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Long-range interactions in a quantum gas mediated by diffracted light
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A Bose-Einstein condensate (BEC) interacting with an optical field via a feedback mirror can be a realization
of the quantum Hamiltonian Mean Field (HMF) model, a paradigmatic model of long-range interactions in
quantum systems. We demonstrate that the self-structuring instability displayed by an initially uniform BEC
can evolve as predicted by the quantum HMF model, displaying quasiperiodic “chevron” dynamics for strong
driving. For weakly driven self-structuring, the BEC and optical field behave as a two-state quantum system,
regularly oscillating between a spatially uniform state and a spatially periodic state. It also predicts the width
of stable optomechanical droplets and the dependence of droplet width on optical pump intensity. The results
presented suggest that optical diffraction-mediated interactions between atoms in a BEC may be a route to
experimental realization of quantum HMF dynamics and a useful analog for studying quantum systems involving
long-range interactions.
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Systems involving long-range interactions, such as those
occurring in gravitational physics or plasma physics, display
several unusual behaviours, e.g., extremely slow relaxation
and existence of quasisteady states [1]. Recently, there has
been significant interest in quantum systems involving long
range interactions, e.g., ion chains, Rydberg gases, and cold
atomic gases enclosed in optical cavities [2].

The Hamiltonian Mean Field (HMF) model [1] was intro-
duced as a generic classical model of long-range interacting
systems, e.g., self-gravitating systems [3]. It involves N parti-
cles on a ring which experience a pairwise cosine interaction.
It also arises as a model of a system of X-Y rotors coupled
with infinite range. Extension of the HMF model to describe
quantum systems was first carried out by Chavanis [4,5] and
the dynamics of this quantum HMF model was investigated
more recently by Plestid and O’Dell [6,7], who demonstrated
that the model exhibited violent relaxation of an initially
homogeneous state to a structured state and possessed bright
soliton solutions.

Cold atomic gases enclosed in cavities exhibit phenomena
demonstrating universal behaviors common to many different
physical systems, e.g., the behavior of a cold, thermal gas in
a cavity undergoing viscous momentum damping induced by
optical molasses beams is related to the Kuramoto model [8,9]
which describes synchronization of globally coupled phase
oscillators. It has been shown [10,11] that in the absence of
momentum damping, a thermal gas in a cavity can exhibit
dynamics similar to that of the classical HMF model. In the
case of a quantum degenerate gas, e.g., a Bose-Einstein con-
densate (BEC), its dynamical behavior in a cavity has been
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mapped onto the Dicke model describing coupled spins and
superradiance [12], but to date no experimental realization of
the quantum HMF model has been described or proposed.

Here we investigate a system consisting of a BEC inter-
acting with an optical field via single mirror feedback (SMF)
as shown schematically in Fig. 1. In this BEC-SMF system,
coupling between atoms arises due to diffraction, involves
many transverse modes, and optical forces are directed per-
pendicular to the propagation direction of the optical fields.
This is significantly different from cavity systems (such as,
e.g., Refs. [9,12]), where the dominant coupling between
atoms arises from interference between a pump field and
cavity modes. We show that under certain conditions, the
equations describing the dynamics of the BEC and the op-
tical fields can be mapped onto the quantum HMF model
[4–6]. Using this connection, we then investigate dynamical
instabilities of initially homogeneous distributions of BEC
density and optical intensity and also the existence of spatially
localized states reminiscent of quantum droplets observed in
dipolar BECs [13,14]. The model we use to describe the
BEC-SMF system was originally studied in Ref. [15] as an
extension of that used to study self-structuring of a classical,
thermal gas, observed experimentally in Ref. [16], with the
thermal gas replaced with a BEC. We consider a BEC with
negligible atomic collisions and describe the evolution of the
BEC wavefunction �(x, t ) with the Schrödinger equation

ih̄
∂�(x, t )

∂t
= − h̄2

2m

∂2�(x, t )

∂x2
+ h̄δ

2
s(x, t )�(x, t ), (1)

where m is the atomic mass, δ = ω − ωa is detuning, s(x, t ) =
|F |2 + |B(x, t )|2 is the atomic saturation parameter due to
the forward and backward optical fields where |F |2 = IF

Isat �2 ,

|B|2 = IB
Isat �2 , and IF , IB are the intensities of the forward (F)

and backward (B) fields respectively. Isat is the saturation
intensity on resonance, � = 2δ

�
, and � is the decay rate of
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the atomic transition. It has been assumed that |�| � 1 and
that consequently s � 1 so that the atoms remain in their
ground state. In addition, longitudinal grating effects due to
interference between the counterpropagating optical fields are
neglected.

