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Quantum transport between distant nodes that is robust to experimental imperfections is essential for quantum
information processing. Here we experimentally demonstrate efficient and robust edge-to-edge transport of
atomic momentum states in a synthetic lattice of Bose-Einstein condensate, simulating a dynamically modulated
Su-Schrieffer-Heeger (SSH) model. This transport process relies on continuously controlling the effective
nearest-neighbor couplings in the synthetic lattice, which constructs a unique chain between the left- and right-
edge states. The robustness of such transport is protected by the chiral symmetry of the system, demonstrated
by subjecting the lattices to coupling-strength disorders. Furthermore, we implement a splitter operation through
an SSH model with a topological interface at its center. Our approach provides an efficient single operation to
achieve robust momenta transport with potential applications in coherent quantum control in atom optics.
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Introduction. Manipulating and transporting momentum
states in atom optics has been widely used in quan-
tum sensing [1,2] and quantum information science [3],
such as light-pulse atom interferometry [4], band structure
spectroscopy [5], and momentum-lattice-based quantum sim-
ulations [6]. Atom interferometers usually rely on highly
efficient atom optics to connect the two momentum states,
e.g., strong light pulses with the stimulated Raman tran-
sitions [7] and quasi-Bragg diffractions [8,9], which allow
for the application of many sequential light pulses, enabling
momentum transfer and increased sensitivity [10,11]; while
simultaneously connecting lots of momentum states with
multiple weak Bragg lasers forms synthetic discrete lattices,
so-called momentum lattices [12], providing a controllable
platform for quantum simulation tasks. Significant progress
along this direction also has been achieved in recent years, in-
cluding realizing different lattice geometries [13], simulating
artificial gauge fields [14], and probing topological phase tran-
sitions [15]. However, efficient and coherent momenta transfer
between distant momentum sites without direct coupling, e.g.,
edge-to-edge transfer, which is essential for simulating dy-
namical quantum phenomena in coupled atomic momentum
lattices, remains a challenge in experiments.

To achieve such a goal, the most intuitive protocol is to
apply a sequence of swap operations between adjacent lattice
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sites [16], similar to the sequential pulses in atom interfer-
ometers. At the same time, the rest of the system remains
disconnected. Hence, the initial state is moved toward the
target state step by step. Another approach employs suitable
preengineered couplings between lattice sites, which is usu-
ally rendered the perfect state transfer protocol [17]. As the
system evolves, the initial state is coherently transferred to
the target state via Rabi-like oscillation schemes [18–20].
Both of these schemes depend strongly on the fine-tuned
couplings and the accurate timing of the dynamics. Recent
protocols exploit optimal control methods over the driven
optical lattice [21] and counterdiabatic control technique in
synthetic lattices [22], observing transport dynamics in a few
momentum modes. These transport protocols, limited by the
inevitable existence of environmental noise and parameter
imperfections, are thus not robust.

More recently, inspired by developments in topological
pumping [23,24], coherent and robust transport schemes
in topological systems have gained much interest [25,26].
Specifically, in a one-dimensional Su-Schrieffer-Heeger
(SSH) lattice, the robustness of edge states allows us to trans-
port by adiabatically pumping the edge state from one side to
the other [27–30]. Unlike Thouless pumping [31–33], which
is quantized bulk state pumping, edge-to-edge transport is
controlled only by the coupling strengths and implemented
in a complete pump cycle. A few applications of such edge-
to-edge topological transport of excitations and energies have
been performed in superconducting circuits [34], photonic
waveguides [35], and coupled harmonic oscillators [36–38].
However, there are only a few direct experimental demon-
strations [38] of the robustness of the protocol. To date, a

2643-1564/2023/5(3)/L032005(7) L032005-1 Published by the American Physical Society

https://orcid.org/0000-0001-9704-4218
https://orcid.org/0000-0001-7152-327X
https://orcid.org/0000-0003-0916-7942
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.L032005&domain=pdf&date_stamp=2023-07-12
https://doi.org/10.1103/PhysRevResearch.5.L032005
https://creativecommons.org/licenses/by/4.0/


