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Magnetoelectricity induced by rippling of magnetic nanomembranes and wires
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Magnetoelectric crystals have the interesting property that they allow electric fields to induce magnetic polar-
izations, and vice versa, magnetic fields to generate ferroelectric polarizations. Having such a magnetoelectric
coupling usually requires complex types of magnetic textures, e.g., of spiraling type. Here, we establish a previ-
ously unknown approach to generate linear magnetoelectric coupling in ferromagnetic insulators with intrinsic
Dzyaloshinskii-Moriya interaction (DMI). We show that the effect of nanoscale curved geometries combined
with the intrinsic DMI of the magnetic shell lead to a reorganization of the magnetic texture that spontaneously
breaks inversion symmetry and thereby induces macroscopic magnetoelectric multipoles. Specifically, we prove
that structural deformation in the form of controlled ripples activates a magnetoelectric monopole in the recently
synthesized two-dimensional magnets. We also demonstrate that in zigzag-shaped ferromagnetic wires in planar
architectures, a magnetic toroidal moment triggers direct linear magnetoelectric coupling.
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Two-dimensional (2D) atomic crystals can change their
physical properties in response to external stimuli, such
as strain, resulting in new effective materials. Electrons in
graphene react to mechanical deformations as if electromag-
netic fields were applied. Strain fields realize gauge fields
that are opposite in the two valleys. These gauge fields
lead to a complete reorganization of the electronic spectrum
when they generate a “pseudomagnetic” field, i.e., a magnetic
field opposite in the two valleys. The latter leads to pseudo-
Landau levels [1] which have been imaged in graphene
nanobubbles [2], and in flakes supported on nanopillars [3].
Strain-induced Landau levels have been also generated in
triangular nanoprisms [4]. A periodic arrangement of pseu-
domagnetic fields with nanoscale periods and ensuing flat
electronic minibands have been instead realized in buckled
graphene superlattices [5].

A relevant question that arises is whether and how me-
chanical deformations change the magnetic properties of the
recently synthesized 2D magnets [6–10]. The main point of
this Letter is to show that in analogy with pseudo-Landau lev-
els in graphene, magnetic 2D membranes react to mechanical
deformations with a reorganization of the magnetic configu-
ration that leads to a specific magnetoelectric multipole: the
so-called magnetoelectric monopole [11]. Such a magnetic
state reconfiguration results from the interplay between the
local curvature of the structure and the magnetic order pa-
rameter [12–16]. The reorganization of the magnetic state we
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discuss here applies to 2D magnets with ferromagnetic ar-
rangements and an out-of-plane magnetic easy axis, and is of
special relevance for ferromagnetic insulators such as CrBr3

[17,18], few-layer CrI3 [7], and Cr2Ge2Te6 [6]. The presence
of a macroscopic magnetoelectric monopole moment yields a
direct linear magnetoelectric coupling. This magnetoelectric
capability based on a reorganization of the magnetic state
is different in nature from the magnetoelectricity behavior
predicted in ferromagnetic even-layer perovskites [19], which
is induced by spin-dependent metal-ligand hybridization [20].
We also prove that zigzag-shaped magnetic wires in planar
architectures undergo a magnetic state reorganization, which
yields a different magnetoelectric multipole, a finite toroidal
moment, with a magnetoelectric coupling that is linear as well
be it of different symmetry.

We recall that magnetoelectric multipoles are defined by
considering a spin system in an inhomogeneous magnetic field
that varies slowly on the scale of the system size [21]. The
interaction with the magnetic field gradient is then regulated
by the tensor Mi j = ∫

riμ j (r)d3r, with μ(r) the magnetiza-
tion density. This can be decomposed into three irreducible
tensors: the pseudoscalar a = trMi j/3 defining the magne-
toelectric monopole [22]; the toroidal moment [23] dual to
the antisymmetric part of the tensor ti = εi jkM jk/2; and the
traceless symmetric tensor describing the quadrupole mag-
netic moment of the system. Being odd under both spatial
and time-reversal symmetry, these three irreducible tensors
yield a linear coupling between polarization P and magne-
tization M. In particular, the two linear couplings A P · M,
A being the monopolization A = a/V , and T · P × M with
T = t/V representing the toroidization, are entirely symmetry
allowed.

