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From tensor-network quantum states to tensorial recurrent neural networks
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We show that any matrix product state (MPS) can be exactly represented by a recurrent neural network (RNN)
with a linear memory update. We generalize this RNN architecture to two-dimensional lattices using a multilinear
memory update. It supports perfect sampling and wave-function evaluation in polynomial time, and can represent
an area law of entanglement entropy. Numerical evidence shows that it can encode the wave function using a bond
dimension lower by orders of magnitude when compared to MPS, with an accuracy that can be systematically
improved by increasing the bond dimension.
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Introduction. Tensor networks (TNs) have been extensively
used to represent the states of quantum many-body physi-
cal systems [1–3]. Matrix product states (MPS) are possibly
the simplest family of TNs, and are suitable to capture the
ground state of one-dimensional (1D) gapped Hamiltonians
[4,5]. They can be contracted in polynomial time to compute
physical quantities exactly, and optimized by density matrix
renormalization group (DMRG) [6] when used as variational
Ansätze. More powerful TN architectures that cannot be effi-
ciently contracted in general have been proposed later, notably
projected entangled pair states (PEPS) [7]. They are of interest
mainly because they can describe area-law states in dimen-
sions D > 1 [8]. In practice, they are usually approximately
contracted and optimized with low-rank truncation [9–11].
They can also be optimized in the variational Monte Carlo
(VMC) framework [12–15] using stochastic sampling rather
than exact contraction.

In recent years, a growing trend has been to use TNs
in machine learning tasks such as supervised [16,17] and
unsupervised [18,19] learning. It is of particular interest to
use them as generative models [20,21], where it is possible
to draw perfect samples with tractable probability densities.
Considering that many generative models are based on re-
current neural networks (RNNs), there have been attempts to
use tensor operations in RNNs to improve their expressivity
[22,23]. This kind of architecture has shown leading perfor-
mance when applied to quantum physical systems [24].

Soon after the original proposal of neural quantum states
(NQS) [25], several attempts have been made to link them to
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ground states of well-known Hamiltonians and TN quantum
states. While an arbitrary Hamiltonian might require an NQS
with a depth growing exponentially with the system size [26],
several Hamiltonians with desirable topological properties
have compact representations in NQS [27–30].

Considering the relation between neural networks (NNs)
and TNs, the first works focused on the restricted Boltzmann
machines (RBMs), which are one of the simplest classes of
NNs. It is impossible to efficiently map an RBM onto a TN,
as they correspond to string-bond states with an arbitrary
nonlocal geometry [28]. This result was later refined to show
that an RBM may correspond to an MPS with an exponen-
tially large bond dimension, and only short-range RBMs can
be mapped onto efficiently computable entangled plaquette
states [31]. Similar results have been obtained that deep Boltz-
mann machines with proper constraints can be mapped onto
TNs that are efficiently computable through transfer matrix
methods [32].

Among other classes of NNs, it has been shown that simple
cases of convolutional neural networks (CNNs) and RNNs,
which are also instances of arithmetic circuits or sum-product
networks [33], can be efficiently mapped onto TNs. Such
efficient mapping is no longer possible with modifications to
those simple cases, including overlapped convolution kernels,
stacked recurrent layers [34], or nonlocal score function [35],
which suggests that the reuse of information in general NN
architectures is an extensive source of expressivity. In the op-
posite direction, a mapping from arbitrary TNs to feedforward
NNs can be constructed using NN layers that contract a set of
tensor indices at a time [36].

In this Letter, we propose another family of variational
Ansätze that shares characteristics with NNs and TNs. We start
by establishing an exact mapping from MPS to an RNN with
a linear update rule for the memory and a quadratic output
layer, which we refer to as 1D MPS-RNN. We then propose
a generalization of this architecture to two-dimensional (2D)
lattices using a linear combination of memory components
at previous neighboring sites in each memory update, which
we call 2D MPS-RNN. After a theoretical discussion of the
limitation on entanglement entropy due to the linear memory
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FIG. 1. (a) Computational graph of the vanilla MPS-RNN quan-
tum state. The phase factor φ(σ) is omitted in the figure. (b) TN
diagrams of the memory h(i) and the conditional probability
p(σi|σ<i ) for the vanilla MPS-RNN.

update, we propose a multilinear update with inspiration from
the tensorial nature of the PEPS architecture. This Ansatz can
represent states with an area law of entanglement entropy,
which is particularly interesting in quantum physics. Unlike
PEPS, our Ansatz is still a generative model, which supports
perfect sampling and wave-function evaluation in polynomial
time. Finally, we conduct numerical experiments to compare
the performances of MPS and our Ansätze on the antiferro-
magnetic Heisenberg model (AFHM) on a square lattice and
triangular lattice. The results show that our Ansätze produce
lower variational energy with bond dimensions smaller by
orders of magnitude compared to MPS, even in the presence
of frustration, and the trade-off between computation cost and
accuracy can be systematically controlled by the bond dimen-
sion, which is the only hyperparameter of our architectures.