TAO YUAN et al. PHYSICAL REVIEW RESEARCH 5, L032005 (2023)

left-edge state

right-edge state

left-edge state

right-edge state

transport in odd-site chains

transport in even-site chains

FIG. 1. Protocols of dynamical edge-to-edge transport in SSH chains. (a) Schematics for edge-to-edge transport in a one-dimensional (1D)
odd-site SSH chain. The dynamical modulation of coupling strengths induces the transport of a left-edge state into a right-edge state. (b),
(c) The modulations of the coupling strengths (red and blue lines) for an SSH chain with L=9 and the instantaneous energy spectrum of the
system. The thick gray line corresponds to the zero-energy topological edge mode. (d) Schematics for edge-to-edge transport in a 1D even-site
SSH chain. (e), (f) The modulations of the coupling strengths (red and blue lines) for an SSH chain with L=10 and the instantaneous energy
spectrum of the system. The thick gray lines correspond to the two topological edge modes. �g represents the minimal energy gap between
the edge modes and the bulk states during the transport process.

time-controlled topological pump of momentum states re-
mains elusive, and as a result, on-demand robust transport of
momenta in a connected atomic momentum lattice has yet to
be achieved.

Here, we report on the realization of efficient and robust
edge-to-edge transport of atomic momentum states in a syn-
thetic lattice of Bose-Einstein condensed (BEC) states via a
scheme of topological pumping. This scheme applies a time-
dependent sequence to the staggered nearest-neighbor (NN)
couplings along the lattice, modulated through the stimulated
Bragg transitions. We implement two distinct transport pro-
tocols with optimized sequences for both odd- and even-site
chains, achieving effective transport for more than ten mo-
mentum sites. Furthermore, the robustness of the topological
transport scheme is confirmed by comparing it with another
perfect state transfer scheme when subjected to coupling
strength disorders. Moreover, we extend the application of
this dynamical transport for coherent splitter operation. With
a topological interface in the SSH chain, the initial state at the
central site is first transported into the two-end sites with equal
probabilities and later recombined at the central site again,
indicating the coherent operation of the splitter operation.
Our experiments enrich the study of dynamical phenomena
in momentum lattices and will provide inspiration for the
spatial transport and distribution of entanglement in disorder
systems.

The transport protocol. We consider the Su-Schrieffer-
Heeger model as the transport channel, which is a linear

quantum chain of macroscopically separated sites, as shown
in Fig. 1. The Hamiltonian of the system is given by [39]

Ĥ (t ) = −
L−2∑

n=0

[γ (t ) − (−1)nδ(t )][â†
n+1ân + H.c.], (1)

where ân and â†
n are the annihilation and creation operators

acting on the lattice site of n, respectively. L denotes the
length of the SSH chain. γ (t ) ± δ(t ) are the time-dependent
NN couplings of even and odd bonds in the lattice. In the
thermodynamic limit, the SSH model is known to exhibit
two topologically distinct phases, topologically nontrivial for
δ(t )>0 and topologically trivial for δ(t )<0, separated by
a topological phase transition point at δ(t )=0. The distinct
topological character of the two phases is reflected in the
difference in their bulk topological invariant, i.e., the winding
number, for which +1 in the topologically nontrivial phase
and 0 in the topologically trivial phase [40].

Due to the bulk-edge correspondence, when SSH chains
are in a topological phase, there are additional disorder-
resilient edge modes bound to the open ends of the chain [41].
We first consider the odd-sized SSH chains, as shown in
Fig. 1(a). Due to the chiral symmetry, a zero-energy edge state
always exists in the odd-sized SSH chain, which is protected
against the disorder that preserves the chiral symmetry of
the system [28]. When δ(t )>0 or δ(t )<0, the edge state is
localized at the left or right side of the chain. One can first
set γ (0)=δ(0)=γ0/2 and the leftmost edge site is decoupled
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FIG. 2. Demonstration of edge-to-edge transport in a momentum lattice. (a) Top: Illustration of the experimental setup of the momentum
lattice. The BEC is illuminated by a pair of counterpropagating Bragg beams, one of which (left-going laser) contains multiple discrete
frequency components (ω−

n ). These two beams resonantly couple a set of momentum states, forming a synthetic lattice. By tuning staggered
couplings in even and odd bonds of the lattice, we effectively simulate a tight-binding SSH model. Middle: A typical experimental absorption
image of the atom cloud for different momentum states after a time of flight of 24 ms. Bottom: The dispersion relation and depiction of Bragg
transition pathways for the nearest-neighbor couplings. (b), (d) The experimentally observed dynamics of site occupations during the transport
in the SSH chains of length L=9 and L=10, respectively. (c), (e) The evolution of occupations for the left- (blue) and right-edge (red) sites
during the transport in the SSH chains of length L=9 and L=10, respectively. The circles and diamonds correspond to the experimental
data, and the lines correspond to the numerical simulations. The triangular markers on the side indicate the calculated probability using ideal
effective Hamiltonian. The error bars represent the 1σ standard deviation of the measurements.