To establish how the magnetic ground state of a 2D
magnet is affected by geometric deformations, we employ
a continuum description that takes into account exchange,
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magnetocrystalline anisotropy (this accounts in a local ap-
proximation also for magnetostatic interactions), and an
intrinsic Dzyaloshinskii-Moriya interaction (DMI) coupling.
We take a form of DMI valid in material structures with Cnv

symmetry [24], relevant for instance for Janus monolayers of
CrI3 [25] as well as for chromium tri-iodide monolayers on
metal substrates [26] or electrically gated [27]. We consider
the deformation to result in one-dimensional ripples with a
geometry similar to that of graphene on NbSe2 [5]. Even
if such a buckled layer is locally flat, magnetomechanical
geometric effects still come into play. Specifically, the con-
finement of the magnetic energy functional to the rippled
surface results into an effective curvature-induced DMI cou-
pling [28,29] originating from the exchange energy term, and
an effective magnetic anisotropy controlled by the local curva-
ture. The latter possesses two contributions of different nature
(see Supplemental Material [30]). First, the intrinsic DMI
interaction results in an effective anisotropy, which is of the
easy-surface type or of the easy-normal (out-of-plane) type
depending on the signed curvature (see Supplemental Mate-
rial [30]). Second, there is an exchange-induced anisotropy
that favors an alignment of the magnetic moments along the
one-dimensional ripples. In magnetic shells with an easy-
surface type of magnetocrystalline anisotropy, the magnetic
ground state is set by this exchange-induced anisotropy (see
Supplemental Material [30]). On the contrary, for magnetic
layers with an out-of-plane ferromagnetic ground state [6,7]
the exchange-induced DMI coupling is in full force and
leads to inhomogeneous magnetic textures with the magnetic
moments lying in the plane perpendicular to the ripples.
Even more importantly, the presence of the DMI-induced
anisotropy additionally alters the magnetic texture: It is this
local change that triggers the appearance of magnetic multi-
pole terms.

To show this, it is convenient to parametrize the direction
of the normalized magnetization m = M/Ms, with Ms the
saturated magnetization, in the locally flat reference frame
[see Fig. 1(a)]. Since the magnetic moments lie in the plane
perpendicular to the ripple, their direction can be determined
introducing a local angle � that measures the canting of the
moments away from the normal. Using that the period of the
ripple λ is much larger than the exchange length l and the
DMI length d , the canting angle obtained from the minimiza-
tion of the magnetic energy functional can be expressed (see
Supplemental Material [30]) as � � −κ ′(s) l2/[1 + d κ (s)],
where κ (s) is the local curvature as a function of the arc
length s in the corrugated direction, and all lengths have been
measured in units of λ. Except for the points of maximum
curvature, i.e., at the crests and valleys of the ripples, the
canting angle is generally nonvanishing. The magnetic texture
consequently acquires the periodicity of the corrugated struc-
ture. The crux of the story is that the intrinsic DMI coupling
leads to a crest-valley asymmetry of the magnetic texture
with an ensuing magnetically induced breaking of inversion
symmetry.

Consider for instance regular periodic wrinkles with a
simple sinusoidal shape. In the embedding three-dimensional
Euclidean space [cf. Fig. 1(a)], this structure is centrosym-
metric with the midpoints between the valleys and the crests
corresponding to the inversion symmetry centers. Without

(a) (b)

(c)

(d)

FIG. 1. (a) Sketch of a two-dimensional rippled surface with the
Euclidean and the local curvilinear coordinates. � is the canting
angle from the normal direction. (b) Behavior of the local curvature
and of its first derivative for a ripple with a sinusoidal shape of height
h = 0.1λ as a function x̂. (c) The magnetic ground state excluding
curvature effects (top); with curvature effects but in the absence of
an intrinsic DMI interaction (middle); and in the presence of DMI-
induced curvature effects. The density plot shows the local canting
angle along the rippled surface. (d) Behavior of the local canting
angle of the magnetic texture in the absence (d/λ = 0) and presence
(d/λ = 0.05, 0.1) of intrinsic DMI coupling. The exchange length
l/λ = 0.15.

