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We propose a concatenated approach for implementing transitionless quantum driving regardless of adiabatic
conditions while being robustness with respect to all kinds of systematic errors induced by pulse duration, pulse
amplitude, detunings, and Stark shift, etc. The current approach is particularly efficient for all time-dependent
pulses with arbitrary shape, and only the phase differences between pulses is required to properly modulate. The
simple physical implementation without the help of pulse shaping techniques or extra pulses makes this approach
quite universal and provides a different avenue for robust quantum control by the time-dependent Hamiltonian.
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Introduction. The adiabatic passage (AP) [1–3] plays an
important role in quantum optics [4] and quantum compu-
tation [5–7], due to the insensitivity to various errors in
physical parameters. In the adiabatic process, the system al-
ways evolves along an eigenstate connecting the initial state
with the target state. One typical example of AP is the stim-
ulated Raman adiabatic passage (STIRAP) [8–13], a popular
way for population inversion in three-level systems. Regard-
less of its robustness, the common characteristic of AP are
incompleteness of population transfer and slow change of
parameters over time.

To overcome these shortcomings, a technique called short-
cuts to adiabaticity (STA) [14–24] has emerged that can
directly cancel nonadiabatic transitions by introducing extra
counterdiabatic fields. This technique allows the system to
perfectly evolve along the eigenstate of the original Hamil-
tonian at a very fast rate but suffers a great loss on the
robustness of AP since it requires exactly knowing the system
parameters in advance. Recently, several works are devoted to
the robustness of STA [25–28]. Another essential requirement
in STA is the pulse shaping technique to tailor the original
waveform, and some counterdiabatic fields sometimes are
prohibited from a physical point of view so its realization may
be challenging.

As another alternative, the composite adiabatic passage
(CAP) technique [29], a combination of the best of both com-
posite pulses [30–44] and adiabatic passage [45,46], has been
proposed to achieve complete population inversion in two-
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level systems, while its extension version named composite
STIRAP [47,48] achieves the same objective in three-level
systems. The main advantage of CAP over STA is the retained
robustness of AP and the simplicity of implementation, be-
cause one just properly modulates the relative phases between
different pulses. Nevertheless, some fundamental issues still
need to be addressed in CAP, e.g., the unaccessible of obtain-
ing universal rotation operations (or arbitrary superposition
states) and the requirement of longer duration compared with
traditional adiabatic passages.

In this work, through carefully designing the phase dif-
ferences, we propose a different dynamical mechanism for
achieving perfect transitionless quantum driving in a ro-
bust manner, while simultaneously performing high precision
quantum operations even without knowing the magnitudes of
various systematic errors. The current approach is constructed
by multiply concatenating the Hamiltonians with the same
arbitrary pulse shape but different well-designed constant
phases. In particular, it is unnecessary to satisfy the adiabatic
condition, and thus the total duration does not have to be long.

Gauge invariance. Consider a quantum system with
near-neighbor interactions, and the general form of the time-
dependent Hamiltonian is (h̄ = 1)

H (t ) =
∑

λ j, j (t )| j〉〈 j| + λ j, j+1(t )| j〉〈 j+1| + H.c., (1)

where λ j, j (t ) denote level energies, and λ j, j+1(t ) are the
coupling strengths of near-neighbor levels. When introducing
extra constant phases to the coupling strengths, the Hamilto-
nian becomes

H (t, θ) =
∑

λ j, j (t )| j〉〈 j| + λ j, j+1(t )eiθ j | j〉〈 j+1| + H.c.

=
∑

λ j, j (t )| j̃〉〈 j̃| + λ j, j+1(t )| j̃〉〈 j̃+1| + H.c., (2)

where θ = (θ1, θ2, . . . ) represents a vector parametriz-
ing different constant phases in external fields. Through
making appropriate transformations to the original basis:
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FIG. 1. Sketch diagram of the concatenated approach. Different colors represent different uses, and ϑ1 = ϑ′
1 = ϑ′′

1 = 0. In the blue box
(the first hierarchy), the phase differences θmn in the propagator U2(θ′

1) = U1(θN1 ) · · ·U1(θ1) are applied to achieve perfect transitionless
quantum driving. The only difference between the different blue boxes is the phase shift ϑn. By continuing to concatenate the propagators
U2(θ′

n) in the green box (the second hierarchy), i.e., U3(θ′′
1 ) = U2(θ′

N2
) · · ·U2(θ′

1), we design the phase differences θ′
mn for the robustness

against the nonadiabatic transition induced by various errors. Similarly, the phase differences θ′′
mn in the orange box (the third hierarchy) are

devoted to performing high precision quantum operations, where U4(θ′′′
1 ) = U3(θ′′