In order to describe the optical field in the gas we as-
sume that the gas is sufficiently thin that diffraction can be
neglected, so that the forward field transmitted through the
cloud is

Ftr = √
p0 exp (−iχ0n(x, t )), (2)

where p0 = |F (z = 0)|2 is the scaled pump intensity, χ0 = b0
2�

is the susceptibility of the BEC, b0 is the optical thickness
of the BEC at resonance, and n(x, t ) = |�(x, t )|2 is the lo-
cal BEC density, which for a BEC of uniform density is
n(x, t ) = 1.

The backward field B at the BEC completes the feedback
loop. As the field propagates a distance 2d from the BEC to
the mirror and back, optical diffraction plays a critical role by
converting phase modulations to amplitude modulations and
consequently optical dipole forces. The relation between the
Fourier components of the forward and backward fields at the
BEC is

B(q) =
√

RFtr (q)ei q2d
k0 , (3)

where R is the mirror reflectivity, q is the transverse wavenum-
ber, and k0 = 2π

λ0
. It was shown in Ref. [15] that this system

exhibits a self-structuring instability where the optical fields
and BEC density develop modulations with a spatial period of
�c = 2π

qc
, where the critical wavenumber qc is

qc =
√

π

2

k0

d
. (4)

The reason for this instability is that BEC density modu-
lations (which produce refractive index modulations), with
spatial frequency qc, produce phase modulations in Ftr which
are in turn converted into intensity modulations of B [see
Eq. (3)]. These intensity modulations produce dipole forces
which reinforce the density modulations, resulting in positive
feedback and instability of the initial, homogeneous state. A
condition of this instability is that the pump intensity exceeds
a threshold value pth [15], which for q = qc can be written as

pth = 2ωr

b0R�
, (5)

where ωr = h̄q2
c

2m .
The optomechanical self-structuring exhibited by the BEC-

SMF model of Eqs. (1)–(3) derived in Ref. [15] can be reduced
to that of the quantum HMF model, originally proposed in
Refs. [4,5] and revisited in Refs. [6,7]. We express the optical
intensity s(x, t ) in terms of n (density) using Eq. (2). Assum-
ing χ0n � 1 as in Ref. [17], then Ftr ≈ √

p0(1 + iχ0n(x, t )).
It is assumed that the BEC density and (backward) optical
field consist of a spatially uniform component and a spatial
modulation with spatial frequency qc, so

B(qc) =
√

RFtr (qc)ei q2
c d
k0 = i

√
RFtr (qc), (6)

i.e., phase modulation of Ftr becomes amplitude modulation
of B. Expressing

Ftr (x, t ) = F (0)
tr + F (qc )

tr eiqcx + F (−qc )
tr e−iqcx,

n(x, t ) = 1 + n(qc )eiqcx + n(qc )∗e−iqcx,

then substitution of the above into Eq. (2) shows that

F (0)
tr = √

p0(1 + iχ0) ≈ √
p0

F (qc )
tr = i

√
p0χ0n(qc )

F (−qc )
tr = i

√
p0χ0n(qc )∗

⎫⎪⎪⎬
⎪⎪⎭

. (7)

Using a similar expansion of B(x, t ) and then Eqs. (6), (7)
produces

B =
√

Rp0 −
√

Rp0χ0n(qc )eiqcx −
√

Rp0χ0n(qc )∗e−iqcx.

Writing n(qc ) = |n(qc )|e−iφ , then

B =
√

Rp0 − 2
√

Rp0χ0|n(qc )| cos(qcx − φ), (8)

which allows us the optical field intensities in Eq. (1) to be
written in terms of the BEC density

s(x, t ) ≈ p0 + Rp0 − 4Rp0χ0|n(qc )| cos(qcx − φ). (9)

Note that if the assumption χ0n � 1 was relaxed, additional
terms with spatial frequency 2qc would also be present. As
n(qc ) is described by n(qc ) = 1

L

∫ L
0 |�(x, t )|2e−iqcx dx , where L

is the BEC length then

|n(qc )| cos(qcx − φ) = 1

2π

∫ 2π

0
|�(θ ′, t )|2 cos(θ − θ ′)) dθ ′,

where θ = qcx and it has been assumed that � is spatially
periodic with period �c. Consequently, Eq. (9) can be written
as

s(x, t ) = p0 + Rp0 − 4Rp0χ0�(θ, t ), (10)

where the nonlocal potential �(θ, t ) is �(θ, t ) =
1

2π

∫ 2π

0 |�(θ ′, t )|2 cos(θ − θ ′)) dθ ′. The constant term in
Eq. (10) results in a constant potential energy contribution
to Eq. (1), which can be eliminated by the transformation
� via � = � ′ exp(−i (1+R)p0δ

