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Engineering long-range interacting spin systems with ultracold atoms offers the possibility to explore exotic
magnetically ordered phases in strongly-correlated scenarios. Quantum gases in optical cavities provide a
versatile experimental platform to further engineer photon-mediated interactions and access the underlying
microscopic processes by probing the cavity field. Here, we study a two-component spin Bose-Hubbard system
with cavity-mediated interactions. We provide a comprehensive overview of its phase diagram and transitions
in experimentally relevant regimes. The interplay of different energy scales yields a rich phase diagram with
superfluid and insulating phases exhibiting density modulation or spin ordering. In particular, the combined effect
of contact and global-range interactions gives rise to an antiferromagnetically ordered phase for arbitrarily small
spin-dependent light-matter coupling, while global-range and inter-spin contact interactions introduce regions
of instability and phase separation in the phase diagram. We further study the low energy excitations above the
antiferromagnetic phase. Besides particle-hole branches, it hosts spin-exchange excitations with a tunable energy
gap. The studied lattice model can be readily realized in cold-atom experiments with optical cavities.
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Introduction. Experiments with ultracold atoms in opti-
cal lattices have extended the scope of quantum simulations
of many-body systems [1,2]. Two key strengths are the
high degree of tunability of different energy scales, and the
possibility to involve the atomic spin degree of freedom,
facilitating the investigation of strongly-correlated phenom-
ena like superfluidity, quantum magnetism, high-temperature
superconductivity, and complex out-of-equilibrium dynamics
[3,4]. While contact interactions naturally occur in ultra-
cold atomic systems [2,5], long-range interactions have been
more elusive. Nonetheless, systems that are traditionally used
to study long-range interactions, such as dipolar quantum
gases, heteronuclear molecules, and Rydberg atoms, suffer
from small long-range interaction strengths, low densities,
and short lifetimes, respectively [6–8]. Quantum gases cou-
pled to optical cavities provide an alternative experimental
platform to create photon-mediated global-range interactions,
whose strength and sign are controlled by external laser fields
[9,10]. This has facilitated theoretical [11–19] and experi-
mental [20,21] investigations of lattice supersolid and charge
density wave phases in single-component spin systems. The
atomic dynamics and many-body excitations can be accessed
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nondestructively in real time by the light leaking from the
cavity [22]. Recently, the inclusion of an internal atomic spin
degree of freedom has become feasible in such systems, lead-
ing to the observation of density and spin self-organization
[23–25]. Incorporating tunable photon-mediated spin interac-
tions further enriches the accessible phenomenology [26–36].
In combination with optical lattices, this approach will allow
the realization of strongly-correlated magnetic phases arising
due to the interplay of short- and global-range interactions.
Some magnetically ordered phases have been discussed in
bosonic [37,38] and fermionic systems [39,40], but a compre-
hensive theoretical study of the phase diagram and transitions
in experimentally accessible regimes is still missing, although
it could expedite their successful realization.

Here, we investigate an extended two-component Bose-
Hubbard (BH) model with cavity-mediated interactions—the
lattice counterpart of the experiment performed in Ref. [23]
with a bulk Bose gas. The considered global-range inter-
actions have a “density” and a “spin” contribution, which
favor both atomic components to either occupy a common
sublattice or two different ones, each breaking indepen-
dently a lattice Z2-symmetry. Their absolute and relative
strengths can be tuned via the intensity and the polariza-
tion of an external laser field, respectively. Additionally,
the two atomic components have different intra and inter-
species contact interactions. We extract the complete phase
diagram using a Gutzwiller approach at unity filling, and ob-
tain density-modulated and magnetically-ordered phases, both
in the superfluid and insulating regimes. Remarkably, the co-
operation between short-range and global-range interactions
results in the formation of an antiferromagnetic Mott insu-
lator for arbitrarily small spin-dependent coupling strengths.
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FIG. 1. (a) Schematic representation of a two-component BEC
(|↑〉 , |↓〉) confined by a 2D optical lattice in an optical cavity. The
atoms are illuminated by a transverse pump field (TP) with tunable
polarization angle φ in the xy plane. (b) Mean-field order parameters
and associated phases. The order parameters θD, θS, and ψ character-
ize density modulation, spin order and superfluidity, respectively. For
U12/U = 1, the possible ground states are a superfluid (SF), a charge
density wave (CDW), a lattice supersolid (SS), an antiferromagnetic
Mott-insulator (AFM), and an antiferromagnetic lattice supersolid
(AF-SS). The red arrows and black circles represent the spin states
and spin-insensitive density configurations, respectively.