RNN quantum states. We can write any wave function ψ of
a quantum spin-1/2 system consisting of V sites in the form

ψ (σ) =
(∏

i

√
p(σi|σ<i )

)
eiφ(σ ), (1)

where σ = (σ0, . . . , σV −1) is the spin configuration in the z
basis, and p(σi|σ<i ) is the conditional probability of measur-
ing the spin i given the measurements of previous spins σ<i =
(σ0, . . . , σi−1). An RNN quantum state [37] uses a memory
vector h(i) at each step to summarize the information about
the previous spins σ�i, which is updated by a function h(i) =
f (i)
update(σi, h(i−1)). Using this information, we compute each

conditional probability from an output function p(σi|σ<i ) =
f (i)
out (h

(i) ). Therefore, the RNN quantum state is defined by the
update function f (i)

update, the output function f (i)
out, and the phase

function φ, as illustrated in Fig. 1(a). The purpose of introduc-
ing h(i) instead of working directly with the spin values is the
compression of the exponential amount of information in the

wave function while keeping a rich expressivity. The trade-off
between tractability and expressivity is usually controlled by
the complexity of f (i)

update and f (i)
out, and the size of h(i). A

notable feature of RNN quantum states is the perfect sampling
from the probability distribution of the spins, without the
need of Markov chains and therefore avoiding the problem
of autocorrelation, which is particularly advantageous when
stochastically optimizing the wave function by VMC.

Mapping MPS to RNN. In the following, we present an
exact mapping from an MPS of bond dimension χ to a specific
RNN architecture of memory dimension χ . Accordingly, in
this Letter, we use the term “bond dimension” when referring
to the dimension of the memory of our RNN architectures
to underline the fact that they are conceptually similar. It is
perhaps not completely surprising that a mapping from MPS
to RNN exists as MPS has been shown to allow perfect sam-
pling [38] and as it achieves an efficient compression of the
information of the wave function for many quantum systems.

The MPS Ansatz for a wave function ψ is defined by

ψ (σ) =
χ−1∑

s0,...,sV =0

V −1∏
i=0

M (i)
σi;si+1,si

, (2)

where M (i)
σi

is a complex χ × χ matrix that depends on the
spin σi at the site i. Note that we keep the indices s0 and sV

at both ends to simplify the discussion. To rewrite the MPS
as an RNN, we identify the intermediate result of the tensor
contraction as the memory h(i), which satisfies a local update
rule

h(i) = M (i)
σi

h(i−1), (3)

where h(i) ∈ Cχ is a vector for each site i, and implicitly de-
pends on the previous spins σ�i = (σ0, . . . , σi ). The boundary
condition is h(−1) = (1, . . . , 1). This is useful as the condi-
tional probability of the MPS is then proportional to a positive
semidefinite quadratic form of the memory

p(σi|σ<i ) ∝ [h(i)]† γ (i) h(i), (4)

where the explicit form of γ (i) as a contraction of the M (i)
σ

matrices is given for completeness in the Supplemental Mate-
rial [39], Sec. S1. The phase of ψ can be obtained from the
memory at the last site:

φ(σ) = arg
∑

s

h(V −1)
s . (5)

We now have all the elements to introduce the Ansatz that
we refer to as the vanilla MPS-RNN: Eq. (3) defines the
memory update in terms of the variational parameters M (i)

σ ,
the conditional probability is obtained from Eq. (4), and the
phase is obtained from Eq. (5). See Fig. 1(b) for TN diagram-
matic illustrations of the memory update and the conditional
probability. We elevate each γ (i) to be a free variational pa-
rameter, independent of M (i)

σ . Therefore, while any MPS can
be exactly mapped to a vanilla MPS-RNN with the same bond
dimension, the opposite is not true, and the freedom of γ (i)

brings additional expressivity. As M (i)
σ and γ (i) depend on the

spatial position i, we can say that we are encoding the spatial
dimension into the “time” dimension of the RNN.

