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Fractional Dirac materials (FDMs) feature a fractional energy-momentum relation E (k) ∼ |k|α , where
α (< 1) is a real noninteger number, in contrast to that in conventional Dirac materials with α = 1. Here we
analyze the effects of short- and long-range Coulomb repulsions in two- and three-dimensional FDMs. Only
a strong short-range interaction causes nucleation of a correlated insulator that takes place through a quantum
critical point. The universality class of the associated quantum phase transition is determined by the correlation
length exponent ν−1 = d − α and dynamic scaling exponent z = α, set by the band curvature. On the other hand,
the fractional dispersion is protected against long-range interaction due to its nonanalytic structure. Rather,
a linear Dirac dispersion gets generated under coarse graining, and the associated Fermi velocity increases
logarithmically in the infrared regime, thereby yielding a two-fluid system. Altogether, correlated FDMs unfold
a rich landscape accommodating unconventional emergent many-body phenomena.

DOI: 10.1103/PhysRevResearch.5.L032002

Introduction. Nodal Fermi liquids harbor a rich variety of
electronic band dispersions around a few isolated points in the
Brillouin zone that are often symmetry protected. They can
display linear (α = 1), quadratic (α = 2), and cubic (α = 3)
energy-momentum dispersion E (k j ) ∼ ±|k j |α along one or
more than one component of the spatial momentum (k), for
example. Here + (−) corresponds to the conduction (valence)
band. Momentum is measured from the band touching point
at k = 0. As such, isotropic but linear and nonlinear band
dispersions can be observed in monolayer and multilayer
graphene, respectively [1], and in three-dimensional Dirac
and Weyl semimetals [2]. Nodal Fermi liquids can also man-
ifest mixed energy-momentum relations, where integer α is
direction dependent, as in multi-Weyl semimetals [3–6] and
at the quantum critical point (QCP) when the system resides
at the brink of band insulation [7–9]. However, irrespective
of microscopic details, the symmetry class, and the dimen-
sionality of the system, α is always an integer, hindering
a large family of gapless electronic materials, where α can
take real fractional values. We name them fractional Dirac
materials (FDMs), characterized by density of states (DOS)
� ∼ |E |d/α−1 and frequency � dependent diagonal optical
conductivity (OC) σ ∼ �(d−2)/α in the noninteracting limit.

Here we investigate the effects of a short-range piece
as well as of the long-range tail of the repulsive Coulomb
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interactions in two-dimensional (2D) and three-dimensional
(3D) FDMs of order α < 1 for which the effective Hamilto-
nian scales as |k j |α [Eq. (1) and Fig. 1]. Due to the vanishing
DOS in FDMs, sufficiently weak generic local or short-range
interactions are irrelevant perturbations. However, beyond a
critical threshold of interaction an FDM undergoes a con-
tinuous quantum phase transition (QPT) through a QCP and
becomes a correlated Dirac insulator. We capture the univer-
sity class of such a QPT, which is distinct from its counterpart
in conventional Dirac systems (α = 1), within the framework
of a Gross-Neveu model [10]. The associated critical expo-
nents in turn also govern the scaling of the spectral gap in the
ordered phase with the interaction strength (Fig. 1). We show
that the QPT in 2D (3D) FDMs is non-Gaussian (mean-field
or Gaussian) in nature.

In the presence of long-range Coulomb interaction, the
electronic dispersion in 2D and 3D FDMs, on the other hand,
remains invariant due to its nonanalytic structure [Eq. (1)].
Rather, under coarse graining, as the system approaches the
deep infrared regime, a linear Dirac dispersion gets generated
through the quantum many-body corrections. The effective
Fermi velocity of such emergent conventional Dirac quasi-
particles then increases logarithmically at lower energies. The
resultant system thus describes a two-component quantum
fluid at low energies, composed of (a) effectively noninteract-
ing (protected by nonanalyticity of the dispersion) fractional
and (b) marginally sharp (due to logarithmically increasing
Fermi velocity) conventional Dirac fermions.