In some regimes, the competing contact-interaction energy
scales lead to the separation of the two spin components
[41–43]. In addition, global-range interactions can introduce
correlated phase-separated states in multicomponent systems
[44,45], and induce phase instabilities in systems with only
one component [17,46]. To further elucidate the nature of the
magnetically ordered phase, we construct an effective Hamil-
tonian for its low-energy excitations via perturbation theory,
and identify spin-exchange branches with a tunable gap.

Description of the system. We consider a balanced spin-
mixture of two Bose-Einstein condensates (BECs) coupled
to a high-finesse optical cavity. Specifically, we consider
87Rb atoms and a two-dimensional (2D) system extending
in the xz plane [Fig. 1(a)], resembling the experiments in
Refs. [21,23]. A y-polarized quantized cavity mode is λ pe-
riodic, extends along the x axis, and has a resonant frequency
ωc. The two spin components |↑〉 = |F = 1, mF = 1〉 and
|↓〉 = |F = 1, mF = −1〉 belong to the total angular momen-
tum F = 1 manifold, with the quantization axis defined by
a magnetic field in the z direction. The mixture is loaded
into a 2D λ/2-periodic square optical lattice. The lattice arm
along z has a frequency ωp and linear polarization in the xy
plane, and fulfills a dual role as a transverse pump field (TP).
It is far red-detuned from the atomic and cavity resonance,
�c = ωp − ωc < 0, thus acting dispersively on the atoms. The
light scattered from the TP into the cavity couples the atoms’
motional and spin degrees of freedom to the cavity mode. The
single-particle Hamiltonian reads [47]

Ĥsp = p̂2

2m
+ V̂lat −

(
�c − U0 cos2

(
2π

λ
x̂

))
â†â

+ cos

(
2π

λ
x̂

)
cos

(
2π

λ
ẑ

)
(ηsX̂ + ηvP̂F̂z ) (1)

with total momentum p̂ = ( p̂x + p̂z ) and h̄ = 1 [23,47].
The first two terms account for the atom moving in
the 2D lattice potential V̂lat = −V (cos2( 2π

λ
x̂) + cos2( 2π

λ
ẑ)).

The operator â† denotes the creation operator associated
with the intracavity field. The effective cavity detuning is
�̃c = �c − U0 cos2( 2π

λ
x̂) < 0, with U0 < 0 being the maxi-

mal dispersive shift per atom [47]. The last term in Eq. (1)
describes a self-consistent interference potential that arises
due to light scattering between the TP and the cavity mode
[47]. The scalar component of the atom-light interactions
couples the atomic motional degrees of freedom to the real
quadrature of the cavity field, X̂ = (â + â†)/

√
2, giving rise

to a λ-periodic spin-independent density modulation. The
vectorial coupling is mediated by the imaginary quadrature,
P̂ = i(â† − â)/

√
2, and gives rise to phase-shifted λ-periodic

modulations for the two spin states, since the z component of
the atomic spin operator F̂ yields F̂z |↑〉 = + |↑〉 and F̂z |↓〉 =
− |↓〉 . The associated coupling strengths are ηs = η cos(φ)
and ηv = ηξ sin(φ), with ξ = αv

2αs
given by the atom-cavity

coupling rate η and the ratio of the scalar and vectorial polar-
izabilities [48,49].

We adiabatically eliminate the intracavity field in a
tight-binding approximation [14,21,47,50] and obtain a BH
Hamiltonian,

Ĥ = ĤBH + ĤGlobal, (2)

with

ĤBH = −t
∑

m,〈i,j〉
(b̂†

i,mb̂j,m + H.c.)

+ U

2

∑
i,m

n̂i,m(n̂i,m − 1) + U12

∑
i

n̂i,↑n̂i,↓, (3)

and

ĤGlobal = −Us

K
�̂2

D − Uv

K
�̂2

S. (4)

The first term, Eq. (3), constitutes a two-component BH model
[1,2,41,42,51], comprising tunneling to the z nearest neigh-
bors, with rate t > 0 and repulsive intra and interspin contact
interactions, U > 0 and U12 > 0. We assume the former to
be identical for |↑〉 and |↓〉, as is the case for 87Rb in the
F = 1 hyperfine groundstate manifold [52]. The operator b̂†

i,m

denotes the bosonic creation operator, while n̂i,m = b̂†
i,mb̂i,m

counts the total number of atoms with spin m ∈ {↑,↓} at
site i = (ix, iz ). For sufficiently large magnetic fields, both
spin-changing collisions and cavity-assisted Raman processes
can be neglected [52]. The second term, Eq. (4), consists of
spin-independent (“scalar”) and spin-dependent (“vectorial”)
global-range interactions that are mediated by the intracavity
field. The scalar interactions are associated with the opera-
tor �̂2