We slightly generalize the vanilla MPS-RNN architec-
ture to improve its numerical performance by adding the
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FIG. 2. (a) Computational graph of 2D MPS-RNN and tensor-
RNN architectures for a square lattice with snake ordering. (b) Inputs
and outputs at each site of 2D MPS-RNN and tensor-RNN architec-
tures. For each site of the square lattice (x, y), the RNN takes as input
the memory vectors h(x−1,y) and h(x,y−1) from previous neighboring
sites and the spin value σx,y at the current site, and outputs the
updated memory vector h(x,y) to be used in future neighboring sites
and the conditional probability p(σx,y|σ<(x,y) ).

normalization of the memory at each step and including a
vectorial term in the memory update, as described in the
Supplemental Material [39], Sec. S2. We call the resulting
ansatz 1D MPS-RNN, which is the one we use in numerical
experiments.

2D MPS-RNN. From the known success of MPS and its
exact mapping to 1D MPS-RNN, we conclude that the latter
can represent the ground states of gapped 1D systems. There-
fore, the nonlinearity of conventional RNN is not necessary to
efficiently represent short-range entanglement in one dimen-
sion, as 1D MPS-RNN only uses a linear memory update. By
taking inspiration from the PEPS architecture, we consider
a minimal generalization of the architecture to 2D systems,
where we seek to efficiently approximate their ground states
using linear or multilinear memory updates while keeping the
computation time and memory scaling polynomially with the
system size.

In the following, for simplicity, we limit our discussion to
a square lattice of size V = L × L. As the RNN sequentially
outputs the conditional probability of a given spin at each
step, we need to define a 1D ordering for the sites on the
2D lattice. We use the “snake” ordering as commonly used
in MPS [40] and RNN [37] for 2D inputs, which is illustrated
in Fig. 2. A minimal generalization of Eq. (3) to 2D consists
in using a linear combination of the memory components
at two previous neighboring sites, and we call the resulting
architecture 2D MPS-RNN. We provide the TN diagram for
the memory update of 2D MPS-RNN in Fig. 3, which is a
generalization of Fig. 1(b). The equations are detailed in the
Supplemental Material [39], Sec. S3.

A notable difference between 2D MPS-RNN and TN is
that in the former each memory vector is used in two future
neighboring sites. In a TN, on the contrary, each tensor only
appears once in the contraction. This reuse of information
can lead to a more efficient state compression using fewer
parameters [34]. We remark that while the shallow recurrent
arithmetic circuit (RAC) TN in Ref. [41] is only a subset of
MPS, our vanilla MPS-RNN is a superset of MPS.

The direct information flow between vertically neighboring
sites is an apparent advantage of 2D MPS-RNN over 1D
architectures. Owing to this, the memory at a given site no

FIG. 3. TN diagram of the memory update for tensor-RNN. The
memory update for 2D MPS-RNN is obtained for T (2,2) = 0, and the
memory update for 1D MPS-RNN can be derived by further setting
M (2,2)

y = 0.

longer needs to be carried along the O(L) memory updates to
influence the memory of a vertical neighbor of the 2D lattice.
However, because of the linearity of the memory update pro-
posed above, a 2D MPS-RNN with bond dimension χ can be
exactly simulated by a 1D MPS-RNN with bond dimension
L χ , as proved in the Supplemental Material [39], Sec. S4.
Therefore, 2D MPS-RNN can reduce the bond dimension χ

at most linearly in L compared to 1D MPS-RNN rather than
exponentially. In particular, its entanglement entropy cannot
have an area law because it can scale at most logarithmically
with the length L of a horizontal cut at a fixed χ . Tensor-RNN.
We are therefore led to consider a nonlinear generalization of
the memory update Eq. (3), and a minimal choice is a multi-
linear function of the memories at previous neighboring sites.
The resulting memory update is sketched in Fig. 3 with the
help of a TN diagram and detailed in the Supplemental Mate-
rial [39], Sec. S3. We call this architecture tensor-RNN. It can
represent states with an area law of entanglement entropy, and
an example of this is constructed in the Supplemental Material
[39], Sec. S5.

Compared to other methods employing 2D RNN as NQS,
such as Refs. [24,37], our Ansätze are developed by generaliz-
ing TNs and therefore retain some advantages of TNs, namely
(1) their expressivity is controlled by a single hyperparameter,
the bond dimension, which avoids the laborious architecture
search of RNN; (2) their linear or multilinear architectures
are simple enough to enable theoretical analysis tools inspired
from TNs, such as entanglement entropy; and (3) they provide
an effective way of initialization when used in VMC, which
we discuss below.