intrinsic DMI, the canting of the magnetic moments away
from the normal direction, and hence the magnetic texture
itself, is entirely set by the first derivative of the local cur-
vature, which is even under inversion [cf. Figs. 1(b) and 1(c)].
Due to the oddness of the signed curvature, the DMI-induced
effective anisotropy introduces a valley-crest asymmetry in
the canting angle [cf. Figs. 1(c) and 1(d)], and inevitably
breaks the inversion symmetry of the magnetic texture. This
can be more easily shown by separating the compensated,
i.e., with zero net magnetic moment, parts of the mag-
netic texture from the uncompensated ferromagnetic one
that preserves the centrosymmetry of the corrugated layer.
Figure 2(a) displays the zero-averaged magnetic texture de-
composed in its two Euclidean components. The magnetic
texture is inversion symmetric both when completely neglect-
ing curvature effects, i.e., for � ≡ 0, and when considering
only exchanged-induced terms. In addition, it preserves the
combined symmetry MxT where T indicates time-reversal
symmetry while Mx is the vertical mirror operation with
respect to the two mirror planes located at the crests and val-
leys of the wrinkle. A finite DMI breaks the centrosymmetry
while still conserving MxT . Note that MxT constrains the
ẑ and x̂ components of the normalized magnetization to be
respectively even and odd with respect to the mirrors located
at x = ±λ/4.

Having established that the intrinsic DMI coupling results
in a magnetochiral state via its curvature-induced effective
anisotropy, we next show that the end product of this phe-
nomenon is the appearance of a nonvanishing magnetoelectric
monopole moment [31]. We first recall that a main compli-
cation with the definition of higher-order magnetic moments
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FIG. 2. (a) The x̂ and ẑ components of the compensated mag-
netic texture m(x) − m by artificially neglecting curvature effects
(top panels), including only exchange-induced curvature effects with
l/λ = 0.1 (middle panels), and in the presence of the intrinsic DMI
with d/λ = l/λ (bottom panels). The ripple height h = 0.1λ. The
gray dashed line indicates the inversion center of the ripple while the
orange lines are the mirror points located at the crests and valleys of
the ripple. The same for the phase dependence of the toroidization
component Ty (b) and monopolization generated by the x̂ component
of the magnetization (c). The phase on the sinusoidal ripple profile
has been imposed as z(x) = h sin (2πx/λ + ϕ). (d) Behavior of the
total monopolization as a function of the intrinsic DMI length d/λ

for ripples of different heights h. The exchange length has been set
to l/λ = 0.1.

in periodic structures is the fact that, besides the origin
dependence of uncompensated magnetic textures [11,23],
they assume arbitrary values depending on the “unit cell”
choice. This is analogous to the electric polarization in pe-
riodic crystals [32,33], which, according to the modern theory
of polarization, can be only defined modulo a polarization
quantum [34]. In atomic lattices, it has been suggested the ex-
istence of toroidization [23] and monopolization [11] quanta,
with branch-independent changes in toroidization and mo-
nopolization that acquire physical meaning. The geometric
superstructures of the present study are assumed to have pe-
riods order of magnitudes larger than the lattice constant.
This makes the monopolization and toroidization lattices in-
finitely dense. Nevertheless, we can meaningfully define the
magnetic moments in a continuum description using sym-
metry constraints. First, the uncompensated ferromagnetic ẑ
component m = ∫ √

gmz(x)dx/
∫ √

gdx, with
√

g the line el-
ement of the ripple, preserves inversion symmetry. The related
magnetoelectric multipoles do not have physical significance.
Therefore, we only consider the contributions generated by
the compensated magnetic texture. These are also subject
to constraints imposed by (anti)unitary symmetries. Let us

consider the ŷ component of the toroidization measured
in units of Msλ and defined by Ty = ∫ √