D = (
∑

i(−1)|i|n̂i)2, where |i| = ix + iz and n̂i = n̂i,↑ +
n̂i,↓. Its expectation value is maximized for a spin-independent
spatial density modulation with all atoms occupying only even
or odd sites. The expectation value of the operator associated
with vectorial interactions, �̂2

S = (
∑

i(−1)|i|Ŝz,i)2 with Ŝz,i =
n̂i,↑ − n̂i,↓, is maximized for a global antiferromagnetic order-
ing of the atoms, with all atoms in |↑〉 occupying even sites
and all atoms in |↓〉 occupying odd sites, or vice versa. The
interaction strengths Us = UL cos2φ and Uv = ULξ 2 sin2φ can
be tuned with respect to each other via the angle φ. The overall
interaction strength UL > 0 depends on �̃c and the lattice
depth V [47]. The total number of sites is denoted by K .
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Remarkably, the energy scales of the tunneling, contact and
global-range interactions are all independently tunable with
respect to each other. The latter increase linearly, both with
the number of sites and atoms UL ∝ K = N [47], due to the
collective enhancement of photon scattering into the cavity by
the number of atoms, provided the cavity mode size does not
become a limiting factor [14,21]. The Hamiltonian, Eq. (2), is
invariant under a global spin-flip b̂i,↑ → b̂i,↓ and two global
rotations b̂i,m → eiφm b̂i,m for each m ∈ ↑,↓. Furthermore, the
scalar and vectorial global-range interactions introduce an ad-
ditional Z2 symmetry associated to the two sublattices defined
by even and odd sites. Henceforth, the Hamiltonian has a
U (1) × U (1) × Z2 × Z2 symmetry.

Gutzwiller ansatz and order parameters. Motivated by the
large particle numbers in experimental platforms N ≈ 104

[21,23], we explore the zero-temperature phase diagram by
using a Gutzwiller mean-field approach and considering the
case of unity filling (K = N) [53–55]. We assume a transla-
tionally invariant ground state on each of the even (e) and odd
(o) sublattices:

|G〉 =
K/2∏
e=0

K/2∏
o=0

|φe〉 |φo〉 . (5)

For each site i ∈ {e, o}, the wave function is given by

|φi〉 =
nmax∑
n=0

mmax∑
m=0

ai(n, m) |n, m〉i , (6)

where |n, m〉i = (b̂†
i,↑ )n

√
n!

(b̂†
i,↓ )m

√
m!

|0〉 is the local Fock state with
n � nmax atoms in spin state |↑〉 and m � mmax atoms in state
|↓〉 on a single site. The real coefficients ae ≡ (ae(n, m))n,m

and ao ≡ (ao(n, m))n,m are optimized to minimize the effec-
tive mean-field energy density

E (ae, ao) = 〈G|Ĥ |G〉
K/2

. (7)

The superfluid order parameter ψ = 1
4

∑
i,m ψi,m with

ψi,m = |〈b̂†
i,m〉| (m ∈ {↑,↓}) signals the transition from an

insulating phase (ψ = 0) to a phase-coherent superfluid
phase exhibiting off-diagonal long-range order (ψ > 0). The
density θD = |〈n̂e − n̂o〉|, and spin θS = |〈Ŝz,e − Ŝz,o〉| order
parameters indicate the degree of global spatial density and
spinordering due to global-range interactions [Fig. 1(b)].

Phases for a uniform mixture. We discuss the case of a
balanced spin mixture for U12 = U at unity filling

ρm = Nm

(K/2)
= 〈φe|n̂e,m|φe〉 + 〈φo|n̂o,m|φo〉 = 1 (8)

with m = ↑,↓. The choice of fixed density is motivated
by experiments with ultracold atoms, although a qualita-
tively similar phase diagram arises in a grand canonical
ensemble [37,47]. The different order parameters are shown
in Fig. 2. The competition of scalar and vectorial global-
range interactions gives rise to two qualitatively different
scenarios.