The Ansätze we have discussed form a hierarchy: MPS �

1D MPS-RNN � 2D MPS-RNN � tensor-RNN, where an
architecture on the right can exactly simulate an architecture
on the left using the same bond dimension. We refer to this
procedure as hierarchical initialization. During the variational
optimization, we first use the DMRG algorithm to optimize
a MPS, then use the optimized parameters to initialize a 1D
MPS-RNN. After the gradient-based optimization of the 1D
MPS-RNN Ansatz, we use it to initialize a 2D MPS-RNN,
which after optimization can be used to initialize a tensor-
RNN. This procedure provides reasonable starting points for
each optimization and avoids being stuck early in a local
minimum with high energy.
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FIG. 4. Energy relative error of MPS (optimized by DMRG) and our Ansätze (optimized by VMC) as a function of the bond dimension χ .
The Hamiltonian is AFHM on (a) 10 × 10 square lattice and (b) 10 × 10 triangular lattice, and the energy is compared to (a) QMC [42] and
(b) DMRG with χ = 4096. The PEPS result in (a) is taken from Ref. [43] with χ = 10.

Numerical experiments. To numerically evaluate the per-
formances of our proposed Ansätze, we start with the AFHM,
defined by the Hamiltonian Ĥ = ∑

〈i, j〉 Ŝ
(i) · Ŝ

( j)
, where 〈i, j〉

denotes a pair of nearest neighbors in the lattice. We perform
numerical experiments on a 10 × 10 square lattice with open
boundary conditions (OBCs). We apply the Marshall sign
rule [44] to the Hamiltonian, which makes the ground-state
wave function positive. We use the standard VMC method
to optimize our Ansätze, with automatic differentiation (AD)
[45] to compute the gradients, perfect sampling [46], Adam
optimizer [47], and the hierarchical initialization described
above. The variational energies are compared to the quantum
Monte Carlo (QMC) result [42]. More information on the
numerical implementation can be found in the Supplemental
Material [39], Sec. S7. Figure 4(a) shows that we can sys-
tematically obtain lower variational energies by increasing the
bond dimension χ . We remark that the memory updates of 2D
MPS-RNN and tensor-RNN can reduce the bond dimension
by one to two orders of magnitude, which confirms our expec-
tation for 2D systems. The significant compression achieved
by tensor-RNN over 2D MPS-RNN shows that the tensorial
part of the memory update is crucial to capturing 2D quantum
entanglement, as expected from the TN analogy.

Finally, we apply our Ansätze on a frustrated system,
namely the AFHM on a 10 × 10 triangular lattice with OBC.
The ground-state wave function can no longer be made
positive by the Marshall sign rule, and the hierarchical ini-
tialization is particularly useful in this case, as it alleviates the
difficulty of learning the sign structure of the wave function
for frustrated systems [48,49]. Figure 4(c) shows that the re-
duction of bond dimension in 2D MPS-RNN and tensor-RNN
is unaffected by the frustration. Moreover, a comparison of
square and triangular lattices provides evidence that the mul-
tilinear memory update of tensor-RNN is important to capture
the sign structure.

Conclusions. We have shown that an RNN can exactly
represent an MPS of bond dimension χ with a linear

memory update, which we call 1D MPS-RNN. Using analo-
gies with TNs and analytical arguments, we have proposed
two minimal generalizations of the RNN architecture better
suited to capturing 2D quantum entanglement while still using
linear or multilinear memory updates. The tensorial version,
tensor-RNN, can represent states with the area law of en-
tanglement entropy while keeping the convenient properties
of efficient, perfect sampling and wave-function evaluation.
We have provided numerical evidence for the square AFHM
that our Ansätze can achieve performance comparable to an
MPS of bond dimension higher by orders of magnitude.
These results have also been confirmed in the presence of
frustration in the case of the triangular AFHM, where we
have found that the hierarchical initialization from MPS to
tensor-RNN is particularly useful to learn the sign structure
of the wave function, which is generally a challenge for
NQS.

Several possible future directions can be envisaged. In this
work, we have not used one of the essential features of neu-
ral networks: nonlinear activation. Future work is needed to
understand to what extent nonlinearities help increase the ex-
pressivity of representing quantum states and how they affect
the optimization of tensorial RNNs. It has also been shown
that deep architectures in modern neural networks can more
efficiently produce entanglement [36], and our tensorial archi-
tectures can be generalized in a multilayer fashion. Another
promising research direction for the architectures concerns
physical symmetries, and we may incorporate the quantum
number conservation and the SU(2) symmetry of MPS [50]
into our Ansätze. With those techniques, we expect tensorial
RNNs to find broader applications.

Our code is available online [51].
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