Altogether, correlated fractional Dirac liquids unfold a
territory of rich emergent quantum phenomena, which can
be studied using quantum Monte Carlo simulation of their
lattice realizations in terms of infinitely long-ranged power-
law hopping along the principal directions [11] and possibly
in electronic fractal lattices, recently realized on designer
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FIG. 1. Constant energy contours in (a) d = 2 for α = 1 (blue)
and α = 2/3 (red) and (b) in d = 3 for α = 1 (blue) and α = 2/3
(yellow). We set vα = 1, and k is measured in units of a−1, where a is
the lattice spacing [Eq. (1)]. Self-consistent solutions of chiral sym-
metry breaking mass in (c) d = 2 and (d) d = 3 for α = 1 (black),
0.8 (blue), 0.6 (red), 0.4 (green), and 0.2 (brown), as a function
of the reduced distance from a QCP (δ). For α = 1 we recover a
conventional Dirac system with linearly dispersing quasiparticles.
Otherwise, the system describes an FDM of order α. See text for
details.

quantum materials [12,13]. Fractal lattices are promising plat-
forms to host FDMs, where the characteristic irrational fractal
dimension dfrac may give rise to noninteger α.

Model. The effective Hamiltonian for a d-dimensional
FDM of order α takes the form

HFD(k) =
d∑

j=1

vα|k j |α sgn(k j ) � j, (1)

where vα bears the dimension of energy × aα , such that
HFD(k) has the dimension of energy. We set the lattice spacing
a = 1. Mutually anticommuting D-dimensional Hermitian �

matrices, operating on the orbital or sublattice degrees of
freedom, satisfy the algebra {� j, �k} = 2δ jkID, where j, k =
1, . . . , D and ID is a D-dimensional identity matrix. For now
we keep D arbitrary. The energy spectra of HFD are ±Eα (k),
where

Eα (k) = vα

⎡
⎣ d∑

j=1

|k j |2α

⎤
⎦

1
2

≡ vα|k|α
⎡
⎣ d∑

j=1

|�̂ j |2α

⎤
⎦

1
2

(2)

and �̂ j are the components of a d-dimensional spherical unit
vector. Noninteracting d-dimensional FDMs are characterized
by the power-law scalings of DOS and diagonal OC [14]

� = Dd (α)|E | d
α
−1 and σ = e2

h

πD

16
Cd (α)

(
�

vα

) d−2
α

, (3)

respectively. The scalings of Dd (α) and Cd (α) are shown in
Fig. 2. Thus specific heat (Cv) and compressibility (κ) in
FDMs scale as T d/α and T d/α−1, respectively, with temper-
ature T .

FIG. 2. Scaling of two universal functions Dd [(a) and (b)] and
Cd [(c) and (d)], governing the energy and frequency dependences
of DOS and OC, respectively, in two (d = 2) and three (d = 3)
dimensions. See Eq. (3).

The imaginary time (τ ) Euclidean action associated with
HFD(k) reads

S0 =
∫

dτ

∫
dd x{�†[∂τ + HFD(k → −i∇)]�}, (4)

where we set h̄ = 1 and � and �† are D-dimensional inde-
pendent Grassmann variables. Under coarse graining, τ →
ez�τ and x → e�x, where � is the logarithm of the renor-
malization group (RG) scale and z is the dynamic scaling
exponent, measuring the relative scaling between the energy
and momentum, with z = α in noninteracting FDMs. Then
the scale invariance of the free action S0 mandates the follow-
ing scaling dimensions: [�] = [�†] = d/2 and [vα] = z − α.
Hence, in a noninteracting system vα is scale invariant or
marginal as α = z therein. Next we seek to scrutinize the
effects of interactions among fractional Dirac quasiparticles.
In what follows, we discuss the imprints of short-range and
long-range Coulomb interactions on FDMs separately.

Short-range interaction. Short-range interactions among
electronic quasiparticles in nodal Fermi liquids typically
give birth to various spontaneously broken symmetry phases.
Among them, Dirac masses are most prominent at low tem-
peratures. In the ordered phase, they give rise to isotropic
gapped quasiparticle spectra, yielding electrical or thermal
insulators, and lead to a maximal gain of the condensation
energy. A Dirac mass is represented by the fermion bilinear
� = �†M�. The D-dimensional Hermitian matrix M satis-
fies {M, � j} = 0 for j = 1, . . . , d and M2 = ID. In the ordered
phase, 〈�†M�〉 �= 0. In the spirit of the Gross-Neveu formal-
ism, such a Dirac mass can be favored by a local or momentum
independent four-fermion interaction for which the Euclidean
action is [10]

