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Apparent universality of 1/ f spectra as an artifact of finite-size effects
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Power spectral density scaling with frequency f as 1/ f β and β ≈ 1 is widely found in natural and socioeco-
nomic systems. Consequently, it has been suggested that such self-similar spectra reflect the universal dynamics
of complex phenomena. Here, we show that for a superposition of uncorrelated pulses with a power-law
distribution of duration times the estimated scaling exponents β̄ depend on the system size. We derive a
parametrized, closed-form expression for the power spectral density, and demonstrate that for β ∈ [0, 2] the
estimated scaling exponents have a bias towards β̄ = 1. For β = 0 and β = 2 the explicit logarithmic corrections
to frequency scaling are derived. The bias is particularly strong when the scale invariance spans less than four
decades in frequency. Since this is the case for the majority of empirical data, the boundedness of systems well
described by the superposition of uncorrelated pulses may contribute to overemphasizing the universality of 1/ f .
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Introduction. A wide range of complex systems display
spatial or temporal scale invariance, fractality, and long-range
dependence (LRD) [1–16]. In particular, the emergence of
self-similar frequency power spectral density scaling 1/ f β

has been of interest since the discovery of a 1/ f -type noise
in vacuum tubes almost a century ago [17,18]. Reports of
scaling exponents β close to unity in various systems have
led to questions about universality. Theoretical ideas such as
self-organized criticality (SOC) have been put forward [19].
However, identifying a general mechanism for the observed
variety of self-similar behavior has proved difficult [20–25].

In this Letter, we demonstrate that an apparent 1/ f uni-
versality arises in a generalized filtered Poisson process
subject to finite-size effects [26,27]. The shot-noise approach
is canonical for the phenomenological modeling of LRD
statistics of fluctuating systems, from background noise to
violent bursts [28–33]. We derive a closed-form expression
for the parametrized power spectral density of a finite-size
system and explore its scale invariance while varying the
self-similarity range and the exponent β ∈ [0, 2]. We assess
the finite-size effects by comparing the asymptotic scaling
relations with the effective scaling of the analytical power
spectral density. Our results show that the observed scaling
is always biased towards β = 1 in the presence of finite-size
effects, and the bias is most substantial when the scaling range
is narrow.

*magdalena.a.korzeniowska@uit.no
†audun.theodorsen@uit.no
‡martin.rypdal@uit.no
§odd.erik.garcia@uit.no

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Filtered Poisson process. Let us first introduce the theoret-
ical framework for our analysis. Consider a stochastic process
given by a superposition of K uncorrelated, independent and
identically distributed pulses φ(θ ), occurring as a random
sequence in a time interval of duration T [34],

�K (t ) =
K (T )∑
k=1

Akφ

(
t − tk

sk

)
. (1)

Each pulse labeled k is characterized by an amplitude Ak , a
duration time sk , and an arrival time tk distributed uniformly
on the interval T . The pulse-duration times are assumed to
be randomly distributed with probability density Ps(s), and
an average pulse-duration time 〈s〉 = ∫ ∞

0 ds s Ps(s). Given the
distribution of pulse amplitudes PA(A), we use Campbell’s
theorem to compute the moments and the autocorrelation
function of the process (1) by averaging over all random
variables for the case of exactly K pulses [34,35], and sub-
sequently averaging over the randomly distributed number of
pulses K . This yields the rigorous characteristics of the sta-
tionary process �(t ) [36]. The power spectral density follows
directly as the Fourier transform of the autocorrelation func-
tion. For the standardized process �̃ = (� − 〈�〉)/�rms, and
with a normalized, dimensionless duration time τ = s/〈s〉, the
power spectral density is expressed in a nondimensional form
as

��̃(ω) =
∫ ∞

0
dτ τ 2Pτ (τ )	φ (τω), (2)

where ω = 2π f 〈s〉 denotes the dimensionless angular fre-
quency, 	φ (τω) = ∫ ∞

−∞ dθ ρφ (θ ) exp(−iτωθ ) is the Fourier
transform of the normalized autocorrelation function ρφ of
the pulse function φ, and Pτ (τ ) = 〈s〉 Ps(s) is the normalized
probability density function for pulse durations [34].