g{z(x)mx(x) −
x[mz(x) − m]}dx/

∫
2
√

gdx where z(x) indicates the local
height of the ripple in the Monge gauge. To account for
different choices of the supercell, we continuously sweep a
phase ϕ on the sinusoidal ripple profile. Figure 2(b) displays
the corresponding behavior of the toroidization. In the absence
of intrinsic DMI (d = 0) the torodization has odd parity both
around ϕ = 0, π , i.e., for unit cells centered at the inversion
centers of the ripples, and around ϕ = π/2, 3π/2, in which
case the unit cells are centered at the crests and valleys of
the wrinkles. The presence of a finite intrinsic DMI removes
the parity symmetry around ϕ = 0, π but keeps the oddness
around ϕ = π/2, 3π/2. This is because the phase depen-
dence of the toroidization displays the same symmetries of the
magnetic system, in analogy with the electric polarization lat-
tice [11]. In particular, the odd parity around ϕ = π/2, 3π/2
results from the antiunitary MxT symmetry, which is con-
served independent of the presence of the intrinsic DMI. Since
Ty → −Ty under MxT , we conclude that the macroscopic
toroidization component Ty is forced to vanish. Analogously,
also the x̂ and ẑ components of the macroscopic toroidization
are vanishing due to the presence of the antiunitary MyT
symmetry, which is preserved in the system since the magnetic
moments are always orthogonal to the translationally invariant
ŷ direction.

With the macroscopic toroidization that is symmetry
forbidden by the Mx,yT symmetries, we next consider
the magnetoelectric monopolization A = ∫ √

g{x mx(x) +
z(x)[mz(x) − m]}dx/

∫
3
√

gdx. In Fig. 2(c) we show the
phase dependence of the monopolization associated with the
x̂ component of the compensated magnetic texture. It has odd
parity around ϕ = 0, π both when neglecting curvature ef-
fects all together and when accounting for exchange-induced
terms. This signals the presence of inversion symmetry that
is preserved as long as the intrinsic DMI coupling is ne-
glected. With magnetic inversion symmetry breaking (d �=
0) the phase dependence does not display any parity, thus
implying a finite macroscopic monopolization. Its absolute
value is uniquely determined by the fact that its zeroness with
inversion symmetry fixes the “gauge” ϕ ≡ 0, π . Importantly,
also the ẑ component of the magnetic texture generates a
finite monopolization. This, however, is phase independent
for the simple reason that the monopolization local density
is a periodic function. Figure 2(d) shows the total monopo-
lization as a function of the intrinsic DMI length for ripples
of different height h. Increasing curvature boosts the monop-
olization of a rippled two-dimensional ferromagnet. In the
Supplemental Material [30], we show that in Janus Cr(I, Br)3

monolayers with ripples of periodicity of tens of nanometers,
the monopolization ranges in the 10−3 µB/Å scale. Impor-
tantly, the bulk lithium transition metal phosphate LiMnPO4

has been predicted [11] to host a similar net monopolization
A = 5 × 10−3 µB/Å2.

A free-energy expansion (see the Supplemental Material
[30]) in the magnetization, electric polarization, and monop-
olization shows that this sizable monopolization leads to an
electric polarization in the ẑ direction at zero field, which
changes linearly with an external magnetic field. Note that
the order parameters in the Landau theory are homogeneous.
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(a) (d)

(b)

(c)

FIG. 3. (a)–(c) Tangential, quasitangential, i.e., including only
exchange-induced curvature effects, and DMI-induced out-of-plane
canted magnetic state for a zigzag magnetic nanowire. (d) shows the
local behavior of the Euclidean components of the compensated nor-
malized magnetic texture. We also show the inversion and rotation
axis centers discussed in the main text.

The present mechanism is therefore distinguished from the
inhomogeneous multiferroicity of spiral magnets [35] or due
to dislocated spin-density waves [36,37].

We next show that magnetoelectric multipoles stabilized by
the concomitant presence of geometric curvature and intrinsic
DMI coupling can appear in zigzag-shaped magnetic wires in
planar structures. In analogy with Refs. [38,39], we consider
magnetic wires with a tangential anisotropy and a bulk DMI
which applies to cubic noncentrosymmetric magnets of T and
O symmetries [40]. We also take the DMI vector parallel to the
tangential direction so that a straight wire has a magnetization
parallel to it [see Fig. 3(a)]. In the absence of intrinsic DMI
the magnetic state has a characteristic quasitangential distribu-
tion [38] [see Fig. 3(b) and the Supplemental Material [30]],
uniquely identified by the azimuthal angle � � κ ′(s) l2. A fi-
nite intrinsic DMI yields a nonzero polar angle � � κ (s) d/2.
Due to the intrinsic DMI-induced anisotropy, the magnetic
textures then acquire a finite out-of-plane component [see
Fig. 3(c)] whose period is set by the geometric curvature.
This out-of-plane component yields a magnetically induced
inversion symmetry breaking. To prove this, we assume the
zigzag wire to have a sinusoidal shape. Figure 3(d) shows
the corresponding compensated part of the magnetic texture
decomposed into its three Euclidean components. Both the
x̂ and ŷ components are even around the inversion centers
x = 0, λ due to the parity of the curvature derivative. Being
related to the local curvature, the out-of-plane component has
opposite parity and thus breaks inversion symmetry.