For Us > Uv [Figs. 2(a) and 2(b)], we observe two distinct
insulating phases (ψ = 0) at low tunneling rates zt/U : For
large UL, a spin-degenerate charge density wave (CDW), with
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FIG. 2. Mean-field phase diagrams for a balanced-spin mixture
at unity filling for Us/Uv ≈ 4.64 (a), (b) and Us/Uv ≈ 0.33 (c), (d).
(a), (c) Dependence of superfluid order parameter ψ . The solid lines
are perturbative estimations for the transition. (b), (d) Dependence
of density and antiferromagnetic order parameters θD and θS . (e)–(g)
Cuts along the phase diagrams for Us/Uv ≈ 4.64 at constant UL/U =
0.59 and UL/U = 1.41 (e), (f) and for Us/Uv ≈ 0.33 at UL/U = 1.3
(g), indicated by horizontal lines in (a), (c).

θD > 0 and θS = 0; and for small UL, an antiferromagnetic
Mott insulator (AFM), with θS > 0 and θD = 0. Remarkably,
the system favors an AFM for arbitrarily small Uv: the contact
interaction hinders the formation of a CDW and overcomes
the kinetic energy cost to form a unity filling Mott insulator
(MI). There, the AFM configuration is favored among all
possible MIs by the vectorial interactions. The discontinuity
in the order parameters θD and θS when modifying UL/U at
fixed zt/U signals a first order AFM-CDW phase transition,
occurring at UL/U ≈ 1.27 [47]. As tunneling increases, the
system becomes superfluid (ψ > 0) and we observe a first-
order AFM-SF phase transition at small UL/U , signaled by
a discontinuous jump in the order parameters [Fig. 2(e)]. For
larger global-range interactions, the superfluid phase exhibits
density ordering (θD), which we denote as a lattice supersolid
(SS). While in the insulating regime, the AFM phase is stabi-
lized by contact interactions for Us < U/2 + Uv [47]; In the
superfluid regime a SS phase is favored for a small region
around UL/U = 1.22, giving rise to a first-order AFM-SS
phase transition. For even larger UL/U a second-order CDW-
SS occurs, see Fig. 2(f).

In the regime Uv > Us [Figs. 2(c) and 2(d)], the system
exhibits solely spin ordered phases (θS > 0 and θD = 0), as
the vectorial global-range and the contact interactions domi-
nate over the scalar interactions. For small UL, we identify a
first-order AFM-SF phase transition, signaled by a discontin-
uous jump of ψ and θS [Fig. 2(e)]. We observe an increase
of the von Neuman entropy when transitioning to the super-
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fluid phase [47], indicating local entanglement between the
two spin components. For larger UL, we observe a second-
order transition from AFM to a spin-ordered superfluid phase,
which we denote as an antiferromagnetic lattice supersolid
phase (AF-SS) [Fig. 2(g)]. The second-order phase transi-
tions from AFM to AF-SS and CDW to SS are supported
by perturbative estimations, cf. black lines in Figs. 2(a) and
2(c) [47,56]. The qualitative behavior of these transitions
also agrees with exact diagonalization calculations, which are
however limited to small system sizes [47].

As the global-range interactions couple every pair of lattice
sites, they are captured well by our mean-field Gutzwiller
ansatz [57]. However, we expect the method to progressively
lose validity as the tunneling is increased, since the local-basis
truncation (nmax = mmax = 3) disregards large local occupa-
tions that are present deep in the superfluid regime [55]. This
is reflected by the saturation of ψ in Figs. 2(e)–2(g).

Phases for different U12/U . Besides homo-
geneous stable phases, the system can host phase separation
(PS) and phase instability (PI) in certain regions of the phase
diagram. On the one hand, for large interspin interactions
U12/U , it becomes favorable for the two spin species to
separate in space [37,41–45,58,59]. This is reflected in a
lower energy of the PS state in comparison to its spatially
homogeneous counterpart. To allow for a PS state, the system
is divided into halves (A, B): one with higher spin-up density
(ρA

↑ > ρA
↓ ) and one with higher spin-down density (ρB

↓ > ρB
↑ ),

while imposing a density conservation constraint in each
half, ρ ≡ ρA,B

↑ + ρA,B
↓ = 2, to ensure unity filling. We further

assume either 〈�̂D〉 = 0 or 〈�̂S〉 = 0. On the other hand,
phases obtained at fixed density may become unstable when
densities are allowed to fluctuate. Bose-Hubbard models with
concurring long-range [46] or global-range interactions [17]
are known to feature phase instabilities. Such instabilities
are signaled by a negative compressibility, ∂ρμ < 0 [46],
where μ(ρ) = ∂ρE (ρ) is the chemical potential as a function
of the density ρ. We calculate the derivative numerically by
using the energy densities E (ρ) extracted from the variational
ansatz in Eq. (7) allowing for density variations [47].

