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Majorana stellar representation of twisted photons
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Majorana stellar representation, which visualizes a quantum spin as points on the Bloch sphere, allows
quantum mechanics to accommodate the concept of trajectory, the hallmark of classical physics. We extend
this notion to the discrete cylinder, which is the phase space of the canonical pair angle and orbital angular
momentum. We demonstrate that the geometrical properties of the ensuing constellations aptly encapsulate the
quantumness of the state.
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Introduction. Quantum information science is the driving
force for the revolutionary changes in information technology
that we are witnessing today. This impressive progress is
based on the observation that fundamental quantum phenom-
ena lead to completely novel ways of encoding, processing,
and transmitting information.

Thus far, most of the experiments in this field have
been performed with qubits, i.e., two-level systems. A very
intuitive way to represent these states and the operations
performed on them is to use the Bloch sphere, which is
nothing but the associated phase space. Unfortunately, for
complex quantum systems involving n qubits, this simple
construction does not work. There is, however, a clever
strategy devised by Majorana [1] that maps symmetric n-
qubit pure states as a collection of n points on the Bloch
sphere. Several decades after its conception, this repre-
sentation has recently attracted a great deal of attention
and has been applied to numerous challenging problems,
including representing many-body states [2–5], entangle-
ment classification [6–8], Bose-Einstein condensates [9–11],
polarization [12–15], structured beams [16,17], quantum
metrology [18–21], and Berry phases [22–24].

Despite these impressive advances, considerable effort is
underway to explore higher-dimensional quantum systems,
also called qudits. Qudits have been created on various phys-
ical platforms, such as photonic systems [25,26], continuous
spin systems [27,28], ion traps [29], nuclear magnetic reso-
nance [30], and molecular magnets [31]. Yet the most popular
implementation is in terms of the photonic orbital angular
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momentum (OAM) states [32]: These twisted photons can
be used as alphabets to encode information beyond one bit
per single photon, which offers great potential for quantum
information tasks [33,34]. They provide a larger state space
to store and process information and the ability to do multiple
control operations simultaneously, which is a significant ad-
vantage for quantum computation [35]. Finally, OAM qudits
have also been instrumental in analyzing various fundamental
questions [36–39].

A proper description of the OAM requires dealing with its
conjugate variable, the angular position. The role of angles
in quantum mechanics has a long history and requires more
care than might be expected [40–44]. Since the OAM has
an unbounded spectrum (that includes positive and negative
integers), it is possible to introduce a bona fide angle operator.
Periodicity, however, brings out subtleties that have triggered
long and heated discussions [45–47].

The phase space of this canonical pair is the discrete
cylinder S1 × Z [48–50]. The tools required to describe these
systems in that geometric arena have been developed, includ-
ing a proper Wigner function [51–55]. Coherent states for
this pair have also attracted much attention [56–62]. We insist
in that a satisfactory description of a physical phenomenon
requires the use of a suitable phase space. Whereas the plane
and the sphere are standards for the description of continuous
and spin variables, the use of the cylinder is not as extended
as it should be in the OAM community.

Given the relevant role played by the Majorana representa-
tion on the Bloch sphere, one might rightly ask whether that
can be extended to the cylinder. The idea of constellation can
be presented in a variety of ways and is related to various
sound mathematical concepts [63,64]. Perhaps the most direct
approach is using the overlap of coherent states with the
state we want to investigate: The zeros of this quantity define
the corresponding stars. We pursue this idea and work out a
general method for finding stars in the discrete cylinder. Since

2643-1564/2023/5(3)/L032006(7) L032006-1 Published by the American Physical Society

https://orcid.org/0000-0002-9854-8095
https://orcid.org/0000-0001-8493-721X
https://orcid.org/0000-0003-4228-7516
https://orcid.org/0000-0001-7681-7672
https://orcid.org/0000-0002-7441-8632
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.L032006&domain=pdf&date_stamp=2023-07-12
https://doi.org/10.1103/PhysRevResearch.5.L032006
https://creativecommons.org/licenses/by/4.0/


NICOLAS FABRE et al. PHYSICAL REVIEW RESEARCH 5, L032006 (2023)

the geometry of a constellation elegantly encapsulates all the
properties of the state [65], we characterize the quantumness
using the multipoles associated to the stars.