However, the complete magnetic state preserves two an-
tiunitary symmetries. (i) The combined C2yT where C2y is a
twofold rotation with a ŷ-directed rotation axis intersecting
the zigzag at its corners: This symmetry regulates the parity
of the magnetic texture components (even for mx,z and odd for

(a) (b)

(c) (d)

FIG. 4. (a)–(c) Phase dependence of the monopolization and
toroidization components Tz,y measured in units of Msλ with Ms the
saturated magnetization. We have chosen l/λ = d/λ = 0.1. (d) Be-
havior of the toroidization as a function of the sinusoidal height h/λ.

my) around the zigzag corners x = ±λ/4. (ii) The combined
C2zT where C2z is the twofold rotation with an out-of-plane
rotation axis intersecting the zigzag at the midpoints between
the corners: This symmetry instead regulates the parity of
the magnetic textures around x = 0, λ/2. These symmetries
pose strong constraints on the presence of the macroscopic
monopolization and toroidization. Consider first the monopo-
lization whose phase dependence is shown in Fig. 4(a). Its odd
parity around ϕ = 0, π/2 is consistent with the fact that both
C2zT and C2yT send A → −A. Consequently, the macroscopic
monopolization is vanishing. Similarly, the odd parity of the
toroidization component Tz around ϕ = 0 [see Fig. 4(b)] and
that of Ty around ϕ = π/2 [see Fig. 4(c)] are the consequence
of the presence of the C2zT and C2yT symmetry, respectively.
Since C2y,zT send Ty,z → −Ty,z we conclude that a macro-
scopic toroidization, if present, has to be directed along the
x̂ direction. Figure 4(d) shows that the macroscopic torodiza-
tion Tx is finite and increases monotonically, both increasing
the profile amplitude h and the exchange and DMI length.
Note that the macroscopic toroidization Tx does not display
any phase dependence since its local density ∝√

gy(x)mz is
entirely periodic. Therefore, its absolute value can be defined
without ambiguity.

Curvature effects in two-dimensional ferromagnetic in-
sulators and magnetic wires thus result in magnetoelectric
multipoles. This phenomenon stems from the interplay
between the exchange-induced DMI and the intrinsic DMI-
induced magnetic anisotropy which results in magnetically
induced inversion symmetry breaking. This intramaterial
magnetoelectricity is disjunct from the artificial magneto-
electric coupling [41,42] proposed in magnetic curved wires
embedded in a piezoelectric matrix. Toroidal arrangements
with ferrotoroidic domains have been shown to exist in the
lithium transition metal phosphatate LiCoPO4 [43]. Toroidiza-
tion was also observed in an artificial crystals consisting
of planar permalloy nanomagnets [44]. At the nanoscale,
magnetoelectric multipoles have been suggested in insu-
lating materials with magnetic skyrmions [45]. Our study
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reveals that such multipoles can be designed at the nanoscale
starting out even from a ferromagnetic ground state. The
linear magnetoelectric coupling activated by monopolization
and toroidization in these structures represent an important
example of a geometry-induced effect at the nanoscale [46].
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Watanabe, T. Taniguchi, L. Covaci, F. M. Peeters, A. K. Geim,
Y. Jiang, and E. Y. Andrei, Evidence of flat bands and correlated
states in buckled graphene superlattices, Nature (London) 584,
215 (2020).

[6] C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao,
C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia,
and X. Zhang, Discovery of intrinsic ferromagnetism in two-
dimensional van der Waals crystals, Nature (London) 546, 265
(2017).

[7] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R.
Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire,
D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu,
Layer-dependent ferromagnetism in a van der Waals crystal
down to the monolayer limit, Nature (London) 546, 270 (2017).