We now discuss the phase diagrams for different inter
to intraspin interaction ratios U12/U , and scalar to vectorial
global-range interaction ratios Us/Uv . Without the constraint
of spatially homogeneous solutions, the mixed CDW state
|φe, φo〉 = |↑↓, 0〉, the entangled state |φe, φo〉 = |↑↑, 0〉 +
|↓↓, 0〉 , and the fully PS configuration with ρA

↑ = ρB
↓ = 2

become degenerate at U12/U = 1 [Fig. 3(b)].
The phase diagrams for U12/U < 1 are qualitatively simi-

lar to the U12/U = 1 uniform mixture for all Us/Uv ratios. For
dominating scalar interactions, we observe an enlarged CDW
region toward both AFM and SS phases as U12/U drops, ex-
plained by the smaller local cost of double site occupation. We
additionally find a region of PI in the SS phase for U12 � U .
Our observations of PI are qualitatively different from the
results for spinless systems [17,46], which predict stable SS
phases at integer filling in 2D systems. For dominating vecto-
rial interactions, we find extended regions of PI in the AF-SS
phase.

With stronger interspin interactions, U12/U > 1, several
fully PS phases arise. For dominating scalar interactions, we
observe a fully PS CDW and PS SS. We find a fully PS SF for
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FIG. 3. Mean-field phase diagrams for U12/U = 0.9 (a), (d), 1
(b), (e), and 1.1 (c), (f) at Us/Uv ≈ 4.64 (a)–(c) and Us/Uv ≈ 0.33
(d)–(f). A total average density of ρ = 2 is considered.

all Us/Uv ratios. We also observe a shrinkage of the AF-SS
region as U12/U grows, explained by the increasing local cost
of double site occupation with atoms of opposite spin. In
contrast, the boundaries between insulating regions (PS CDW,
AFM) and the PS noninsulating state (PS SS, PS SF) do not
change with U12/U, as the energies of the PS phases and the
AFM phase do not depend on U12.

We note here two limitations of our simulations. First,
the identification of the different phases relies on numerical
minimization [47] in a high-dimensional landscape. This can
lead to spurious solutions, such as the scattered instability
points in Figs. 3(a) and 3(b) and the irregular phase boundaries
in Figs. 2 and 3. Second, there is a small region of fully PS
SS for U12 = U and Us/Uv > 1, cf. Fig. 3(b). This is due
to the relatively small Hilbert space (nmax = mmax = 3) used
for the simulations. We expect that a larger Hilbert space
would lead to degenerate SS and PS SS solutions. Additional
information on the properties of the various phases, the nature
of phase transitions, and the identification of phase separation
and phase instability is presented in [47]. We further validate
our results with self-consistent mean-field calculations in a
grand canonical ensemble [47,60].

Excitations. The low-energy excitations provide important
information about a given state of the system, as they define
its dynamical response to external forces and drive transitions
between different macroscopic phases. Here, we study the
excitations of the AFM phase, which have no counterpart,
neither in single-component BH models nor in bulk spinor
Bose gases.
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FIG. 4. Particle-hole (PH1, PH2) and spin-exchange (SE) ex-
citations. (a) Schematic representation of the excitations in the
zero-tunneling limit. (b) A finite tunneling rate enables the delo-
calization of the two components (quasiparticles) of each excitation
[color coding as in (a)]. (c) Sketch of all possible excitation quasi-
particles and (d) their band structure for Uv/U = t/U = 0.05. The
dashed green and blue lines denote the bands when mixing of the
particlelike components is included in the effective Hamiltonian.
The gray box in (c) shows the doublet unit cell when no excitation
quasiparticle is present, i.e., the ground state (g.s.).

We consider vanishing scalar interactions, Us = 0. In the
zt/U → 0 limit, the AFM hosts three different low-energy
excitations [Fig. 4(a)]. The two particle-hole branches PH1
and PH2 correspond to a spin transfer to lattice sites with
same and opposite parity, respectively. They yield energy
gaps �EPH1/U = 1 and �EPH2/U = 1 + 4Uv/U above the
ground state. The third excitation is a pairwise spin exchange
(SE) involving two atoms with different spin. Its energy gap
�ESE/U = 8Uv/U can be arbitrarily tuned with respect to the
PH1 and PH2 gaps by adjusting Uv .