Pareto-distributed durations. Equation (2) holds for an ar-
bitrary finite-mean distribution Pτ (τ ) of pulse durations. In
particular, it holds for a bounded Pareto distribution with ex-
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ponent α and a finite support [τ↓, τ↑], normalized by a factor
η(τ↓, τ↑, α) such that

∫ ∞
0 dτ Pτ (τ ) = 1,

Pτ (τ ; τ↓, τ↑, α) =
{

η τ−α if τ↓ � τ � τ↑,

0 otherwise.
(3)

The normalization of Pτ and the inherent property of a
normalized-variable mean 〈τ 〉 = ∫ τ↑

τ↓
dτ τPτ (τ ) = 1 put two

constraints on the three parameters {τ↓, τ↑, α} in Eq. (3).
Defining a dimensionless ratio parameter � = τ↑/τ↓ and
solving the resulting system of three constraints, we obtain
τ↓, τ↑, and η in terms of α and � as

τ↓(�,α) = (α − 2)(1 − �1−α )

(α − 1)(1 − �2−α )
, (4a)

τ↑(�,α) = �τ↓, (4b)

η(�,α) = (α − 1)

1 − �1−α
τα−1
↓ , (4c)

with well-defined limits for α → 1 and α → 2. Given
Eqs. (4), the probability distribution given by Eq. (3) is
parametrized as Pτ = Pτ (τ ; �,α).

We note that a finite, nondivergent mean 〈τ 〉 = 1 is a re-
quirement for the stationarity of the process given by Eq. (1),
and the well-defined normalization of the power spectral
density given by Eq. (2). With the chosen parametrization
Pτ (τ ; �,α) and the condition 〈τ 〉 = 1, the effect of the in-
crease in � on the boundaries τ↓ and τ↑ depends on the
value of α. When α < 1 the divergence � → ∞ is driven by
the decrease τ↓ → 0, rather than by the increase of τ↑, thus
hindering long-range correlations. As α → 0, Pτ (τ ) given by
Eq. (3) reduces to a uniform distribution, with finite mean and
variance [34].

Scale invariance. In the unbounded limit, Pτ (τ ) defined by
Eq. (3) displays self-similar scaling

lim
τ↓→0
τ↑→∞

Pτ (λτ ) = lim
τ↓→0
τ↑→∞

λ−αPτ (τ ), (5)

which together with Eq. (2) implies a power-law scaling rela-
tion for the power spectral density,

lim
τ↓→0
τ↑→∞

��̃(λω) = lim
τ↓→0
τ↑→∞

λα−3 ��̃(ω). (6)

Equation (6) suggests the existence of a universal 1/ωβ self-
similarity of the power spectral density given by Eq. (2),
with β(α) = 3 − α. Strictly, the probability distribution given
by Eq. (3) is not well defined in the asymptotic limit, but
bounding τ↓ at an arbitrarily small value results in a finite
variance of the process for α > 3, and an infinite variance
otherwise. In order to ensure a finite pulse-duration mean in
the asymptotic limit, α � 1 is required. Thus, we conjecture
that if ��̃ displays a power-law signature in the limit when
� → ∞, then it does so for Pareto exponents 1 � α � 3.
The resulting power spectral density scaling exponents range
within 0 � β(α) � 2. Exponents α = 1, α = 2, and α = 3
characterize Brownian, pink, and white noise signatures with
β = 2, β = 1, and β = 0, respectively.

The spectral scale invariance of a finite-size system is
confined to the frequency range limited by the cutoff val-
ues ωτ↑ = 1 and ωτ↓ = 1, ranging over log10 � decades in

frequency. Outside this range the power spectral density as-
sumes the shape determined by the power spectra of the pulse
function φ, following a broken power law with the associated
break points to and from the 1/ωβ scaling.