2 t ), so that the Schrödinger
equation from Eq. (1) becomes a Gross-Pitaevskii
equation (GPE) analog

i
∂� ′

∂t
= −ωr

∂2� ′

∂θ2
− ε�(θ, t )� ′, (11)

where ε = 2δRp0χ0 = Rp0b0�

2 = p0

pth
ωr . Equation (11) has the

same effective GPE-like form as that of the quantum HMF
model [4,6]. Note that ε > 0 always, which corresponds to
the case of the ferromagnetic quantum HMF model. The or-
der parameter or magnetization M is essentially the Fourier
component of the BEC density with spatial frequency qc [5,6]:

M =
∣∣∣∣ 1

2π

∫ 2π

0
|�|2eiθ dθ

∣∣∣∣. (12)

In order to demonstrate that Eqs. (1)–(3) can exhibit dy-
namical behavior associated with the quantum HMF model,
we consider two example cases: strong driving, far above
threshold, i.e., p0 � pth, and weak driving, just above thresh-
old, i.e., p0 only marginally exceeds pth. These cases of strong
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FIG. 1. Schematic diagram of the single mirror feedback (SMF)
configuration showing a BEC interacting with a forward propagating
optical field (F ) and a retroreflected/backward propagating optical
field (B).

and weak driving can be interpreted physically as that where
the structuring nature of the instability completely dominates
delocalizing quantum pressure in the BEC, and that where
the effects of quantum pressure are significant, respectively.
In both cases we restrict the values of b0, �, etc. such that
χ0n � 1, for consistency with the assumption made when
deriving Eq. (11) from Eq. (13). Figure 2 shows an example of
self-structuring displayed by the BEC-SMF model, Eqs. (1)–
(3), in the case where the system is driven strongly, far above
the instability threshold, i.e., p0 � pth. The system sponta-
neously develops a modulated optical intensity and modulated
density with a spatial period of �c. The spatio-temporal dis-
tribution of the BEC density and optical intensity develop
intricate “chevron” structures similar to those observed in
Ref. [6] produced by a “quantum Jeans instability” [5].

Figure 3 shows an example of self-structuring when the
system is driven weakly, marginally above the instability
threshold. Again, both the BEC and optical field sponta-
neously develop a modulation with a spatial period of �c, but
the evolution of the system is qualitatively different from the
strongly driven case shown in Fig. 2. In the weakly-driven

FIG. 2. Evolution of BEC density and optical intensity for strong
driving, calculated from Eqs. (1)–(3). Parameters used: b0 = 100,
� = 500, p0 = 10pth = 2 × 10−9, R = 1, ωr

�
= 10−8.

FIG. 3. Evolution of BEC density and optical intensity for weak
driving, calculated from Eq. (1)–(3). Parameters used: b0 = 100,
� = 500, p0 = 1.1pth = 2.2 × 10−10, R = 1, ωr

�
= 10−8.

case, the BEC density distribution consists of what were
termed “monoclusters” in Ref. [6] and the chevrons are ab-
sent. The temporal behavior is also different in the two cases.
For weak driving, after development of the optical and BEC
structures they disperse and reform regularly whereas in the
strongly driven case the temporal behavior is more complex,
with a quasiperiodic sequence of dispersal and revival.

This mapping between the BEC-SMF model of
Eqs. (1)–(3) and the quantum HMF model when χ0n � 1
allows us to gain some insight into the behavior of the
BEC-SMF system. It explains the similarity in the evolution
of the BEC density shown in Fig. 2 with that displayed by the
quantum HMF model in Ref. [6], i.e., the chevron structures.
In the weakly driven regime, it allows additional insight if we
assume a wavefunction of the form

�(θ, t ) = c0(t ) + c1(t ) cos(θ ), (13)

i.e., representing two states, one of which |0〉 is spatially
uniform, and the other |1〉 which is spatially periodic with
spatial period �c. Using this two-state ansatz, the effective
GPE equation of the quantum HMF model in Eq. (11) can be
rewritten as an equation for the order parameter or “magneti-
zation” M (see Supplementary Material [18]):

(
dM

dt

)2

+ ε2

2
M4 − ω2

r

(
ε

ωr
− 1

)
M2 = 0, (14)

which has the solution

M(t ) =
√

2
ωr

ε

√
ε

ωr
− 1 sech

[
ωr

√
ε

ωr
− 1(t − t0)

]
, (15)

where t0 = cosh−1(

√
2 ωr

ε

√
ε

ωr −1

M0
)

ωr

√
ε

ωr
−1.

and M0 = M(t = 0).