from the rest of the chain, which can be used for the input
excitation. Afterwards, as shown in Fig. 1(b), adiabatic mod-
ulations of the coupling strengths with γo(t ) = γ0Fo(α, t, T )
and δo(t ) = γ0Ko(α, t, T ) are applied to the system, where γ0

is the typical coupling strength, T is the total transport time,
and α is the tuning parameter (see the Supplemental Material
for details [42]). The edge mode is at zero energy and well
separated from the bulk states, as shown in Fig. 1(c). Such a
modulation will drive the input state across the chain, produc-
ing a right-localized edge state, thus implementing dynamical
edge-to-edge transport.

Similarly, for even-sized SSH chains in the nontrivial topo-
logical phase δ(t )>0, two zero-energy edge modes appear
at the two ends of the chain, as shown in Fig. 1(d). We
send the input excitation to the leftmost edge site and set
γ (0)=δ(0)=γ0/2. Then, we modulate the SSH chain by
another dynamical sequence with γe(t ) = γ0Fe(α, t, T ) and
δe(t ) = γ0Ke(α, t, T ) [see Figs. 1(e) and 1(f)]. During the
modulation, the two edge states become hybridized, and the
input state is transported to the right edge.

The transport efficiency, i.e., the occupation probability at
the target state, is used to characterize the performance of
the transport process, IR =|〈L−1| �(t =T )〉|2, where {|n=
0, 1, . . . , L − 1〉} represents the Hilbert space of the model,
|�(t )〉=∑L−1

n=0 cn(t )|n〉 denotes the wave function of the sys-

tem during the transport process, and cn are the complex
amplitudes. By carefully choosing the modulation parameters
of (α, T ) to maximize the transport efficiency, we derive opti-
mized edge-to-edge transport sequences for different transport
distances [42]. The broad optimal parameter regions of (α, T )
for transport efficiency higher than 0.9 indicates the flexi-
bility of performing efficient edge-to-edge transport. In the
experiments, we can choose transport sequences with short
time costs to perform fast transport. At the same time, we
can choose longer transport times for higher adiabaticity to
perform the robustness of the transport process.

Experimental setup. The experiment starts with a weakly
trapped 87Rb BEC of ∼105 atoms, with residual harmonic
confinement of trapping frequencies ∼2π×(15, 60, 40) Hz,
as depicted in Fig. 2(a). We then apply a pair of counter-
propagating lasers (wavelength λ=1064 nm) to drive Bragg
transitions that can change the atomic momentum in incre-
ments of 2h̄k (with k =2π/λ and h̄ being the reduced Planck’s
constant). While one of the beams has a single frequency
component (ω+), the other beam is engineered to have mul-
tiple discrete frequency components (ω−

n ), which is realized
by using a pair of acousto-optic modulators to write a con-
trolled spectrum of frequency components onto the lattice
beam. Together, these two beams drive a set of two-photon
Bragg transitions, forming a synthetic lattice in momentum
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space [12,42]. The lattice sites are defined on discrete momen-
tum states of pn =2nh̄k and energies En =2n2h̄2k2/m, where
n is the site index and m is the atomic mass. Here we treat the
dispersion relation of BEC as that of free particles, with weak
interactions [43,44] and loose trapping potential [45], making
this a good approximation. By controlling the strengths and
phases of the Bragg laser fields, we can dynamically modulate
each link in the lattice to perform edge-to-edge transport.
In our experiments, we set the typical coupling strength
to γ0 = 2π h̄ × 2.00(1) kHz, corresponding to the equivalent
units of the coupling time h̄/γ0 ≈80 μs.