Cylinder as a phase space. As anticipated, we want to de-
scribe OAM, represented by the operator L̂ and its conjugate
variable, the angle φ̂. This conjugacy is usually expressed via
the commutation relation [Ê , L̂] = Ê , with Ê = eiφ̂ , which is
distinctive of the Euclidean algebra e(2) [66–68]. Fortunately,
a long discussion about the properties of this pair turns out
to be unnecessary to settle a phase-space description. For our
purposes, it is enough to introduce two conjugate bases

|φ〉 = 1√
2π

∑
�∈Z

e−i�φ |�〉 , |�〉 = 1√
2π

∫ 2π

0
dφ ei�φ |φ〉 ,

(1)
which are normalized according to 〈�|�′〉 = δ��′ and 〈φ|φ′〉 =
δ2π (φ − φ′) = ∑

n∈Z δ(φ − φ′ − 2nπ ). One can directly
check that the states |�〉 and |φ〉 are precisely eigenvectors of
the fundamental variables L̂ |�〉 = � |�〉 and Ê |φ〉 = eiφ |φ〉,
respectively. Denoting the wave-function components of a
pure state |ψ〉 in both bases as ψ� = 〈�|ψ〉 and ψ (φ) =
〈φ|ψ〉, they are Fourier related, which corroborates the com-
plementarity of these variables.

Stellar representation on the cylinder. To proceed fur-
ther, we need to construct coherent states for the Euclidean
symmetry e(2). We depart here from algebraic standard ap-
proaches, such as those due to Perelomov [69] and Barut
and Girardello [70] (see also Ref. [71]), and take a different
route [72], whose domain of applicability is much wider. The
natural framework is the Hilbert space L2(X, μ) of all the
square integrable functions defined on the phase space X (i.e.,
the discrete cylinder) and μ being the associated invariant
measure. On a quite general level, the problem of finding
coherent states can be solved if one finds a map from X to
the space of quantum states, denoted by H, X � x �→ |x〉 ∈ H,
obeying the following two conditions,

〈x|x〉 = 1,

∫
X

dμ(x)w(x) |x〉 〈x| = 1, (2)

where w(x) is a weight factor. The family of states |x〉 are
the coherent states we are looking for. Let {ϒn(x)} be an or-
thonormal set of elements of L2(X, μ), such that 0 < M(x) ≡∑

n |ϒn(x)|2 < ∞. Let {|en〉} be an orthonormal basis of H
and suppose that the set {ϒn(x)} is in one-to-one correspon-
dence with the basis {|en〉}. Then, the states

|x〉 = 1√
M(x)

∑
n

ϒ∗
n (x) |en〉 (3)

satisfy the requirements (2) with w(x) = M(x).
The discrete cylinder X = S1 × Z is parametrized by

the coordinates x ≡ (φ, �). The natural measure on X is∫
X dμ(x) = 1

2π

∑
�∈Z

∫ 2π

0 dφ. There is no a priori preferred
choice for the set of functions {ϒn} and several candidates
have been proposed [71], including the wrapped Gaus-
sian [60], the Dirichlet [73] and the Fejér kernels [74], and
the von Mises distribution [75]. Here, for reasons that will
become clear later, we prefer the orthonormal set

ϒn(φ, �) = e− 1
2 �2

√
�

e− 1
2 n2

en(�+iφ), (4)

where the normalization constant involves the number � =∑
n∈Z e−n2 ≈ 1.776 372. With this choice, we have M(x) =

w(x) = 1, and our coherent states read as

|φ, �〉 = e− 1
2 �2

√
�

∑
n∈Z

e− 1
2 n2

en(�−iφ)|en〉. (5)

The states {|en〉} can be any orthonormal basis. For instance,
for our purposes here they can be considered as Fourier ex-
ponentials einφ , which are the eigenstates of L̂ in the Hilbert
space L2(S1). It is striking that, given the crucial role played
by coherent states for continuous and spin variables, these
states have not be exploited yet in the realm of OAM.

The coherent states are thus parametrized by the conjugate
of the complex number e�+iφ ≡ ez, which is a conformal map-
ping of the complex plane C onto the cylinder. This is the
counterpart of the stereographic projection in the unit sphere,
which is an essential ingredient in defining the SU(2) coherent
states [69].

