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Stabilization mechanism for many-body localization in two dimensions
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Experiments in cold-atom systems see almost identical signatures of many-body localization (MBL) in both
one-dimensional (d = 1) and two-dimensional (d = 2) systems despite the thermal avalanche hypothesis show-
ing that the MBL phase is unstable for d > 1. Underpinning the thermal avalanche argument is the assumption
of exponential localization of local integrals of motion (LIOM). In this Letter we demonstrate that the addition
of a confining potential—as is typical in experimental setups—allows a noninteracting disordered system to
have superexponentially (Gaussian) localized wave functions, and an interacting disordered system to undergo
a localization transition. Moreover, we show that Gaussian localization of MBL LIOM shifts the quantum
avalanche critical dimension from d = 1 to d = 2, potentially bridging the divide between the experimental
demonstrations of MBL in these systems and existing theoretical arguments that claim that such demonstrations
are impossible.
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Introduction. The study of disordered systems has borne
rich discussion and novel phenomena ever since Anderson’s
seminal work [1] and the subsequent theoretical observation
that all single-particle eigenstates of noninteracting systems
of the orthogonal universality class in one and two dimen-
sions (1D and 2D) are localized in the presence of disorder
[2]. Of particular interest in recent years is the phenomenon
of many-body localization (MBL), wherein strong disorder
drives localization of the entire eigenspectrum in the presence
of interactions. MBL has since been subject to intense inves-
tigation due to both fundamental and practical reasons [3–7].
While its existence in 1D was previously accepted because
of good agreement among numerical [8–11], analytical [12],
and experimental [13,14] work, more recently, some authors
have cast doubt on the stability of the d = 1 MBL state in
the thermodynamic limit [15–20]. As we discuss below, our
results here push these concerns from d = 1 to d = 2; in
particular, we show a mechanism to make MBL in d = 1
stable to thermal avalanches.

*c2ddfcw@nus.edu.sg
†shaffique.adam@yale-nus.edu.sg

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

The situation in 2D however has always been contentious.
On one hand, experimental [21,22] and numerical [23–28]
signatures of MBL in 2D are almost identical to those in
1D [13], but on the other the thermal avalanche hypothesis
(TAH) [29,30] posits that MBL cannot exist in any system of
dimension greater than 1. The leading justification states the
accessible system sizes/timescales are insufficient to observe
avalanches. Without prejudice to these prior explanations, we
note that the TAH relies strongly on the exponential local-
ization of local integrals of motion (LIOM) [12,31,32], an
assumption that, as we show below, may be broken on more
careful treatment of the disordered potential in these many-
body systems.

In this Letter, we show that a confining potential, typically
present in cold-atom experiments [21,22,33], affects the MBL
transition by stabilizing the localized phase. We argue that this
is a consequence of superexponential localization mediated by
the confining potential.

We begin with a brief overview of the TAH, noting in
particular the main assumption to break to allow MBL in
2D. We then present evidence of superexponential (Gaussian)
localization in the noninteracting picture. Using exact diago-
nalization (ED) of interacting spinless fermion Hamiltonians
in a disordered cosine trap, we show how such a trap promotes
localization, in defiance of the TAH. Finally, we use quan-
tum Monte Carlo (QMC) and the eigenstate-to-Hamiltonian
construction (EHC) to reverse-engineer Hamiltonians hosting
2D MBL and find that a nonzero trap term spontaneously
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emerges. Our work challenges the commonly accepted view
that thermal avalanches always destroy MBL in 2D.

Thermal avalanche hypothesis. In sufficiently large sys-
tems with uncorrelated disorder, it is inevitable for a region of
locally weak disorder to emerge. These rare regions may host
“thermal bubbles,” which are well described by the eigenstate
thermalization hypothesis (ETH) [34,35]. At the interface be-
tween localized and thermal regions, interactions between the
thermal bubble and individual LIOM may thermalize those
LIOM, incorporating them into the bubble. The situation is
highly asymmetric and the reverse, viz., LIOM’s localizing
the thermal bubble, rarely happens [36]. The energy scales
governing this thermalization are the bubble-LIOM matrix
element � = V

√
δρ and the bubble level spacing δ, where V

is the interaction strength and ρ is the bubble spectral func-
tion, with the thermalization of the spin proceeding if � � δ

[29,37]. The interaction decays in accordance with the decay
(localization) of LIOM through the relation Vi j ∼ |ψiψ j |2 ∼
exp(−2|i − j|/ξ ), where ψi is the LIOM at site i and ξ is the
localization length.