N3
) · · ·U3(θ′′

1 ). Certainly, the propagators U4(θ′′′
n ) can be further

concatenated to realize other uses. In this way, we achieve transitionless quantum driving in a robust manner even in the presence of various
systematic errors.

| j̃〉 = exp(−i
∑k= j−1

k=1 θk )| j〉, the form of the Hamiltonian
with different constant phases is the same as the previous
one. Namely, the addition of constant phases simply means
that we are choosing a set of new basis and the expression
of the propagator remains unchanged, i.e., U1(t ) = Ũ1(t, θ),
where U1(t ) and Ũ1(t, θ) represent the propagators in the basis
| j〉 and | j̃〉, respectively. Therefore, the physical property of
the Hamiltonian (2) is still trivial after introducing arbitrary
constant phases. Actually, this trivial property originates from
the gauge invariance of the system [49].

Nontriviality of phase differences. Even though the trivial
property do not change in any way for arbitrary constant
phases, phase differences are of nontrivial physical signifi-
cance and can be used for implementing perfect transitionless
quantum driving in a robust manner. To make it more clear, we
demonstrate the detailed design workflow in Fig. 1, where the
propagator corresponding to the Hamiltonian H (t, θn) reads
U1(θn) = T exp [−i

∫
H (t, θn)t] with T being a time-ordering

operator. As shown in the blue box, we initially concatenate
N1 Hamiltonians H (t, θn) with the same time-varying shape
but different θn to create a composite propagator U2(θ′

1) =
U1(θN1 ) · · ·U1(θ1), where the phase differences θmn = θm −
θn are properly modulated to achieve perfect transitionless
quantum driving.

When the quantum system exhibits various errors, tran-
sitionless quantum driving becomes imperfect and thus
produces nonadiabatic transitions. To solve it, we continue to
concatenating N2 propagators U2(θ′

n) to produce a new one
U3(θ′′

1 ) = U2(θ′
N2

) · · ·U2(θ′
1), where U2(θ′

n) are generated by
adding different constant phase shifts ϑn to N1 Hamiltoni-
ans H (t, θn). Through altering the phase differences θ′

mn =
θ′

m − θ′
n, the propagator U3(θ′′

1 ) would sharply suppress the
nonadiabatic transition induced by various errors.

Note that the propagator U3(θ′′
1 ) becomes approximately

diagonalized after the first two concatenations, but there still
exists phase errors on diagonal elements and those errors
would reduce the precision of quantum operations. Thus, we
require to further concatenate N3 propagators U3(θ′′

n ) to obtain
the new one U4(θ′′′

1 ) = U3(θ′′
N3

) · · ·U3(θ′′
1 ). Similarly, the phase

differences θ′′
mn = θ′′

m − θ′′
n are finely tuned to promote the ac-

curacy of quantum operations. Indeed, the propagators U4(θ′′′
n )

can be also concatenated for more other uses if necessary.

Through this concatenated approach, we obtain a sequence for
implementing robust quantum operations under transitionless
quantum driving.

Transitionless quantum driving. To illustrate this, let us
consider a three-level � system driven by a Stokes and pump
(SP) pulse pair, while two-photon resonance is kept. The form
of the Hamiltonian reads

H (t ) = �(t )σee+[�p(t )eiθpσge+�s(t )eiθsσ f e+H.c.], (3)

where σkl = |k〉〈l| (k, l = g, f , e) and the |g〉(| f 〉) ↔ |e〉
transition is driven by the pump (Stokes) pulse with the
coupling strength �p(t ) [�s(t )], the phase θp (θs), and the
detuning �(t ). The instantaneous eigenstates of H (t ) are
|d (t )〉 = cos φ(t ) exp(−iθsp)|g〉 − sin φ(t )| f 〉, |E+(t )〉 = sin
ϕ(t ) exp(iθs)|b(t )〉 + cos ϕ(t )|e〉, and |E−(t )〉 = cos ϕ(t ) exp
(iθs)|b(t )〉 − sin ϕ(t )|e〉, with θsp = θs − θp, �(t ) =√

�p(t )2 + �s(t )2, tan 2ϕ(t ) = 2�(t )/�(t ), tan φ(t ) = �p

(t )/�s(t ), and the bright state |b(t )〉 = sin φ(t )|g〉 +
cos φ(t ) exp (iθsp)| f 〉.