Power-law spectra. The asymptotic scaling relation β =
3 − α is verified for a one-sided exponential pulse function φ,

φ(θ ) =
{

exp(−θ ) if θ � 0,

0 otherwise, (7)

whose power spectral density follows to be a Lorentzian
function 	φ (ϑ ) = 2/(1 + ϑ2) [34]. For a constant pulse du-
ration τ = 〈τ 〉 the power spectral density given by Eq. (2)
inherits the Lorentzian shape ��̃(ω) = 2〈τ 〉/(1 + 〈τ 〉2ω2),
flat for low frequencies and with a 1/ω2 tail for high fre-
quencies, consistent with β → 0 and β → 2, respectively.
For distributed pulse durations, Eqs. (2)–(4) yield an explicit,
closed-form expression for the frequency power spectral den-
sity parametrized by � and α:

��̃(ω; �,α) =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
ln � ω2 ln

( (�−1)2+�2 ln2 �ω2

(�−1)2+ln2 � ω2

)
if α = 1,

2
ln � ω

[
arctan

( (�−1)ω
ln �

) − arctan
( (�−1)ω

� ln �

)]
if α = 2,

2
(�α−�)ω2

[
�α

2F1
(
1, α−1

2 , α+1
2 ; − 1

τ 2
↓ω2

)
−� 2F1

(
1, α−1

2 , α+1
2 ; − 1

τ 2
↑ω2

)]
otherwise,

(8)

where 2F1 is a hypergeometric function defined by Gauss
series [37]. The expected frequency scaling 1/ω3−α is man-
ifested by considering the compensated spectra in the limit of
an infinitely broad distribution of duration times. For several
values of α representing the LRD regime 1 � α � 3, the
following Eqs. (9) present both the prefactors and the powers
of ω which together satisfy the compensation of the power
spectral density ��̃(ω; �,α) given by Eq. (8),

lim
�→∞

��̃(ω; �, 1)
ln �

ln(ω2 ln2 �)
ω2 = 1, (9a)

lim
�→∞

��̃

(
ω; �,

3

2

) √
2(

√
� − 1)

π
4
√

�
|ω|3/2 = 1, (9b)

lim
�→∞

��̃(ω; �, 2)
ln �

π
|ω| = 1, (9c)

lim
�→∞

��̃

(
ω; �,

5

2

) √
6(

√
� − 1)

π
√

1 + √
� + �

|ω|1/2 = 1, (9d)

lim
�→∞

��̃(ω; �, 3) 2

[
ln

(
1 + 4

ω2

)]−1

= 1. (9e)

Equation (9c) reveals the 1/ω signature of the pink noise,
obtained for α = 2. Logarithmic corrections to the theoretical
frequency scaling are present at the LRD-regime boundaries,
α = 1 and α = 3. Similar logarithmic corrections have been
linked to phase transitions and critical behavior of certain
statistical-mechanical systems [38–40], as well as demon-
strated for a renewal process with power-law-distributed
waiting times [41].

The parameters α and � represent two mechanisms shap-
ing the power spectral density in the range of self-similarity:
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logarithmic corrections and boundedness. Figures 1(a) and
1(c) present plots of the power spectral density ��̃(ω; �,α)
given by Eq. (8) for multiple choices of α and �,
respectively. The corresponding compensated spectra are pre-
sented in Figs. 1(b) and 1(d). The chosen values of α span
the entire LRD regime, and are aligned to Eqs. (9). The se-
lected values of � allow for examining the scaling behavior of
��̃(ω; �,α) over different ranges of self-similarity. Compen-
sated spectra aid the identification of the power-law scaling.

Logarithmic corrections. Figure 1(b) confirms the exis-
tence of power-law scaling for α = 3/2, α = 2, and α = 5/2, as
well as the logarithmic corrections to scaling at the boundaries
of the LRD regime, α = 1 and α = 3. The curvature of the
compensated spectra increases as α moves away from the
center of the LRD regime, α = 2, causing gradual shortening
of the power-law scaling ranges. The dashed colored lines
in Fig. 1(b) reveal the shape of the compensated spectra for
α = 2 ± 6/7 (β = 1 ∓ 6/7), equivalent to 1/7 away from the
nearest LRD-regime boundary. These two cases demonstrate
that the loss of power-law scaling occurs already inside the
LRD regime, not only at its boundaries.