Following the transport sequence, all the laser beams are
extinguished, and the atoms are allowed to freely fall and
expand in time of flight (TOF), which will map the dif-
ferent momentum states into real space. After a TOF time
of 24 ms, we take an image of the density distribution of
the atomic cloud and derive the populations for each mo-
mentum lattice site, as shown in Fig. 2(a). Thus, the whole
dynamic evolution during dynamic transport is obtained
by monitoring the atomic populations at different transport
times.

Demonstration of edge-to-edge transport. We first demon-
strate dynamical edge-to-edge transport in odd-sized SSH
chains. For example, in an SSH chain comprising nine sites
L=9, we choose the transport time of T =7.54h̄/γ0 and the
optimized tuning parameter at α=6.87, as shown in Fig. 1(b).
Under such a setting, the minimal energy gap during trans-
port is �g =0.60γ0 and the transport time is larger than the
characteristic timescale of �−1

g =1.66h̄/γ0, meeting the adi-
abatic condition [46]. As shown in Fig. 2(b), all atoms are
initially prepared at the left-edge site for the zero momentum
state |n=0〉. Then, the atoms are gradually transported to the
right side of the chain, following the dynamic edge-to-edge
transport modulation. In the end, the population of atoms is
successfully transported to the right-edge site |n=8〉, with an
efficiency IR =0.82(2), as shown in Fig. 2(c).

Next, we implement the dynamical edge-to-edge transport
in an even-sized SSH chain at L=10, with a transport time of
T =9.17h̄/γ0 and the optimized tuning parameter at α=0.15
[see Fig. 1(e)]. This sequence fulfills the adiabatic condition,
which requires the minimal transport time of �−1

g =1.83h̄/γ0.
Meanwhile, the global adiabaticity of the hybridization of the
two edge modes (|�L〉 and |�R〉) can be expressed by the
area theorem [47], which requires

∫ T
0 〈�L|Ĥ (t )|�R〉dt > π/2.

With our setting parameters for L=10, the area is approxi-
mately 0.6π . Thus, the atoms are effectively transported from
|n=0〉 to |n=9〉 with an efficiency of IR =0.81(2), as shown
in Figs. 2(d) and 2(e).

Thus, we can transfer to any lattice site in the chain on de-
mand. For longer chains of L � 14, the achieved efficiencies
are higher than 0.5. Numerical simulations with the time-
evolved Gross-Pitaevskii equations (GPEs) also agree well
with our experiments [42]. One limiting factor of transport
efficiency is the effect of the trapping potential. By loosening
the trapping potential along the direction of imparted momen-
tum, higher transport efficiency could be achieved in the loose
trapping potential [42].

Robustness to coupling strength disorders. One of the
advantages of such topological transport is the robustness
against imperfections of the system. Here, we focus on the

FIG. 3. Robustness against coupling strength disorders. (a), (b)
The mean transport efficiencies for adiabatic edge-to-edge transport
are measured in disordered SSH chains of L=5 and L=7, respec-
tively. The red diamond points are experimental data averaged over
20 independent disorder configurations. The error bars represent one
standard deviation. The gray lines represent the numerical simu-
lations with experimental parameters for 100 independent disorder
configurations.

robustness of the coupling-strength disorders in topologi-
cal transport, which respect the chiral symmetry of SSH
chains [40]. One can easily implement the coupling-strength
disorders by controlling the Bragg transition strengths be-
tween discrete momentum states. In particular, we take the
odd chains as an example and set each of the coupling terms
to γn(t ) = γo(t )(1+W ξn) and δn(t ) = δo(t )(1+W ζn), where
ξn and ζn are independent random real numbers chosen uni-
formly from the range [−1, 1], and W is the dimensionless
strength of disorder.

The performance of the transfer process in disordered sys-
tems can be characterized by the mean transport efficiency
〈IR〉. For example, in a clean chain with five sites L=5, the
designed parameters for the transport process are α=1.49
and T =25h̄/γ0. The transport efficiency in a clean system is
approximately 0.88, as shown in Fig. 3(a). With the increase
in the disorder strength, the transport remains efficient, where
the efficiency can still achieve 〈IR〉 =0.80 at W =0.5. Similar
robust transport performance is measured for a chain with
L=7 at α=1.89 and T =25h̄/γ0, as shown in Fig. 3(b). Here,
we have taken fewer experimental data at larger W when the
efficiency is below 0.5. Since our experimental results agree
well with the GPE simulations, we have taken more data
through numerical simulation.