SSR
int =

∫
dτ

∫
dd x gm (�†M�)2, (5)

where gm is the corresponding coupling constant. For sim-
plicity, here we consider a single-component microscopic
Ising-like symmetry breaking scalar Dirac mass that yields
an insulator in the ordered phase. The following discussion
can be generalized to vectorlike Dirac masses, which, on
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FIG. 3. Scaling of Sd [(a) and (b)] and Fd [(c) and (d)], appearing
in the definition of dimensionless Gross-Neveu interaction [Eq. (6)]
and the RG flow equation of Fermi velocity (v1 ) of emergent linearly
dispersing Dirac quasiparticles due to long-range Coulomb repulsion
[Eq. (12)], respectively, in two (d = 2) and three (d = 3) dimensions.

the other hand, break a continuous symmetry following the
spirit of the Nambu–Jona-Lasinio [15] model as well as for
superconducting Dirac masses [16]. Leaving these cases for
future investigations, here we focus on the nucleation of an
Ising-like Dirac mass.

The scale invariance of SSR
int leads to [gm ] = α − d . There-

fore, when α < d , yielding a vanishing DOS in FDMs, a
sufficiently weak generic local quartic interaction is an irrel-
evant parameter. Consequently, nucleation of any Dirac mass
takes place beyond a critical threshold of interaction via a QPT
occurring through a QCP located at gm = g∗

m
(say). Here we

capture such an emergent quantum critical phenomenon in a
correlated FDM from a perturbative RG analysis controlled
by a small parameter ε = α − d . Upon accounting for the
leading order or one-loop quantum corrections, we arrive at
the RG flow equation for the dimensionless coupling constant
λm = gm�d−αSd (α)/vα , explicitly given by [14]

βλm = dλm

d�
= −ελm + (D − 2)λ2

m (6)

after integrating out fast Fourier modes with Matsubara fre-
quencies −∞ < ω < ∞ and residing within a thin Wilsonian
momentum shell �e−� < |k| < �. Here, � is the ultraviolet
momentum cutoff up to which the FDMs show fractional
dispersion with power α [Eq. (1)] and

Sd (α) =
∫

d�̂

(2π )d

⎡
⎣ d∑

j=1

|�̂ j |2α

⎤
⎦

− 1
2

≡
∫

d�̂

(2π )d

1

[ f (�̂)]1/2
.

(7)

The scalings of Sd (α) in d = 2 and d = 3 are shown in Fig. 3.
Notice that when the � matrices are Pauli matrices (D = 2),
the perturbative corrections ∼λ2

m in Eq. (6) vanish. A simi-
lar conclusion holds for conventional Dirac fermions up to
the two-loop order [17], which, however, possibly undergo
a continuous QPT at finite coupling [18]. Whether such a
conclusion holds for FDMs remains to be investigated.

Thus let us consider D = 4, the minimal dimensional-
ity of the � matrices for which the quantum corrections

in the RG flow equation of λm [Eq. (6)] are nontrivial.
Then 2D fractional and conventional Dirac systems enjoy
a continuous global SU(2) ⊗ U(1) chiral symmetry gener-
ated by {�34, �45, �35} and �12, respectively, where � jk =
[� j, �k]/(2i). The Dirac mass breaks the continuous SU(2)
chiral symmetry, unless M = �12. This is so because the
maximal number of mutually anticommuting four-component
Hermitian matrices is five. By contrast, in d = 3 the Dirac
mass breaks a continuous U(1) chiral symmetry, generated by
�45.

The QCP describing the QPT between a nodal fractional
Dirac liquid and a Dirac insulator is located at λm = λ∗

m =
ε/(D − 2). As the fermionic self-energy correction due to
local interactions vanishes to the leading order in the ε expan-
sion [14], this QCP is characterized by the correlation length
exponent ν, given by

ν−1 = dβλm

dλm

∣∣∣∣
λm=λ∗

m

= ε = d − α and z = α. (8)

These two exponents determine the universality class of the
fractional Dirac liquid to insulator QPT. In addition, they
determine the scaling of the mass gap, which can be demon-
strated by solving the self-consistent gap equation.