[8] N. Samarth, Magnetism in flatland, Nature (London) 546, 216
(2017).

[9] K. S. Burch, D. Mandrus, and J.-G. Park, Magnetism in two-
dimensional van der Waals materials, Nature (London) 563, 47
(2018).

[10] M. Gibertini, M. Koperski, A. F. Morpurgo, and K. S.
Novoselov, Magnetic 2D materials and heterostructures,
Nat. Nanotechnol. 14, 408 (2019).

[11] N. A. Spaldin, M. Fechner, E. Bousquet, A. Balatsky, and L.
Nordström, Monopole-based formalism for the diagonal mag-
netoelectric response, Phys. Rev. B 88, 094429 (2013).

[12] R. Streubel, P. Fischer, F. Kronast, V. P. Kravchuk, D. D. Sheka,
Y. Gaididei, O. G. Schmidt, and D. Makarov, Magnetism in
curved geometries, J. Phys. D 49, 363001 (2016).

[13] D. D. Sheka, A perspective on curvilinear magnetism,
Appl. Phys. Lett. 118, 230502 (2021).

[14] D. Makarov, O. M. Volkov, A. Kákay, O. V. Pylypovskyi,
B. Budinská, and O. V. Dobrovolskiy, New dimension in
magnetism and superconductivity: 3D and curvilinear nanoar-
chitectures, Adv. Mater. 34, 2101758 (2022).

[15] M. Yan, C. Andreas, A. Kakay, F. Garcia-Sanchez, and R.
Hertel, Chiral symmetry breaking and pair-creation mediated
Walker breakdown in magnetic nanotubes, Appl. Phys. Lett.
100, 252401 (2012).

[16] A. Fernández-Pacheco, R. Streubel, O. Fruchart, R. Hertel,
P. Fischer, and R. P. Cowburn, Three-dimensional nanomag-
netism, Nat. Commun. 8, 15756 (2017).

[17] D. Ghazaryan, M. T. Greenaway, Z. Wang, V. H. Guarochico-
Moreira, I. J. Vera-Marun, J. Yin, Y. Liao, S. V. Morozov, O.
Kristanovski, A. I. Lichtenstein, M. I. Katsnelson, F. Withers,
A. Mishchenko, L. Eaves, A. K. Geim, K. S. Novoselov,
and A. Misra, Magnon-assisted tunnelling in van der Waals
heterostructures based on CrBr3, Nat. Electron. 1, 344
(2018).

[18] Z. Wang, I. Gutiérrez-Lezama, D. Dumcenco, N. Ubrig, T.
Taniguchi, K. Watanabe, E. Giannini, M. Gibertini, and A. F.
Morpurgo, Magnetization dependent tunneling conductance of
ferromagnetic barriers, Nat. Commun. 12, 6659 (2021).

[19] J. Zhang, Y. Zhou, F. Wang, X. Shen, J. Wang, and X. Lu,
Coexistence and Coupling of Spin-Induced Ferroelectricity and
Ferromagnetism in Perovskites, Phys. Rev. Lett. 129, 117603
(2022).

[20] H. Murakawa, Y. Onose, S. Miyahara, N. Furukawa, and Y.
Tokura, Ferroelectricity Induced by Spin-Dependent Metal-
Ligand Hybridization in Ba2CoGe2O7, Phys. Rev. Lett. 105,
137202 (2010).

[21] N. A. Spaldin, M. Fiebig, and M. Mostovoy, The toroidal
moment in condensed-matter physics and its relation to the
magnetoelectric effect, J. Phys.: Condens. Matter 20, 434203
(2008).

[22] As noted in Ref. [11], magnetic states with finite magnetoelec-
tric monopoles do not imply a diverging B field. The divergence
of the magnetization is compensated for by the divergence of
the H field.

[23] C. Ederer and N. A. Spaldin, Towards a microscopic theory of
toroidal moments in bulk periodic crystals, Phys. Rev. B 76,
214404 (2007).

[24] H. Yang, A. Thiaville, S. Rohart, A. Fert, and M. Chshiev,
Anatomy of Dzyaloshinskii-Moriya Interaction at Co/Pt Inter-
faces, Phys. Rev. Lett. 115, 267210 (2015).