To analyze the robustness of the transport process, we
define the critical disorder strength Wc, corresponding to an
efficiency of half the maximum value. From the GPE sim-
ulations, the critical disorder strengths are about 0.90 and
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FIG. 4. Implementing a splitter operation. (a) Schematic of a modified SSH chain with an interface site introduced at the center.
(b) Dynamics of site populations during the splitter operation. The initial state at the center site are split and transported to the two-end
sites with equal probabilities. (c) The interfering process from the two-end sites to the center with controlled phases φ on the right side of the
chain. The red diamonds represent experimental data, and the dashed line is the numerical simulation by GPE. Inset on top: Schematic of the
interfering process. Inset on bottom: Dynamics of the interfering process at φ=0 and φ=π , respectively.

0.80 for our transport protocol at L=5 and 7, respectively.
Moreover, it is found that a wide energy gap in the SSH
chain favors the topological chain to realize robust transport.
When further increasing the disorder strength, the transport
efficiency reduces significantly due to decreasing the energy
gap, indicating the breakdown of the adiabaticity [35,42,47].
For comparison, we send the same increasing disorder to a
nontopological protocol, i.e., the perfect state transfer method,
where the mean transport efficiency drops much faster than the
topological method [42].

Implementing a splitter operation. Furthermore, we ex-
tend the application of the dynamical edge-to-edge transport
protocol to implement a coherent splitter operation [48,49],
which has been recently designed for engineering two-way
and three-way splitting based upon different lattice struc-
tures [50,51] for applications in matter wave operations and
atom optics. The simplest splitter operation, in which the ini-
tial state prepared at the central site can be later observed at the
two-end sites with equal probabilities and recombined at the
central site again, can now be first realized in ultracold atoms
based on the dynamical edge-to-edge transport in momentum
lattices.

Utilizing the feasibility of site-resolved modulation of the
momentum lattice, we construct a unique transport channel
in an SSH chain with seven lattice sites, where an interface
site at the center connects both of its nearest-neighbor sites
with weak couplings, as shown in Fig. 4(a). Then, we perform
dynamic edge-to-edge transport following the modulations
with α=0.3 and T = 3.77h̄/γ0. At the end of the transport, the
input state initially in the central site p0 is transported to the
two end sites p±3, with a balanced population I−3 =0.41(1)
and I3 =0.41(0), as shown in Fig. 4(b).

Afterward, the split state is reflected by the two ends and
sent back to the center by the same transport process for
interference. As shown in Fig. 4(c), we introduce additional
modulated phases φ for couplings at the right part of the
chain. Finally, the atomic occupations at different sites are
measured for the modulated phase from φ=0 to φ=2π . We
use the central site occupancy I0 to characterize the interfer-
ence. When the phase is φ=0, the states at two end sites are
transported to the central site again, which interferes and gives
out a peak occupancy I0 =0.60(2), while the site population
at the central site gives out a minimal value I0 =0.17(2)
when the phase is φ=π . Thus, the occupation probabilities
I0 at different modulated phases show a typical interfero-
metric pattern, showing the phase coherence of the splitter
operation.

Summary. In summary, we have successfully demonstrated
dynamic and robust edge-to-edge transport with a single op-
eration in the SSH model based on the momentum lattices
of BEC. We also quantitatively identify the robustness of
the protocol by adding controlled disorders into the coupling
strength, highlighting the topological protection due to the
chiral symmetry of the system. A splitter operation is further
demonstrated based on the edge-to-edge transport protocol,
where a state can be coherently split and recombined, showing
the potential application in atom interferometry. The transfer
protocol can be further extended by introducing site-energy
modulations [47,49] in the Rice-Mele model, which is more
advantageous in terms of robustness against coupling disorder
and on-site disorder. At the same time, the transfer scheme
can also be extended by introducing next-nearest-neighbor
couplings [14,52] or non-Hermitian terms [53,54], which will
activate the shortcut for nonadiabatic edge-to-edge transport.
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By modulating multiple Bragg lasers, our approach can also
be implemented for high-order diffractions in the quasi-Bragg
regime for atom interferometry [8,9]. Our work could lead to
novel applications in matter wave manipulations and reliable
quantum state transfer, which could improve coherent quan-
tum control in atom optics and benefit the investigation of
topological dynamics.
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