In terms of the set {ϒn(φ, �)} the resolution of the iden-
tity (2) holds true. This immediately suggests that to every
normalized state |ψ〉 ∈ H we can attach the normalized
coherent-state wave function ψ (φ, �) = 〈φ, �|ψ〉, which we
call its stellar representation. It is nothing but the overlap
of the given state with the cylinder coherent states. Interest-
ingly, ψ (φ, �) is a linear representation of |ψ〉, contrary to the
Wigner function, which is quadratic in the wave function. The
associated probability distribution Qψ (φ, �) = |ψ (φ, �)|2 is
the Husimi function [76] for the cylinder, with normalization

1
2π

∑
�∈Z

∫ 2π

0 dφ Qψ (φ, �) = 1.
For a pure state |ψ〉, its components ψ� in the OAM basis

{|e�〉 = |�〉 , � ∈ Z} are the variables used in the laboratory to
synthesize arbitrary states with spatial light modulators [77].
In terms of them, the stellar representation is written as

ψ (φ, �) = e− 1
2 �2

√
�

∑
�′∈Z

e− 1
2 �′2

ψ�′ e�′z ≡ e− 1
2 �2

ψ̃ (z). (6)

The zeros {zn} of ψ (φ, �), or equivalently those of its holo-
morphic part ψ̃ (z), constitute the Majorana constellation on
the cylinder and they uniquely determine the state. Note
though that the states |ψ〉 and e

1
2 ϑ L̂2

Ê k e− 1
2 ϑ L̂2 |ψ〉, with k ∈

Z, have the same zeros, as a simple calculation shows. Ac-
cording to Cauchy’s argument principle [78], the number rψ

of these zeros inside a simple closed contour C, counted with
multiplicity, is

rψ = 1

2iπ

∮
C

∂zψ̃ (z)

ψ̃ (z)
dz. (7)

Since ψ̃ (z)/eln2 |z| is of order zero, the Hadamard factorization
theorem [78] ensures that ψ̃ (z) = ∏rψ

n=0(z − zn). This number
rψ is called the stellar rank and has been recently used [79]
to establish a hierarchy of non-Gaussian continuous-variable
states. The stellar rank of an OAM state can be finite or infi-
nite. For continuous variables, Gaussian states have null rank
(i.e., no zeros), according to the famous Hudson theorem [80],
yet this theorem does not apply to the cylinder [81].

Examples. We can now illustrate the Majorana constella-
tions for some relevant examples. The two simplest ones are
the OAM eigenstate |�0〉 and the angle eigenstate |φ0〉, with
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FIG. 1. Husimi distributions for an OAM eigenstate |�0〉 (with
�0 = 1) (left) and for an angle eigenstate |φ0〉 (with φ0 = π ) (right),
represented as a density plot on a continuous cylinder. In both cases,
the Q function is positive, so the respective constellations have null
stellar rank.

representations

ψ�0 (φ, �) = 1√
�

e− 1
2 (�−�0 )2

ei�φ,

ψφ0 (φ, �) = 1√
2π�

ei�(φ−φ0 ) ϑ3

(
1

2
(φ − φ0)

∣∣e− 1
2

)
, (8)

with ϑ3(u|q) = ∑
n∈Z qn2

e−2inu being the third Jacobi theta
function [82,83]. Both Husimi distributions are plotted in
Fig. 1. For |�0〉 it consists of rings centered at �0 and is strictly
positive, which agrees with the idea that these are the only
states with a positive Wigner function [81]. Similarly, for |φ0〉
the Husimi distribution has no zeros for real phases. This
seems to suggest that classical states are those of rank zero,
much the same as it happens for continuous variables [79].

For the coherent state |φ0, �0〉, we have now

ψφ0,�0 (φ, �) = 1

�
e− 1

2 (�2+�2
0 )

× ϑ3

(
1

2
(φ0 − φ) + 1

2
i(� + �0)|e−1

)
. (9)

Surprisingly, this function has infinite zeros located at the
angle φ − φ0 = π and � + �0 = 2k + 1 (k ∈ Z), as we can
appreciate in Fig. 2.

We also consider the superposition of OAM eigenstates
|ψ±〉 = 1√

2
(|�0〉 ± |−�0〉). For the positive sign we have

ψ+(φ, �) = 1√
2�

e− 1
2 (�2+�2

0 ) cosh(�0�) ei�φ, (10)

and an analogous result for the minus sign, but with sinh(�0�).
Now, ψ+(φ, �) has no zeros, whereas ψ−(φ, �) has one zero
at � = 0.