In STIRAP, there is a time delay in the SP pulse pair.
Because of this asynchrony, φ(t ) is a variable quantity over
time, inevitably leading to nonadiabatic transitions between
distinct eigenstates. Here we demand that the SP pulse pair
must be synchronized [i.e., φ(t ) is constant] to make the dark
state |d (t )〉 completely decouple to other adiabatic states [50].
To extract a freely adjustable phase (e.g., θs), the eigenstates
|E+(t )〉 and |E−(t )〉 are reassociated to form a set of new basis
{|d (t )〉, |b(t )〉, |e〉}, and we adopt this set of basis to reveal the
dynamical mechanism of transitionless quantum driving.

In the synchronization of the SP pulse pair, the gen-
eral expression for the system propagator in the basis
{|d (t )〉, |b(t )〉, |e〉} is given by

U1(θ) =
⎡
⎣1 0 0

0 seiα re−iθs

0 −r∗eiθs se−iα

⎤
⎦, (4)

where r and α are determined by the parameters of the SP
pulse pair and s =

√
1 − |r|2. Definitely, the appearance of r

in Eq. (4) is the result of the coupling between the states |b(t )〉
and |e〉 in this system. To completely nullify this nonadiabatic
transition, we just have to concatenate two SP pulse pairs with
well-designed phase differences, and the propagator reads
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U2(θ′
1) = U1(θ2)U1(θ1), where U1(θn1 ) is the propagator for

the nth
1 SP pulse pair with θn1 = (θs,n1 , θp,n1 ) and θs(p),n1 refers

to the phase of the nth
1 Stokes (pump) pulse, n1 = 1, 2. When

the phase differences satisfy [50]

θ21 = θs,2 − θs,1 = π − 2α, θs,n1 − θp,n1 = θsp, (5)

the propagator becomes diagonalizable, i.e.,

U2(θ′
1) = |d (t )〉〈d (t )|+ei2α|b(t )〉〈b(t )|+e−i2α|e〉〈e|. (6)

According to this propagator, we can perfectly steer the
system evolution along the dark/bright state without any
transitions to the excited state |e〉. Therefore, two SP pulse
pairs are sufficient to achieve perfect transitionless quantum
driving, where the shape of the Stokes (pump) pulse can
be arbitrary and does not require to satisfy the adiabatic
condition.

When returning to the original representation, the propa-
gator (6) in the subspace spanned by {|g〉, | f 〉} becomes U =
exp(−iαn · σ ) with σ = (σx, σy, σz ) being the Pauli operators.
It actually represents a rotation operation around the axis
n = (− sin φ(t ) cos θsp, sin φ(t ) sin θsp, cos φ(t )) by the angle
α in the Bloch sphere. As a result, we obtain a universal
quantum gate, its evolution along the dark/bright state without
any transitions. In particular, different rotation operations [i.e.,
reflecting in different α, φ(t ), and θsp] can be freely modulated
by the coupling strength �s(t ), the detuning �(t ), or the phase
θs in this system.

Robustness. In reality, there are many factors that prevent
us from exactly acquiring the full information of a quantum
system. For example, in the context of atoms driven by ex-
ternal fields, the external fields are usually assumed to be
monochromatic while they actually have a certain linewidth.
Due to their interactions, the energy level of atoms may also
shift, i.e., the so-called Stark shift [4]. Furthermore, the in-
homogeneous distribution of external fields as well as tiny
vibrations of atoms at equilibrium, can create small uncertain-
ties in the interactions of these systems. All these uncertainties
can be regarded as errors in various physical parameters, such
as pulse duration, pulse amplitude, and detuning. These er-
rors mainly lead to two unfavorable effects: the generation of
nonadiabatic transitions and the imprecision of quantum con-
trol. Actually, both effects can be largely avoided by further
concatenating the propagators with well-designed constant
phases. Next, we elaborate on this point.

We can see in Eq. (4) that systematic errors mainly cause
the deviation of two quantities: r and α. Fortunately, the con-
catenated dynamical mechanism for transitionless quantum
driving is inherently immune to the deviation in the quantity
r, because the design of phase differences is independent of
r [50]. As a result, the system evolution is completely unaf-
fected by the deviation in the quantity r. For the deviation in
the quantity α, it makes the phase difference satisfying Eq. (5)
slightly different, resulting in the generation of the nonadia-
batic transition. To reduce this transition, we can concatenate
N2 propagators with different constant phases: U3(θ ′′

1 ) =
U2(θ′

N2
) · · ·U2(θ′

1), where θ′
n2

= (θs,n2 , θp,n2 ) and θs(p),n2 refers
to the phase of the (2n2 − 1)th Stokes (pump) pulse in this
situation, n2 = 1, . . . , N2. For N2 = 2M , M = 1, 2, . . . , when

the phase differences satisfy [50]

θ ′
2M n2−2M−1+1,2M n2−2M+1 = π − 2M+1α, (7)

where θ ′
m,n = θs,m − θs,n, the sequence is accurate to the (M +

1)th order deviation. For other pulse numbers, i.e., N2 �= 2M ,
we can adopt the concatenated method or numerical method
to obtain the phase differences [50].