The self-consistent gap equation is obtained by performing
a Hubbard-Stratonovich decomposition of the four-fermion
term via a bosonic field � and subsequently integrating out
the fermionic fields, yielding [14]

1

gm

=
∫ ′ dd k

(2π )d

1[
E2

α (k) + �2
]1/2 ≡ F (�). (9)

The momentum integral is restricted up to the ultraviolet cut-
off � (denoted by the prime symbol). The right-hand side of
this gap equation scales as �d−α , and it is ultraviolet divergent
for d > α. Such an ultraviolet divergence can be regularized
by defining a critical coupling for the ordering g∗

m
= [F (0)]−1,

in terms of which we arrive at the regularized gap equation

δ =
∫ 1

0
xd−1

[
1

xα
−

∫
d�̂

(2π )d

[Sd (α)]−1

[x2α f (�̂) + m2]1/2

]
dx, (10)

where x = k/� and m = �/(vα�α ) are dimensionless, and
the reduced distance from the QCP is δ = (λm − λ∗

m)/(λmλ∗
m).

We numerically solve this gap equation in d = 2 and d = 3.
The results are shown in Fig. 1.

Notice that a nontrivial solution for the mass gap m, and
concomitantly for the order parameter, exists only when δ > 0
or λm > λ∗

m, i.e., when the interaction strength λm is above a
critical one (λ∗

m). The scaling of m with δ in FDMs is distinct
from its counterparts in conventional Dirac systems, where
the mass gap shows linear (as ν = z = 1) and square-root (as
2ν = z = 1) scaling with δ in d = 2 and d = 3, respectively,
since m ∼ δνz. In a 3D Dirac system the scaling of m with
δ displays a logarithmic correction due to the violation of
the hyperscaling hypothesis, as the system then lives at the
upper critical dimension dup = 3 [19]. The upper critical di-
mension for FDMs is dup = 2 + α, where ν = 1/2. Therefore
2D FDMs always remain below the upper critical dimension,
and the QPT is non-Gaussian in nature. By contrast, a 3D
FDM always lives above the upper critical dimension, and the
QPT is Gaussian or mean field in nature.
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Long-range Coulomb interaction. The instantaneous long-
range Coulomb interaction is known to renormalize the Fermi
velocity of linearly dispersing Dirac quasiparticles in both
d = 2 [20] and d = 3 [21–23]. This interaction is represented
by a scalar gauge field a0(τ, x) minimally coupled to the
density of the quasiparticles. The corresponding propagator
exhibits a dimensionality dependent scaling with momen-
tum ∼|k|d−1, ensuring the characteristic 1/r behavior of the
density-density Coulomb interaction in real space in any d .
The form of the Coulomb propagator, in turn, dictates that
the electric charge ed can (cannot) receive perturbative cor-
rections in d = 3 (d = 2). The Coulomb part of the Euclidean
action therefore reads as

SC =
∫

dτ

∫
dd x

(
−ied a0�

†� + a0
1

2|∇|d−1
a0

)
. (11)

To analyze the effect of the long-range Coulomb interac-
tion on fractional Dirac fermions, we compute the one-loop
self-energy diagram. We find that the parameter vα appearing
in Eq. (1) does not renormalize when α �= 1, as a consequence
of the nonanalytic structure of the dispersion of fractional
Dirac excitations. However, the long-range Coulomb inter-
action generates linearly dispersing quasiparticles, for which
the Hamiltonian is given by Eq. (1) with α = 1. The RG
flow equation for the Fermi velocity v1 of emergent linearly
dispersing quasiparticles in d = 2 and d = 3 reads [14]

dv1

d�
= 1

Cd
Fd (α) αFS v1 , (12)

where C2 = 8π , C3 = 6π2, and the function (Fig. 3)

Fd (α) = α

∫
d�̂

Nd

|�̂i|α−1

[ f (�̂)]1/2

(
1 − |�̂i|2α

f (�̂)

)
, (13)

with N2 = π and N3 = 8π/3. The associated effective fine
structure constant is αFS = e2

d/v1 . The function f (�̂) is de-
fined in Eq. (7), and Fd (α) is independent of the choice of the
component (i = 1, . . . , d) of the d-dimensional unit vector �̂i

at least in d = 2 and 3.
Notice that the Fermi velocity v1 grows logarithmically

as the system approaches the deep infrared regime under
coarse graining, as F2(α) and F3(α) are both positive definite.
Furthermore, as the power of the fractional dispersion in-
creases for 0 < α � 1, both functions increase monotonically,
as shown in Fig. 3. This is, indeed, consistent with the scaling
of the DOS with energy. Namely, as the DOS increases with
increasing α, the flow of the Fermi velocity of generated Dirac
quasiparticles also increases. When the bare quasiparticles are
linearly dispersing, well-known results for the flow of the
Fermi velocities in d = 2 and d = 3 are readily recovered
[20–23]. Thus long-range Coulomb interaction in FDMs gives
birth to a two-component quantum fluid constituted by (a)
effectively noninteracting fractional and (b) marginal (due to
logarithmically increasing Fermi velocity) conventional Dirac
quasiparticles.