Finally, we consider catlike states in the cylinder,
that is, |ψ〉 = (|φ0, �0〉 ± |φ0, �0 + π〉)/

√
N0, where N0 is

an unessential normalization constant that can be ex-
pressed using the second Jacobi theta function ϑ2(u|q) =∑

n∈Z q(n+1/2)2
e(2n+1)iu. The resulting stellar representation

FIG. 2. Density plots of the Husimi distribution (upper panel)
and associated constellations on the cylinder (lower panel) for (from
left to right) a coherent state |φ0, �0〉 (with �0 = 1 and φ0 = 0), an
odd cat, and an even cat (both with � = 1 and φ0 = 0). The zeros are
calculated in the text and are marked as red points.

reads

ψcat+(φ, �) = 2

�
√
N0

e− 1
2 (�2+�2

0 )

× ϑ3((φ0 − φ) + i(� + �0)|e−4),

ψcat−(φ, �) = 2

�
√
N0

e− 1
2 (�2+�2

0 )

× ϑ2((φ − φ0) − i(� + �0)|e−4). (11)

Using the properties of these functions, one immediately can
see that these functions have two series of zeros at angles
φ − φ0 = π/2 and φ − φ0 = 3π/2 and � + �0 = 4k − 2 (for
ψcat+) and � + �0 = 4k (for ψcat−). In Fig. 2, we plot the
corresponding constellations for these states.

Multipole expansion. The Majorana constellation intro-
duced thus far provides an intriguing and useful visualization
of OAM states. Nevertheless, to assess their quantumness it
would be convenient to have a more quantitative measure. For
the archetypal case of SU(2), the multipole expansion is the
proper tool [84]. Apart from their good transformation prop-
erties [85], multipoles can be understood as the coefficients
of the expansion of the Husimi distribution in the spherical
harmonics [15], which constitute an orthonormal basis of
functions on the sphere.

To extend this notion to the cylinder, one has to find a
proper basis on X . It is easy to check that the set enk (φ, �) =
δ�keinφ plays for our problem the same role as the spheri-
cal harmonics for SU(2). In consequence, we can define the
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FIG. 3. Multipole distribution |qnk | for the OAM eigenstate (with
�0 = 1) (left) and a coherent state (with φ0 = 0, �0 = 1) (right).

multipoles as

qnk = 1

2π

∑
�∈Z

∫ 2π

0
Q(φ, �)enk (φ, �)dφ

= 1

2π

∫ 2π

0
Q(φ, k)einφdφ. (12)

They can be experimentally determined [86] as moments of
the Husimi distribution and contain complete information
about the state, as we have the inverse expansion Q(φ, �) =∑

n,k qnke
∗
nk (φ, �). Actually, one can straightforwardly com-

pute these multipoles for the previous states. For the OAM
eigenstate, |ψ〉 = |�0〉, we find qnk ∝ e−(k−�0 )2

δn0: This a very
peaked distribution around the first moment n = 0. These
states, as commented before [81], the only ones with a non-
negative Wigner function, play the role of Clifford states and
can thus be efficiently simulated by a classical computer [87].
This seems to confirm previous results that point out that for
classical states the first multipoles contribute the most.

Interestingly, for a coherent state, the multipole distribu-
tion, as plotted in Fig. 3, is much more spread, and so most
quantum. The status of coherent states for the cylinder is thus
drastically different from that of continuous variables, where
they are the most classical states.

Dynamics of the constellations. It is interesting to check
how the constellation evolves in time for the typical states

FIG. 4. Density plots of the Husimi distribution of an OAM
eigenstate |�0〉 (with �0 = 1) (left) and a coherent state (with φ0 = 0
and �0 = 1) (right), after evolution with the dynamics given in (15)
at time λt = 10.

considered before. We take as the interaction Hamiltonian

Ĥ = λ cos(φ̂) = 1
2λ(Ê + Ê†), (13)

with φ̂ the angle operator and λ a coupling constant. This
model can represent a variety of situations, such as the dy-
namics of a discrete-time quantum walk [88] or the tunneling
in a Josephson junction [89], where in such a case, λ is the
Josephson energy and the conjugate operator L̂ corresponds
to the number of excess Cooper pairs in the island.