On the nonadiabatic transition induced by the
deviation in the quantity α being dramatically suppressed,
the propagator U3(θ ′′

1 ) can be approximately written
as a diagonalizable form: U3(θ ′′

1 ) ≈ |d (t )〉〈d (t )| +
exp[i2β(1 + δβ )]|b(t )〉〈b(t )| + exp[−i2β ′(1 + δβ ′ )]|e〉〈e|.
It is worth mentioning that the deviation δβ cannot be
completely eliminated in the second concatenation [51] and
thus introduces the fault of quantum operations. To decline
its influence, we need to return back to the original basis
{|g〉, | f 〉} and then further concatenate N3 propagators with
distinct phase differences: U4(θ ′′′

1 ) = U3(θ ′′
N3

) · · ·U3(θ ′′
1 ),

where U3(θ ′′
n3

) ≈ exp[−iβ(1 + δβ )n · σ] and θ ′′
n3

refers to the
phase differences θsp,n3 between the (4n3 − 1)th Stokes pulse
and pump pulse, n3 = 1, . . . , N3. Here the pulse number
N3(N3 � 3) can be arbitrarily selected. When N3 is small,
e.g., N3 = 3, the analytical expression of phase differences is
given by [50]

θ ′′
21 = 2 arctan ±(√

1 − P2
f ±

√
2Pf − P2

f

)
, (8a)

θ ′′
32 = 2 arctan ±(√

1 − P2
f ∓

√
2Pf − P2

f

)
, (8b)

where θ ′′
mn = θ ′′

m − θ ′′
n and Pf represents the population of the

state | f 〉. As for a longer sequence (i.e., N3 > 3), the per-
formance of the robustness against the deviation δβ becomes
much better since more adjustable phases are contained, and
it is instructive to adopt numerical calculations to obtain the
solutions.

Note that the phase differences given by Eq. (8) are used
to compensate for the population deviation of the target state
|ψT 〉. To be able to simultaneously compensate for the phase
deviation of the target state, we require to perform a Taylor
expansion of the fidelity F = |〈�T |�(N3T )〉|2 instead, where
|�(N3T )〉 represents the final state after concatenating N3

pulses. Definitely, the process of resolving phase differences
is similar to that of using population formulas (see also in
Ref. [50]), and such a design actually helps to suppress the
phase sensitivity of the target state. Furthermore, with the
same number of pulses the system robustness designed by
fidelity formulas may be marginally inferior to that of using
population formulas. The reason is obvious, i.e., more phases
are involved to compensate for the deviation δβ . Therefore, a
longer sequence may be necessary to achieve the same robust
effect in this situation.

In Fig. 2, we demonstrate the robust performance of the
quantum operation in the presence of two systematic errors
by different R π

4
(N1 × N2, N3) sequences, where R π

4
(N1 ×

N2, N3) represents the rotation around the axis n with the
angle π/4 and the total pulse number N = N1 × N2 × N3 with
N1 = 2. For simplicity, the shape of each Stokes pulse is
chosen as Guassian here, while other shapes can still work
well [50].
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FIG. 2. Fidelity F of the target state |�T 〉 (top panels) and population Pe of the state |e〉 (bottom panels) vs pulse amplitude error δ�s and
detuning error δ� for different sequences. The fidelity is defined by F = |〈�T |�(t )〉|2 and Rα (N1 × N2, N3) refers to performing a rotation
operation around the axis n by the angle α in the Bloch sphere to obtain the desired state cos α|g〉 + sin α| f 〉, where |�T 〉 = 1/

√
2(|g〉 + | f 〉),

the initial state is |g〉, and the total number of SP pulse pairs is N1 × N2 × N3 with N1 = 2. The nth Stokes pulse has a Gaussian shape
�s(t ) = A�0 exp[(t − 3nτ )2/τ 2] with the duration T = 6τ .