Figure 4 (inset) shows the evolution of M as calculated
from Eq. (15) and from the BEC-SMF model [Eqs. (1)–(3)],
when the system is driven weakly. The analytical expression
for M in Eq. (15) and the numerical calculation agree well
for the first period of the evolution, which in the numerical
simulation then repeats periodically as in Fig. 3. The behavior
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FIG. 4. Maximum value of M as a function of p0, calculated
from Eqs. (1)–(3). All other parameters used are as for Fig. 3. Inset
shows evolution of M calculated from Eq. (15) (dashed line), and
from a numerical solution of Eqs. (1)–(3) (full line), for one period
of oscillation when the system is driven weakly (p0 = 1.05, pth =
2.098 × 10−10). All other parameters used are as for Fig. 3.

of the system in the weakly driven regime is therefore sim-
ilar to that of a two-state quantum system where the BEC
density (and consequently the optical intensity) oscillates
spontaneously in time between a spatially uniform state and
a spatially structured state. Equation (15) predicts that the
maximum value of the order parameter M scales with distance
from threshold ∝ (p0 − pth)1/2, similar to the mean-field Ising
model. Figure 4 shows that this scaling behavior is produced
by the BEC self-structuring model [Eqs. (1)–(3)].

In addition to formation of global structures, i.e., spatially
periodic patterns, it has been shown that spatially lozalized
structures can also arise in the BEC-SMF system [17]. These
structures were termed “droplets” in Ref. [17] due to the
similarity with quantum droplets in dipolar BECs [13,14]. An
example of a stable droplet in the BEC-SMF system is shown
in Fig. 5 as calculated from Eqs. (1)–(3). It can be seen that
a BEC of width smaller than �c maintains its shape due to
its interaction with the optical field which it generates. The
existence of soliton solutions for the quantum HMF model
was discovered in Ref. [7], which showed that they are similar
to strongly localized gap solitons which can exist for BECs in
optical lattices [19], with the difference that in the quantum
HMF model the lattice is not externally imposed, but self-
generated by the BEC. Here we show that the mapping of the
BEC-SMF system as described by Eqs. (1)–(3) to the quantum
HMF model as described by Eq. (11) allows determination of
the width of the droplet and its dependence on the parameters
of the system, e.g., pump intensity p0.

Assuming that the profile of the BEC density is Gaussian
with width σx, i.e., �(x) ∝ exp(− x2

2σ 2
x

), then the value of σx

which minimizes the energy functional E (σx ) defined as

E (σx ) = 1

2π

∫ 2π

0
�∗

[
−ωr

∂2� ′

∂θ2
− ε�(x, t )

]
� dθ (16)
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FIG. 5. Evolution of (a) BEC density and (b) optical intensity
distribution calculated from Eqs. (1)–(3) showing a stable, local-
ized droplet. The parameters used were p0 = 6.3 × 10−8, b0 = 20,
� = 1600, ωr/� = 1.00 × 10−7, and R = 0.99. The initial BEC
wavefunction was Gaussian with width σx/�c = 0.07. (c) Plot (on
log-log scale) of stable droplet width σx vs pump intensity, p0

calculated from Eqs. (1)–(3). The parameters used were as for
(a) and (b).

can be shown to be (see Supplementary Material [18])

σx

�c
= 1

2π

(ωr

ε

)1/4
∝ (p0b0R)−1/4. (17)

This is consistent with a more rigorous derivation of soli-
ton solutions for the quantum HMF model [7], with density
profiles described by parabolic cylinder functions of charac-
teristic width ∝ ε−1/4. The predicted dependence of droplet
width σx on pump intensity p0 is confirmed in Fig. 5, where
the stable droplet width is calculated from Eqs. (1)–(3) for
different pump intensities and is plotted against p0. The
power-law scaling σx ∝ p−1/4

0 predicted by energy minimiza-
tion of the quantum HMF model agrees well with the results
of the simulations so long as � is sufficiently large that
condition χ0n � 1 is well satisfied. This scaling behavior
shows that the profile and characteristic width of these op-
tomechanical droplets are more closely related to those of
localized gap solitons [7,19] in a self-generated lattice than to
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other types of localized structures, e.g., nonlinear Schrödinger
equation solitons or quantum droplets observed in dipolar
BECs [13,14].

In conclusion, we have shown that a BEC interacting
with an optical field via a feedback mirror can be a real-
ization of the quantum HMF model. We demonstrated that
the self-structuring of an initially uniform BEC displays fea-
tures observed previously in the quantum HMF model: for
strong driving, chevrons appear in the BEC density; for weak
driving, the BEC behaves as a two-state quantum system,
with the order parameter or magnetization evolving as a

series of sech pulses. The mapping to the quantum HMF
model also allowed predicting the dependence of BEC droplet
width on pump intensity, which agreed well with simulations
of the BEC-SMF model. These results suggest that optical
diffraction-mediated interaction between atoms in a BEC may
be a promising candidate for experimental realization of quan-
tum HMF dynamics and consequently be a versatile testing
ground for models of quantum systems involving long-range
interactions.

We acknowledge useful discussions with G. Morigi.
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