Boundedness. The theoretical boundaries of the power-law
scaling ranges, given by Eq. (4), are marked with dots in
Figs. 1(b) and 1(d). The broken power laws affect the spectral
scaling in the vicinity of ωτ↑ = 1 and ωτ↓ = 1 by reducing
the effective ranges of self-similarity. Figure 1(d) shows that
in the center of the LRD regime, α = 2, the reduction is by
approximately one and a half frequency decades on each side
of the self-similarity range, for any of the considered values of
�. Power-law scaling does not emerge unless the underlying
process is characterized by at least four decades (� � 104) of
scale invariance.

The empirical power spectral densities obtained for real-
izations of the stochastic process given by Eq. (1) expectedly
match the corresponding analytical predictions given by
Eq. (8). Examples for α = 2 and different values of � are
shown in the inset in Fig. 1(c).

Apparent universality. The combined effect of the logarith-
mic corrections to frequency scaling and the boundedness of
the self-similarity range is gauged by comparing the effective
scaling of the analytical power spectral density ��̃(ω; �,α)
given by Eq. (8) for various combinations of the parameters

FIG. 1. Frequency power spectral density of the filtered Poisson process with one-sided exponential pulse shape and Pareto-distributed
pulse-duration times. Legend color coding applies per row. Top row: Varied α at fixed � = 108. Bottom row: Varied � at fixed α = 2.
Left column: Uncompensated spectra ��̃(ω; �, α) given by Eq. (8). Dashed lines represent Lorentzian-function spectra. Right column:
Compensated spectra ω3−α ��̃(ω; �, α). The horizontal dashed black lines spanning the entire ω range mark the inverse of the compensating
prefactors according to Eqs. (9). The regions where the dashed black lines overlap with the colored lines indicate the ranges of power-law
scaling. Colored dots mark the theoretical boundaries of the self-similarity ranges, ωτ↑ = 1 and ωτ↓ = 1. (a) The inset presents the spectra
at the boundaries of the LRD regime, α = 1 (β = 2) and α = 3 (β = 0), where logarithmic corrections to 1/ωβ scaling apply. The domain
represented in the inset is shaded in the outer plot. (b) Two ancillary α cases plotted with dashed colored lines showcase the reduction in the
range of self-similarity when α is 1/7 away from the nearest LRD boundary. (c) The inset presents the empirical power spectra obtained for
realizations of the process, shifted vertically by a factor

√
� to avoid overlapping. The color coding of the empirical spectra is aligned to

the legend. The overlying solid black lines represent the corresponding analytical results. An additional empirical case � = 0, representing a
constant pulse duration, is plotted in black and overlaid by a dashed-white Lorentzian.
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FIG. 2. Estimated power-law scaling exponents β̄ of the analyt-
ical power spectral density curves ��̃(ω; �, α) given by Eq. (8) for
various ranges � of the underlying scale invariance, and in the entire
LRD regime 1 � α � 3. The dashed gray line marks the asymptotic
scaling relation lim�→∞ β(α) = 3 − α. The solid gray line marks
β̄ = 1 representative of the 1/ f noise. The colorful vertical sidebars
mark the range of β̄ observed for different values of �. Legend color
coding is aligned to Fig. 1(d).

α and �, to the asymptotic scaling relation lim�→∞ β(α) =
3 − α. In order to reduce the effect of the break-point curva-
ture, half a decade is discarded on each side of the theoretical
self-similarity range, shifting the boundaries of the power-law
fitting ranges to ωτ↑ = 101/2 and ωτ↓ = 10−1/2, respectively.
Linear least-square fits are made to logarithmically spaced
points in double-logarithmic coordinates. The resulting esti-
mations of power-law scaling exponents β̄ are presented in
Fig. 2. As α approaches any of the LRD-regime boundaries,
the effective β̄(α) relation diverges from the asymptotic limit
β(α) = 3 − α towards the central value β̄ = 1. The diver-
gence is stronger for small �.

