0 increases monotonically with
A [Fig. 3(c)] and shows signs of saturation at large A.

Not only does the active droplet display an increase in U0

with A, but it also exhibits, as A increases, an enhancement in
fluctuations in its normalized perimeter �(t ) [Eq. (10)], which
we plot versus tν/R2

0 in Fig. 3(d). These fluctuations of � lead
to broad PDFs, P� (�), which we present in Fig. 3(e), for A =
0.5 (green), A = 0.75 (magenta), A = 1 (red), and A = 1.5
(blue); the widths and skewnesses of these PDFs increase with
A (see the SM [36]). From a multifractal analysis of the time
series �(t ), we obtain the generalized spectrum of dimensions
D(h) as a function of the Hurst exponent h by using the
wavelet-leader method (see Refs. [43,44] and the SM [36]).
The generalized dimension D(h) is the Legendre transform
of the generalized exponent τ (q), with h(q) = dτ (q)/dq, the

generalized Hurst exponent of order q (see Eqs. (15) and (16)
in the Supplemental Material [36]). D(h) characterizes the
multifractal properties of the time series, i.e., it measures the
fractal dimension of a signal at different scales. In Fig. 3(f),
we present an illustrative plot of the multifractal spectrum
D(h) for A = 1.5 (blue curve), where 0.7 � h � 1.5, so the
time series we consider has long-term memory (note that
h = 0.5 for the Brownian case). Such multifractality has not
been obtained heretofore for active droplets; it is akin to the
recently discovered droplet-perimeter fluctuations in turbulent
binary-fluid flows [26].

As the activity induces turbulence in the ψ field, the
droplet’s motion yields fluid turbulence, which we charac-
terize by the energy, φ, and ψ spectra E (k, t ), Sφ (k, t ), and
Sψ (k, t ) [Eq. (10)], which we plot in Figs. 2(a)–2(c) of the SM
[36] for A = 0.5, 1, and 1.5. Even though the Reynolds num-

FIG. 3. (a) Plots vs the nondimensionalized time tν/R2
0 of the scaled droplet-CM speed UCM/U0 [Eq. (10)] for A = 0.15 (magenta curve,

which has been moved up to aid visualization), A = 0.5 (green), and A = 1 (blue). (b) Semilogarithmic plots of the PDF P (UCM/U0 ) for
A = 0.5 (red), A = 0.75 (green), A = 1 (blue), and A = 1.5 (magenta). (c) Semilogarithmic plot of U0 vs A. (d) Plots vs tν/R2

0 of the normalized
droplet perimeter �(t ) [Eq. (10)] for A = 0.5 (green), A = 1 (red), and A = 1.5 (blue). (e) Semilogarithmic plots of the PDF of P� (�) for
A = 0.5 (green), A = 0.75 (magenta), A = 1 (red), and A = 1.5 (blue). (f) Plots of the multifractal D(h) vs the Hurst exponent h (see text),
obtained from �(t ), for A = 1.5.
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bers are small, these spectra span several decades in k, i.e., a
clear signature of turbulence. We will present elsewhere [45] a
detailed study of the properties of a statistically homogeneous
and isotropic form of this turbulence, which is reminiscent
of bacterial or active-fluid turbulence [33,46,47] and elastic
turbulence in polymer solutions [48,49].

We have developed a minimal model for assemblies of
contractile swimmers, without alignment interactions, en-
capsulated in a droplet of a binary-fluid emulsion. Our
hydrodynamic model, with the scalar order parameter φ and
the active scalar ψ coupled to each other and the veloc-
ity field u, not only captures the droplet interface (via the
φ = 0 contour) and its fluctuations, but also leads to droplet
self-propulsion, which is rectilinear at low A(	 0.15) and
chaotic for large values of A, at which the CM of the droplet
shows superdiffusive motion and the droplet interface exhibits
multifractal fluctuations. Our study is distinct from earlier
experimental and theoretical studies of active droplets that
consider cell-level models in nematically ordered, active po-
lar, chemically driven, or phase-field systems [19–21,50–62].
Specifically, the phase-field model of Ref. [54] utilizes two
scalar fields to model the behavior of the cytoplasm and the
contractile material within the droplet. In this model, the
self-propulsion of a droplet is determined by a stress term
in the Stokes equation, which is a function of both scalar

fields. This stress term induces an inhomogeneous surface
tension (on the droplet’s interface) and leads to Marangoni
flows. By contrast, the activity-induced droplet propulsion in
our model arises from the interplay of φ, u, and a collection
of contractile swimmers, which are described via the field ψ

and are enclosed inside the droplet. This propulsion shows
a crossover from rectilinear to superdiffusive motion of the
droplet CM. The stress terms for the φ and ψ fields are
independent of each other. The ψ field captures the MIPS in
contractile swimmers and, when phase separation is arrested
because this field is confined to a droplet, self-propulsion
arises from the nonisotropic distribution of the active material.

We look forward to the experimental verification of our
results, especially in droplets of contractile swimmers such as
C. reinhardtii [22,23] or active colloids [24,25]. The emergent
motility that we uncover for the active droplet in our model
indicates that it should be possible to engineer novel self-
propelling robotic materials with active constituents that are
confined within soft boundaries.

We thank J. K. Alageshan, K. V. Kiran, S. K. Choudhary, S.
J. Kole, and S. Ramaswamy for discussions, the National Su-
percomputing Mission (NSM) Grant No. DST/NSM/R&D_-
HPC_Applications/2021/34 and SERB (India) for financial
support, and SERC (IISc) for computational resources.
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