At time t the evolved wave function |ψ (t )〉 = exp(iĤt ) |ψ〉
can be written in the OAM basis as [90]

|ψ (t )〉 =
∑

�,�′∈Z
ψ�′ i�J�(λt ) |� + �′〉 , (14)

where J� are Bessel functions of the first kind and order �.
In consequence, the stellar representation after the dynamics
turns to be

ψ (φ, �; t ) = 1√
�

e− 1
2 �2

∑
�′∈Z

ψ�′ (t )e− 1
2 �′2

e�′z, (15)

with ψ�(t ) = ∑
�′∈Z ψ�′ i�

′−�J�′−�(λt ).
In Fig. 4, we represent the resulting stellar distribution for

the OAM eigenstate |�0〉 and the coherent state |φ0, �0〉 at λt =
10.

Concluding remarks. In summary, we have advocated the
use of the discrete cylinder to properly represent OAM states
and their dynamics. In this vein, we have introduced a bona
fide Majorana representation on the cylinder and we have
illustrated its behavior with various examples of significant
states. The resulting constellations translate the symmetry of
the states in a natural and crystal-clear way.

In the Bloch sphere, constellations having their points
arranged as symmetrically as possible are the most quan-
tum, whereas the opposite occurs for coherent states. One
might argue that the same holds true for twisted photons: The
distribution of the zeros is an indicator of quantumness. More-
over, for the sphere, the “Kings of Quantumness” [13] have
nice extremal properties, including an amazing metrological
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power. Since tailoring the Majorana constellation is feasible
in the laboratory, one should explore the potential of these
extremal states for the cylinder; work along these lines is in
progress.

Acknowledgments. We acknowledge discussions with A. Z.
Goldberg and P. de la Hoz. This work received funding from
the Spanish Ministerio de Ciencia e Innovación (Grant No.
PID2021-127781NB-I00).

[1] E. Majorana, Atomi orientati in campo magnetico variabile,
Nuovo Cimento 9, 43 (1932).

[2] H. Mäkelä and A. Messina, n-qubit states as points on the Bloch
sphere, Phys. Scr. 2010, 014054 (2010).

[3] A. R. U. Devi, Sudha, and A. K. Rajagopal, Majorana represen-
tation of symmetric multiqubit states, Quantum Inf. Process. 11,
685 (2012).

[4] C. Yang, H. Guo, L.-B. Fu, and S. Chen, Characterization of
symmetry-protected topological phases in polymerized models
by trajectories of Majorana stars, Phys. Rev. B 91, 125132
(2015).

[5] Y.-G. Su, F. Yao, H.-B. Liang, Y.-M. Che, L.-B. Fu, and X.-G.
Wang, Majorana stellar representation for mixed-spin (s, 1/2)
systems, Chin. Phys. B 30, 030303 (2021).

[6] P. Ribeiro, J. Vidal, and R. Mosseri, Thermodynamical Limit of
the Lipkin-Meshkov-Glick Model, Phys. Rev. Lett. 99, 050402
(2007).

[7] P. Ribeiro and R. Mosseri, Entanglement in the Symmetric
Sector of n Qubits, Phys. Rev. Lett. 106, 180502 (2011).

[8] H. D. Liu and L. B. Fu, Berry phase and quantum entanglement
in Majorana’s stellar representation, Phys. Rev. A 94, 022123
(2016).

[9] A. Lamacraft, Low-energy dynamics of spinor condensates,
Phys. Rev. B 81, 184526 (2010).

[10] B. Lian, T.-L. Ho, and H. Zhai, Searching for non-Abelian
phases in the Bose-Einstein condensate of dysprosium, Phys.
Rev. A 85, 051606(R) (2012).

[11] X. Cui, B. Lian, T. L. Ho, B. L. Lev, and H. Zhai, Synthetic
gauge field with highly magnetic lanthanide atoms, Phys. Rev.
A 88, 011601(R) (2013).

[12] J. H. Hannay, The Majorana representation of polarization, and
the Berry phase of light, J. Mod. Opt. 45, 1001 (1998).

[13] G. Björk, A. B. Klimov, P. de la Hoz, M. Grassl, G. Leuchs,
and L. L. Sánchez-Soto, Extremal quantum states and their
Majorana constellations, Phys. Rev. A 92, 031801(R) (2015).

[14] G. Björk, M. Grassl, P. de la Hoz, G. Leuchs, and L. L. Sánchez-
Soto, Stars of the quantum universe: extremal constellations on
the Poincaré sphere, Phys. Scr. 90, 108008 (2015).