Finally, we show that in d = 3 the long-range tail of the
Coulomb interaction is screened by fractional Dirac exci-
tations. To this end, we compute the polarization (bubble)
diagram and find that the Coulomb charge in d = 3 is
logarithmically decreasing under coarse graining, with the RG

flow equation of the form

de2
d

d�
= −α

(α)
FS e2

d F (α) or
dα

(α)
FS

d�
= −[

α
(α)
FS

]2 F (α). (14)

Here, α
(α)
FS = e2

d/(vα�α−1) is the effective dimensionless fine
structure constant of the FDM, and the function

F (α) = α

4
[(1 − 3α)I (α) + 2αJ (α)], (15)

for 1/2 < α � 1, with I (α) and J (α) defined in terms of the
components of the three-dimensional unit vector

Iρσ (α) =
∫

d�̂

(2π )3

|�̂ρ |2α−2|�̂σ |2α−2�̂ρ�̂σ

[ f (�̂)]5/2
≡ I (α)δρσ ,

Jρ (α) =
∫

d�̂

(2π )3

|�̂ρ |2α−2

[ f (�̂)]3/2
≡ J (α). (16)

The function F (α) is strictly positive, implying that the charge
ed and fine structure constant α

(α)
FS of the FDM decrease

during the RG flow. Furthermore, the fine structure con-
stant of generated Dirac quasiparticles αFS also decreases, but
even faster than in a conventional relativistic Dirac material
due to additional screening by microscopic fractional Dirac
excitations.

Summary and discussion. Here we explore the emer-
gent quantum critical behavior of correlated fractional Dirac
liquids in two and three dimensions in the presence of
short-range and long-range Coulomb interactions. Strong
short-range interactions can give rise to spontaneous sym-
metry breaking. By contrast, the long-range component of
Coulomb interaction gives birth to linear Dirac dispersion
through a spectral reconstruction, while leaving the origi-
nal fractional Dirac dispersion unaffected, thereby yielding
a two-component quantum fluid in the infrared regime. In
future, we will develop a quantum critical description for the
spontaneous symmetry breaking in terms of strongly coupled
boson-fermion Mott-Yukawa theory [24], which will allow us
to capture hallmarks of the emergent non-Fermi liquid near
the associated QCP and the role of retarded boson-fermion
Yukawa interaction in possible restoration of the Lorentz
symmetry in correlated FDMs [25]. Furthermore, by incorpo-
rating the retarded current-current interaction, accompanying
the instantaneous density-density Coulomb repulsion, we will
develop quantum electrodynamics for FDMs.

Our field-theoretic predictions on spontaneous symme-
try breaking and associated quantum critical phenomena in
FDMs subject to short-range Coulomb or Hubbard-like in-
teractions can be tested, for example, using quantum Monte
Carlo simulations of the lattice regularized tight-binding mod-
els for FDMs in terms of infinitely long-ranged power-law
hopping [14], given that such a study exists for similar models
of conventional Dirac fermions with linear dispersion, subject
to the on-site Hubbard repulsion [26]. Effects of long-range
Coulomb interactions and the resulting two-component quan-
tum fluid can also be demonstrated from quantum Monte
Carlo simulations as similar computations have already been
performed on graphene’s honeycomb lattice harboring con-
ventional Dirac quasiparticles [27]. Besides designer fractal
materials [12,13], quantum circuits constituted by arrays of
superconducting qubits stand as a promising platform for the
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realization of quantum FDMs and proposed quantum phe-
nomena therein, where the Sachdev-Ye-Kitaev model [28] and
a number of quantum hyperbolic lattices [29] have already
been engineered to showcase their exotic quantum many-body
phenomena in tabletop experiments.
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