The colored sidebars in Fig. 2 mark the ranges of the esti-
mated exponents β̄ for different values of �. For � = 108 the
range is β̄ ≈ 1 ± 0.86. We recall that Fig. 1(b) demonstrates a
notable curvature of the compensated spectra for � = 108 and
α = 2 ± 6/7 (β = 1 ∓ 0.86). For � = 102 and � = 104 we
further recall that even at the center of the LRD regime, α = 2
(β = 1), the compensated spectra in Fig. 1(d) reveal none, or
very short power-law scaling ranges, respectively. The lack of
power-law scaling does not affect the power-law fitting proce-
dure. The estimated exponents range within β̄ ≈ 1 ± 0.56 for
� = 102, and β̄ ≈ 1 ± 0.75 for � = 104.

The findings presented in Figs. 1 and 2 indicate that the
effective spectral scaling is biased towards β̄ = 1, and the
bias increases with the decrease of �, or with α approaching
the LRD-regime boundaries. Specifically: (1) For the ranges
of the underlying scale invariance shorter than approximately
four decades (� < 104) the power spectral density does not
display power-law scaling. (2) For the longer � ranges the
spectral power-law scaling is manifested only for a subrange
of exponents centered around α = 2 (β = 1). (3) The extent

of this subrange increases with the increase of �, up to the
asymptotic limit α ∈ (1, 3) [β ∈ (0, 2)] when � → ∞.

Discussion. The results presented in Fig. 2 are obtained
under favorable conditions: Power-law fitting is made to log-
arithmically spaced data points following analytical curves,
exact boundaries of the self-similarity ranges are known, and
symmetric cutoffs are applied to reduce the effect of the break-
point curvature. Despite these measures the effective β̄(α)
relation is biased towards β̄ = 1 with respect to the asymptotic
lim�→∞ β(α) = 3 − α. The scaling exponents close to the
LRD-regime boundaries β = 0 and β = 2 are not observed
for any of the investigated finite values of �.

The power spectral density of a one-sided exponential
pulse has asymptotic scaling as 1/ω0 for low frequencies
and 1/ω2 for high frequencies. The associated break points
in the spectrum affect the self-similarity range, biasing the
underlying 1/ωβ scaling towards β̄ = 1. The wider the range
for power-law fitting, the more weight is put on the break-
point curvature. Experiments show that discarding significant
margins on both sides of the fitting range reduces the bias,
yielding more accurate scaling estimations when compared
with the theoretical predictions. However, for relatively nar-
row ranges of scale invariance the break-point curvature
affects the entire 1/ωβ range, inflicting a bias too extensive
to retrieve the underlying 1/ωβ scaling. Consulting com-
pensated spectra allows for scrutinizing the effective scale
invariance.

Narrow ranges of scale invariance prone to the β̄ → 1
bias may overemphasize the universality of 1/ f -type scaling.
Observing long ranges of scale invariance demands both that
the underlying process is long-range self-similar, and that it is
measured with precision and scope satisfying the long-range
extent [27]. Estimating power-law statistics of unequally sam-
pled or merged data sets has been addressed in Refs. [42,43].

If the exact boundaries of the self-similarity range are not
known, the choice of the power-law fitting range is arbitrary,
and possibly biased towards either low or high frequencies.
Different methods of spectral scaling estimation may increase
the bias, or compensate for it. The smoothness of the effective
β̄(α) relations presented in Fig. 2 suggests that knowing the
boundaries of the self-similarity range might facilitate tracing
back from the observed scaling to the underlying scaling of
the studied process.

Conclusions. The results presented here demonstrate that
the estimated spectral scaling of long-range dependent pro-
cesses may be biased towards 1/ f in the presence of
finite-size effects. This bias results from the curvature in
the spectra due to broken power-law scaling, as well as the
logarithmic corrections associated with long-range depen-
dence. Identification of the true power-law scaling requires
scale invariance over several decades in frequency in the
underlying process, as shown in Fig. 1(d). Empirical data
seldom display accordingly broad ranges of self-similarity
[7–12], suggesting a spectral scaling bias at least in the
case of processes that are well described by a superposition
of uncorrelated pulses. Considering that a variety of phys-
ical phenomena has been canonically modeled in this way
[28–33], the observed 1/ f universality may be overstated.
Whether a similar bias is present for other complex-dynamics
systems requires further investigation.
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