[15] A. Z. Goldberg, P. de la Hoz, G. Björk, A. B. Klimov, M.
Grassl, G. Leuchs, and L. L. Sánchez-Soto, Quantum concepts
in optical polarization, Adv. Opt. Photonics 13, 1 (2021).

[16] R. Gutiérrez-Cuevas, S. A. Wadood, A. N. Vamivakas, and
M. A. Alonso, Modal Majorana Sphere and Hidden Symmetries
of Structured-Gaussian Beams, Phys. Rev. Lett. 125, 123903
(2020).

[17] R. Gutiérrez-Cuevas and M. A. Alonso, Platonic Gaussian
beams: wave and ray treatment, Opt. Lett. 45, 6759 (2020).

[18] C. Chryssomalakos and H. Hernández-Coronado, Optimal
quantum rotosensors, Phys. Rev. A 95, 052125 (2017).

[19] F. Bouchard, P. de la Hoz, G. Bjork, R. W. Boyd, M. Grassl,
Z. Hradil, E. Karimi, A. B. Klimov, G. Leuchs, J. Rehacek,

and L. L. Sanchez-Soto, Quantum metrology at the limit with
extremal Majorana constellations, Optica 4, 1429 (2017).

[20] A. Z. Goldberg and D. F. V. James, Quantum-limited Euler
angle measurements using anticoherent states, Phys. Rev. A 98,
032113 (2018).

[21] A. Z. Goldberg, A. B. Klimov, G. Leuchs, and L. L. Sánchez-
Soto, Rotation sensing at the ultimate limit, J. Phys.: Photonics
3, 022008 (2021).

[22] J. H. Hannay, The Berry phase for spin in the Majorana repre-
sentation, J. Phys. A: Math. Gen. 31, L53 (1998).

[23] P. Bruno, Quantum Geometric Phase in Majorana’s Stellar
Representation: Mapping onto a Many-Body Aharonov-Bohm
Phase, Phys. Rev. Lett. 108, 240402 (2012).

[24] C. Chryssomalakos, E. Guzmán-González, and E. Serrano-
Ensástiga, Geometry of spin coherent states, J. Phys. A: Math.
Theor. 51, 165202 (2018).

[25] X. Gao, M. Erhard, A. Zeilinger, and M. Krenn, Computer-
Inspired Concept for High-Dimensional Multipartite Quantum
Gates, Phys. Rev. Lett. 125, 050501 (2020).

[26] H.-H. Lu, Z. Hu, M. S. Alshaykh, A. J. Moore, Y. Wang, P.
Imany, A. M. Weiner, and S. Kais, Quantum phase estimation
with time-frequency qudits in a single photon, Adv. Quantum
Technol. 3, 1900074 (2020).

[27] S. D. Bartlett, H. de Guise, and B. C. Sanders, Quantum encod-
ings in spin systems and harmonic oscillators, Phys. Rev. A 65,
052316 (2002).

[28] M. R. A. Adcock, P. Høyer, and B. C. Sanders, Quantum
computation with coherent spin states and the close Hadamard
problem, Quantum Inf. Process. 15, 1361 (2016).

[29] A. B. Klimov, R. Guzmán, J. C. Retamal, and C. Saavedra,
Qutrit quantum computer with trapped ions, Phys. Rev. A 67,
062313 (2003).

[30] Z. Gedik, I. A. Silva, B. Çakmak, G. Karpat, E. L. G. Vidoto,
D. O. Soares-Pinto, E. R. de Azevedo, and F. F. Fanchini,
Computational speed-up with a single qudit, Sci. Rep. 5, 14671
(2015).

[31] M. N. Leuenberger and D. Loss, Quantum computing in molec-
ular magnets, Nature (London) 410, 789 (2001).

[32] M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, Twisted
photons: New quantum perspectives in high dimensions, Light:
Sci. Appl. 7, 17146 (2018).

[33] H. Bechmann-Pasquinucci and A. Peres, Quantum Cryptogra-
phy with 3-State Systems, Phys. Rev. Lett. 85, 3313 (2000).

[34] D. Bruß and C. Macchiavello, Optimal Eavesdropping in Cryp-
tography with Three-Dimensional Quantum States, Phys. Rev.
Lett. 88, 127901 (2002).

[35] Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, Qudits and
high-dimensional quantum computing, Front. Phys. 8, 589504
(2020).
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