Every additional LIOM incorporated into the thermal bub-
ble halves the level spacing, so δ decays exponentially with
the number of thermalized spins. The number of thermalized
spins grows algebraically with the bubble size R, as 2ARd ,
and so δ decays with R as δ(R) = δ−2ARd

0 , where δ0 is the bare
bubble spacing, A is a positive geometric constant and d is the
system dimension. The thermal avalanche is thus driven by
the ever-decreasing bubble level spacing while being limited
by the bubble-LIOM interaction strength. Assuming a form
V (R) = V0 exp[−(R/ξ )a] for the interaction, where a is a
shape parameter, and that the bubble spectral function does
not change dramatically with R, the criterion for avalanche
propagation at a distance R from a thermal bubble in 2D
is exp[AR2 − (R/ξ )a] � 1 [29,30,38]. We omit a dimension-
less prefactor involving a comparison of energy scales. The
original formulation [29] set a = 1 as the authors assumed
exponentially localized LIOM, and therefore an exponentially
decaying coupling between the thermal bubble and LIOM.

The study of the TAH and the MBL-ETH transition has
grown beyond the simple argument described above, with
a wealth of numerical and analytical studies discussing, for
example, Kosterlitz-Thouless scaling near the critical point
[37], localization of the critical point itself [39], coexistence
of localized and thermal regions [40], and the dynamical and
transport properties [41,42]. However, these build upon the
basic description above with the same assumption of a = 1.

The phase diagram derived from the avalanche condition
in 2D is shown in Fig. 1. Due to the R dependence of
the avalanche criterion and the implicit assumption of expo-
nential localization, a = 1, it has been argued that thermal
avalanches unequivocally destroy MBL in 2D, as the left-hand
side increases without bound beyond a critical R∗ for a < 2.
However, exponential localization, a = 1, relies on assump-
tions that may be broken in real experiments. For example,
we argue here that the presence of a trap potential likely alters
the localization profiles to be Gaussian, a = 2. Such a change
of shape qualitatively changes the behavior of the criterion in
2D, giving rise to a critical ξ ∗ below which thermal avalanches
cannot propagate and therefore cannot destroy MBL. This

FIG. 1. The thermal avalanche hypothesis phase diagram in two
dimensions for the many-body localization to eigenstate thermal-
ization hypothesis transition as a function of localization length ξ

and the local integral of motion (LIOM) shape parameter a, where
a = 2 is critical. LIOM shapes (shaded blue) at a = 1 and a = 2 are
shown on the left, with sample localization potentials (black lines)
producing those LIOM shown below each. The confining potential is
shown along with the total potential as a guide to the eye. The overlap
of adjacent states (shaded red) highlights the qualitative difference
between Gaussian and exponential localization of the LIOM. For
a < 2, avalanches always destroy MBL, while for a > 2, avalanches
cannot propagate. At a = 2, a critical ξ appears (open circle) below
which MBL is stable.

completely protects MBL against thermal avalanches in d = 1,
sidestepping recent controversy concerning the existence of
MBL and moves the critical dimension up to d = 2.

Superexponential localization. The concept of exponen-
tially localized LIOM is rooted in two related arguments: first
in the Furstenberg theorem [43], which is most applicable in
1D, and second in the forward-scattering approximation to
the locator expansion [1,4,12,44,45] which can be seen as
a mean-field approximation that is more accurate in higher
dimensions. Both arguments consider the joint distribution
of a product of independent and identically distributed (IID)
elements, coming to the conclusion that a Lyapunov exponent
naturally emerges characterizing the exponential localization
of a state.

The natural question therefore is what happens when these
elements are not IID but correlated, as in experiments where
the single-particle on-site energy consists of both disorder
and confining potential terms [21,22,33]. This observation
opens the possibility of new types of localization and thus the
question of what effect the confining potential may have on
the localization is of vital importance.

To investigate the possibility of superexponential local-
ization numerically, we solve the 2D Anderson tight-binding
model with a confining potential,

H0 = −
∑
〈i,j〉

c†
i cj +

∑
i

(wi + Vi)ni, (1)

where c†
i (ci) creates (annihilates) a spinless fermion at site

i = (ix, iy), ni is the number operator, L is the number of sites
in the linear dimension, wi is the disordered on-site poten-
tial uniformly drawn from [−W,W ] and Vi = V0

4 [cos( 2π ix
L ) +

cos( 2π iy
L )] is the confining potential. Angle brackets denote
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FIG. 2. Plot of the coefficient of determination R2 when fitting
the absolute value of the state closest to the spectrum center, |ψ |, to
an exponential (red) or a Gaussian (blue) as the depth of a confining
potential V0 is increased. Two sets of data are shown to show the
fit done in orthogonal directions. A clear evolution from exponential
to Gaussian localization on increasing V0 is observed. Insets: Sam-
ple ln |ψ | (solid line) and fitting function (dashed line) for V0 = 0
(left, red) and V0 = 50 (right, blue).

nearest neighbors (NN), and we impose periodic boundary
conditions (PBCs) on both directions. The hopping term sets
the energy scale, and we use W = 5. We use PBCs to limit
finite-size effects, particularly in the interacting Hamiltonian
of later sections where accessible system size is limited, but
qualitatively identical behavior is seen with open boundary
conditions.