For a finite zt/U , the two components of each excitation
(particle and hole for PH1 or PH2; two exchanged spins for
SE) delocalize in the lattice [Fig. 4(b)]. The effective excita-
tion Hamiltonian

Heff =
∑
n′,n

∑
β

hβ

nn′
(
b̂β

n′
)†

b̂β
n + H.c. (9)

describes quasiparticles β [Fig. 4(c)], defined on doublets of
adjacent spin sites n, with creation operators b̂β

n . The quasi-
particles hop on a square superlattice n1a1 + n2a2 with ni ∈
Z , n ≡ (n1, n2), and lattice vectors a1 = (ex + ez )λ/2 and
a2 = (ex − ez )λ/2. A change in the ground state configuration
|↓,↑〉 of a doublet corresponds to the creation of a quasi-
particle at that position. The coefficients hβ

nn′ characterize the
effective tunneling strengths (n′ = n) and energies (n′ = n)
of the quasiparticles. They are obtained via first-order per-
turbation theory, by including up to fourth-order tunneling
processes and doubly occupied states [47]. We find that the SE
excitation energy obtains a second-order leading correction
due to tunneling. In the long-wavelength limit it reads:

�ESE

U
= 8

(
Uv

U
− 2(3 − 4Uv/U )

(1 − 4Uv/U )(1 + 4Uv/U )

(
t

U

)2
)

.

(10)

In the resulting band structure [Fig. 4(d)], all the bands are
eight times degenerate, four times due to the C4 symmetry

invariance of the two excitation components (e.g., particle
left, right, above, or below the hole), and two times due to
two possible configurations of each doublet. The bandwidth of
the spin-exchange branches is ∼t4, resulting in an extremely
flat band in the considered regime, t ≈ Uv � U . The band-
widths of the two particlelike branches are ∼t2, and increase
if weak mixing through a first-order tunneling process is in-
cluded [47]. Additional mixing and level crossing of the four
branches would arise through fourth-order interaction terms in
Eq. (9), which we expect to become pronounced as tunneling
is increased and the transition to the AF-SS is approached.

Conclusion and outlook. We considered an experimentally
viable two-component spin BH model, featuring tunable vec-
torial and scalar cavity-assisted global-range interactions. Its
phase diagram at unity filling exhibits both density- and spin-
modulated superfluid and insulating phases. We discovered
that the insulating spin-modulated phase with global antifer-
romagnetic order is stabilized for arbitrarily small vectorial
interactions, due to their cooperation with repulsive contact
interactions. These phases could be readily detected in exist-
ing experiments by a combination of cavity field heterodyne
detection and time of flight imaging [21,23] as density and
spin-modulated phases couple to orthogonal quadratures of
the cavity field. While dominating intraspin contact interac-
tions always lead to spatially homogeneous phases, larger
interspin interactions give rise to phase separation in the SF
and CDW phases. In addition, global-range interactions lead
to unstable regions of density- and spin-modulated supersolid
phases. The low-lying excitations above the AFM feature an
additional spin-exchange branch, which delocalizes at finite
tunneling strengths. A perturbative approach shows that its
energy gap can be independently tuned via the vectorial in-
teractions. The inclusion of quasiparticle interactions in the
effective theory could enable an inspection of the mechanisms
by which the interplay between different excitations drives the
phase transitions.

As a direct extension, it would be interesting to study the
first-order phase transition between the density- and the spin-
modulated insulating phases. Two key questions there are the
lifetime and decay of metastable states [22], and the spread
of correlated quasiparticle excitations which might exhibit an
unbounded velocity due to global-range interactions [61,62].
Moreover, regions of phase coexistence could arise when tak-
ing into account the harmonic trapping potential [11,16]. In
the absence of lattices, cavity dissipation couples density- and
spin-modulated states, leading to chiral instabilities and limit
cycles [63–65]. The lattice system offers an experimentally
tunable access to the boundary between density- and spin-
modulated insulating phases, and can help clarify the fate of
these instabilities in the Hubbard regime. This could provide
a deeper understanding of the non-Hermitian dynamics in
strongly-correlated quantum systems. Finally, the inclusion
of spin-changing processes, such as local spin-spin interac-
tions [52] or global cavity-mediated Raman processes [25,66],
would give rise to another competing scale in the system and
could induce novel phases like spin-density waves or chiral
states [34,37].
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