As shown in Figs. 2(a) and 2(b), a concatenation of two SP
pulse pairs to achieve perfect transitionless quantum driving
possesses preliminary robustness against the pulse amplitude
and detuning errors, whereas it does not work very well on
large systematic errors. When the SP pulse pairs are continu-
ously recombined for a second time [cf. N2 = 4 in Figs. 2(c)
and 2(d)], the robust performance of transitionless quantum
driving is dramatically enhanced so as to obtain an extremely
low leakage population of the state |e〉. Note that this recombi-
nation makes little contribution to promoting the precision of
rotation operations, since the fidelity is sensitive to errors yet.
Therefore, we need to execute the third concatenation of SP
pulse pairs. Figures 2(e)–(j) shows that the high-fidelity region
gradually enlarges as N3 increases, while the ability of leakage
suppression is still reserved, implying that the deviation δβ can
be favorably compensated by properly designing the phase
difference of each pulse pair. Certainly, when concurrently
increasing N2 and N3, both population leakage and operation
precision are efficiently improved.

To see more clearly, we demonstrate in Fig. 3 the pop-
ulation evolution of two states | f 〉 and |e〉 and the phase
waveform of the Stokes pulse by the R π

4
(4, 3) sequence. For

a single SP pulse pair, the system exhibits nonadiabatic tran-
sitions, i.e., the leakage to the excited state |e〉 (see the blue
curve at t = T ), because the adiabatic condition is broken.
By concatenating two SP pulse pairs and properly adjusting
the phase difference θ21, the transition to the excited state is
completely eliminated, as shown by the blue curve at t = 2T .
When the systematic errors are large, the evolution path seri-
ously deviates from the original one, as shown by the dashed
and dotted curves. We then concatenate four SP pulse pairs
and modulate the phase difference θ ′

21 to reduce the unfavor-
able influence on the transition of the excited state induced by
two systematic errors. In this circumstance, the nonadiabatic
transition is sharply suppressed, but the fidelity of the rotation
operation is not much improved; see the curves at t = 4T .
Through further concatenating three groups of four SP pulse
pairs (12 in total) and controlling the phase difference θ ′′

21 and

θ ′′
32, the system evolution is strictly restricted in the subspace

{|g〉, | f 〉}, and the rotation operation becomes remarkable er-
ror tolerant.

Discussion. The concatenated approach may be applica-
ble to various kinds of quantum systems as long as phase
modulation is accessible, although we just take the typical

FIG. 3. Robust generation of the state |�T 〉 and phase waveform
of the Stokes pulse for the R π

4
(4, 3) sequence. The top (middle)

panel represents the population evolution of the state | f 〉 (|e〉) in the
absence/presence of the errors δ�s and δ�. After 12 SP pulse pairs
with well-designed phase differences, the system is primely driven
to the state |�T 〉 even though it exhibits significant pulse amplitude
and detuning errors; see the dashed and dotted curves. In the bottom
panel, the phase differences θ21 between the 2nth and (2n − 1)th SP
pulse pairs are used for perfect transitionless quantum driving. The
phase differences θ ′

21 between the (4n − 1)th and (4n − 3)th SP pulse
pairs are devoted to suppress the nonadiabatic transition induced
by the pulse amplitude and detuning errors. The phase differences
θ ′′

(n+1)n between the (4n + 1)th and (4n − 3)th SP pulse pairs are
employed for improving the fidelity of the Hadamard gate with a
specific phase. All phase differences θmn, θ ′

mn, and θ ′′
mn are accessible

by properly modulating the phases θs and θp of SP pulse pairs.
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three-level system to illustrate this issue. Actually, the phases
only have to satisfy some constraints rather than arbitrary val-
ues when the Hamiltonian has long-ranged interactions [50].
On the other hand, there are several basic requirements in the
current STA (e.g, see a recent review [52] and the references
therein), such as multiparameter regulation, pulse shaping,
and specific operation time. Also, the STA technique makes
it difficult to make the system simultaneously inhibit multiple
systematic errors. Nevertheless, none of them are required
in the concatenated approach, since the dynamical procedure
is completely out of line with the original framework of
STA. In particular, the design of phase differences does not
rely on the certain type of systematic errors, because they
are derived from the propagator instead of the Hamiltonian.
Therefore, this approach is quite universal for resisting any
errors.

Conclusion. We have developed a concatenated approach
of constructing a dynamical mechanism for both achiev-

ing perfect transitionless quantum driving and improving the
robustness with respect to various systematic errors. It is par-
ticularly significant that the pulse shape can be arbitrary while
the quantum system does not have to satisfy the adiabatic con-
dition. By properly designing the phase differences between
different Hamiltonians, the unwanted nonadiabatic transitions
are sharply suppressed even in the presence of all kinds of
errors. Meanwhile, quantum operations with very high fidelity
are naturally obtained. Of course, this concatenated procedure
can still be carried on for other uses. The simplicity, flexibility,
and versatility of the concatenated approach opens a promis-
ing avenue for high precision control in quantum information
processing.
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