We set L = 100 and look at the eigenstate closest to the
center of the spectrum. For each disorder realization, we fit
the wave function ψ to both exponential and Gaussian forms
in the x and y directions. We then calculate the coefficient of
determination R2 with values closer to 1 indicating a better
fit [46], and average over 400 disorder realizations. Figure 2
shows that at fixed disorder strength, as the confining potential
depth V0 increases, the wave function is better described as
having a Gaussian envelope than an exponential one, sug-
gesting that confining potentials may aid in localization by
encouraging superexponential (Gaussian) decay of the wave
functions. The W , V0, and L dependence of the localization
length is explored in the Supplemental Material [47].

Trap-mediated MBL. Having demonstrated the change of
wave-function envelope in an Anderson localization context,
we now turn on interactions to see how an ordered potential
may affect the MBL transition. Owing to the exponential
increase in the size of the Hilbert space, we first look at 1D.
The Hamiltonian to be discussed is

H = H0 + g

L

L∑
i �= j

(
1 − 2|i − j|

L

)
nin j, (2)

where H0 is given by the 1D analog of Eq. (1) with wi

uniformly drawn from [−W,W ], Vi = V0
2 cos( 2π i

L ), and the
second term on the right-hand side of Eq. (2) describes the
interactions, with g the interaction strength. Infinite-range in-
teractions are thought to suppress localization [48,49], so we
use these to demonstrate the ability of confining potentials
to promote localization. The model is readily generalized to
higher dimensions, and we present results in 2D, as well as

FIG. 3. Plot of the distribution P(r) of level spacing ratios r for
an atomic gas in a cosine trap as trap depth is increased. At V0 = 0,
the system thermalizes despite disorder due to strong, long-range
interactions, resulting in a P(r) consistent with the GOE. As V0

increases, the system undergoes a localization transition leading to
level repulsion and a Poissonian P(r).

the derivation of the single-unit-cell interaction term from
the infinite periodic system, in the Supplemental Material
[47]. Equation (2) is analogous to the XXZ spin chain with
additional longer-range diagonal interactions. For the XXZ
spin chain with NN interactions, MBL is thought to occur
when V0 = 0, g �= 0 at a critical Wc ≈ 7 [8,50]. We therefore
set g = 32, W = 2 to start in the delocalized phase as we
investigate the effect of varying V0.

We probe the localization transition by using ED to obtain
the middle 1% of eigenenergies, repeated over 6400 disorder
configurations, and use these to determine the probability
distribution P(r) of the ratio of successive energy gaps, ri =
min(r̃i,

1
r̃i

) with r̃i = (Ei+2 − Ei+1)/(Ei+1 − Ei ). For time-
reversal symmetric Hamiltonians such as Eq. (2), P(r) is
expected to follow the Gaussian orthogonal ensemble (GOE)
in the delocalized phase and a Poisson distribution in the MBL
phase [51–54]. For V0 � 4, P(r) closely adheres to that of the
GOE before breaking away and transitioning to the Poisson
distribution at higher V0, as seen in Fig. 3. These results clearly
indicate a transition from thermal to localized mediated by the
trap depth.

These results bear some resemblance to previous work on
Stark MBL [55–57], though we note that we use long-range
interactions and work with periodic rather than open boundary
conditions, and therefore in the W = 0, g = 0 limit the system
does not admit localized solutions. This is in contrast to the
Wannier-Stark localization that precedes Stark MBL [58,59].

Finite-size effects. An alternate probe of the MBL transi-
tion is the entanglement entropy, S = −TrA(ρA log ρA) where
ρA = TrB |ψ〉 〈ψ | is the partial density matrix of subsystem
A when the entire system is in the state ψ . Subsystem B is
the complement of A. The trapping potential Vi removes the
“translationally symmetric” freedom to choose subsystems A
and B, so we choose both to span a half period of Vi from
maxima to minima. Results are shown in Fig. 4, where we
average over the middle 1% or 100 eigenstates, whichever
is fewer, and 6400 disorder configurations. We normalize
by the Page value [60] SP = (L log 2 − 1)/2 to get a fig-
ure of merit between 0 and 1, where 0 indicates MBL and
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FIG. 4. Entanglement entropy of half the system against trap as-
pect ratio with increasing system size. Shallow traps permit a thermal
phase while deep traps promote localization, with a crossover aspect
ratio of (V0/L)c ≈ 0.37, corresponding to a vanishing trap frequency
ω = π

√
V0/L in the continuum limit. The errors of the curves are

within 1% and are omitted for clarity. Inset: Plot of (V0/L)c against
W . Critical potential strength is seen to decrease with increasing
disorder.

1 indicates ETH. S/SP is plotted against the aspect ratio of the
trap potential, V0/L, for various values of L to find the tran-
sition point. The results agree with those for P(r), showing a
thermal to localized transition on increasing V0 with critical
aspect ratio 0.2 < (V0/L)c < 0.6 for 0.5 < W < 4.5. (V0/L)c

generally decreases with increasing W , indicating coopera-
tion between disorder and confining potential in achieving
localization.

Further insight may be obtained by considering the har-
monic approximation of the confining potential about its
minimum, Vi ≈ V0(π i/L)2 for i near L/2. Identifying this
with the quantum harmonic oscillator gives a trap frequency
ω = π

√
V0/L which scales as 1/

√
L at the critical point and

thus tends to 0 in the continuum limit. These results suggest
that the trap-mediated localization persists in the continuum
limit.

2D numerics. ED is limited in accessible system size, so
other techniques (such as QMC) are necessary to extend our
numerical many-body analysis to 2D. While QMC is naively
unable to target excited states, EHC [61,62] enables us to
establish a mapping between input Hamiltonian H (i) and MBL
Hamiltonian H , with H hosting the nonergodic ground state
(GS) of H (i) as an excited state. We access the GS of H (i) by
using an inverse temperature smaller than the finite-size gap,
and thereby study excited-state properties of H . This proce-
dure has been used to investigate MBL using QMC [28,63]
and now enables us to ask the question of what trap depth
V0, if any, is needed to have nonergodic excited states, and
therefore MBL. We investigate the 2D analog of Eq. (2) with
NN interactions,

H (i) = H0 + g
∑
〈i,j〉

ninj, (3)

with wi uniformly distributed in [−W (i),W (i)] and Vi =
V (i)

0
4 [cos( 2π ix

L ) + cos( 2π iy
L )], and obtain H via the EHC. We

then calculate the autocorrelation of the on-site potential,

FIG. 5. MBL Hamiltonian trap depth V0 as a function of input
V (i)

0 and W (i). The black dashed line indicates no change to trap
depth, V0 = V (i)

0 . V0 is enhanced at all input V (i)
0 , particularly for

V (i)
0 = 0 where a large, finite V0 is still obtained. Insets: Sample

on-site potential configurations before and after EHC for V (i)
0 = 0.5

and W (i) = 1.

Cr = ∑
i UiUi+r , where Ui = wi + Vi and extract W and V0

from the expected form of Cr = W 2

3 δ0,r + V 2
0

32L cos( 2πr
L ).

Figure 5 shows that in general, any input V (i)
0 maps to a

much larger V0, particularly for V (i)
0 = 0 where we always

obtain a large, finite V0. Our results indicate that a significant
trap term spontaneously arises when attempting to reverse-
engineer a Hamiltonian hosting 2D MBL.

Discussion and conclusions. We have revisited the TAH
and noted that the underlying assumption of exponentially
localized LIOM may be broken under application of trap
potentials, relevant for real experiments [21,22,33], and that
the localization can be made Gaussian. This observation
directly challenges the assertion that MBL is generically un-
stable to thermal avalanches in dimension greater than 1 and
opens up the possibility for stable MBL in 2D, as has previ-
ously been reported in experimental [21,22,33] and numerical
[23–28] studies. The Gaussian localization length is a vanish-
ing fraction of the trap lengthscale (see Supplemental Material
[47]), indicating the applicability of our arguments to real
experiments.

We have further demonstrated that the addition of a po-
tential term to an MBL Hamiltonian may trigger an MBL
transition in a parameter regime that would otherwise host
a thermal phase, and that such a transition persists in the
continuum limit. Nevertheless, the reader may be concerned
about whether the observed stabilization of MBL in 2D are
truly the result of Gaussian localization or might have some
other physical origin brought on by the addition of the con-
fining potential. Two alternative possibilities are fragmenting
of the Hilbert space through emergence of new conserved
quantities [64], and the rescaling of effective hopping ampli-
tudes as the confining potential impedes particle motion. We
show in the Supplemental Material [47] that neither of these
explanations account for the observed localization. Our results
point to external trap potentials and the concomitant Gaussian
localization being the most likely stabilization mechanism for
MBL in 2D and in principle able to overcome the TAH.
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Potential avenues of further work include the effect of trap
potentials on the dynamics of disordered systems, whether
trap potentials are a viable control vector for creation and
manipulation of MBL states in real time, and thus whether
they may play a role in realizations of MBL-based quantum
computation. Further experiments may verify stability of the
MBL phase against thermal avalanches by changing the trap
shape or depth. For example, a 2D system confined with a
cosine potential in one direction and a square potential [65] in
the orthogonal direction could give an anisotropic avalanche
propagation.
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