[25] C. Xu, J. Feng, S. Prokhorenko, Y. Nahas, H. Xiang, and L.
Bellaiche, Topological spin texture in Janus monolayers of the
chromium trihalides Cr(I, X )3, Phys. Rev. B 101, 060404(R)
(2020).

L022063-5

https://doi.org/10.1038/nphys1420
https://doi.org/10.1126/science.1191700
https://doi.org/10.1021/acs.nanolett.6b05228
https://doi.org/10.1126/sciadv.aaw5593
https://doi.org/10.1038/s41586-020-2567-3
https://doi.org/10.1038/nature22060
https://doi.org/10.1038/nature22391
https://doi.org/10.1038/546216a
https://doi.org/10.1038/s41586-018-0631-z
https://doi.org/10.1038/s41565-019-0438-6
https://doi.org/10.1103/PhysRevB.88.094429
https://doi.org/10.1088/0022-3727/49/36/363001
https://doi.org/10.1063/5.0048891
https://doi.org/10.1002/adma.202101758
https://doi.org/10.1063/1.4727909
https://doi.org/10.1038/ncomms15756
https://doi.org/10.1038/s41928-018-0087-z
https://doi.org/10.1038/s41467-021-26973-7
https://doi.org/10.1103/PhysRevLett.129.117603
https://doi.org/10.1103/PhysRevLett.105.137202
https://doi.org/10.1088/0953-8984/20/43/434203
https://doi.org/10.1103/PhysRevB.76.214404
https://doi.org/10.1103/PhysRevLett.115.267210
https://doi.org/10.1103/PhysRevB.101.060404


CARMINE ORTIX AND JEROEN VAN DEN BRINK PHYSICAL REVIEW RESEARCH 5, L022063 (2023)

[26] F. Zhang, X. Li, Y. Wu, X. Wang, J. Zhao, and W. Gao, Strong
Dzyaloshinskii-Moriya interaction in monolayer CrI3 on metal
substrates, Phys. Rev. B 106, L100407 (2022).

[27] J. Liu, M. Shi, J. Lu, and M. P. Anantram, Analysis
of electrical-field-dependent Dzyaloshinskii-Moriya interaction
and magnetocrystalline anisotropy in a two-dimensional ferro-
magnetic monolayer, Phys. Rev. B 97, 054416 (2018).

[28] Y. Gaididei, V. P. Kravchuk, and D. D. Sheka, Curvature Effects
in Thin Magnetic Shells, Phys. Rev. Lett. 112, 257203 (2014).

[29] V. P. Kravchuk, U. K. Rößler, O. M. Volkov, D. D. Sheka,
J. van den Brink, D. Makarov, H. Fuchs, H. Fangohr, and
Y. Gaididei, Topologically stable magnetization states on a
spherical shell: Curvature-stabilized skyrmions, Phys. Rev. B
94, 144402 (2016).

[30] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.5.L022063 for the details on the
magnetic energy functional, the estimate of the magnetoelectric
monopolization in Janus monolayers of chromium trihalides,
and the multiferroic Landau theory.

[31] We note that magnetochirality is neither necessary nor sufficient
for the occurrence of magnetoelectric multipole moments. Mag-
netic states with mirror symmetries can display a finite toroidal
moment as exemplified by the case of a magnetic vortex on
a square palette [21]. Combined antiunitary symmetries can
instead force the multipoles of magnetochiral states to vanish.

[32] R. D. King-Smith and D. Vanderbilt, Theory of polarization of
crystalline solids, Phys. Rev. B 47, 1651 (1993).

[33] R. Resta, Macroscopic polarization in crystalline dielectrics:
The geometric phase approach, Rev. Mod. Phys. 66, 899
(1994).

[34] D. Vanderbilt and R. D. King-Smith, Electric polarization as a
bulk quantity and its relation to surface charge, Phys. Rev. B 48,
4442 (1993).

[35] M. Mostovoy, Ferroelectricity in Spiral Magnets, Phys. Rev.
Lett. 96, 067601 (2006).

[36] J. J. Betouras, G. Giovannetti, and J. van den Brink, Multifer-
roicity Induced by Dislocated Spin-Density Waves, Phys. Rev.
Lett. 98, 257602 (2007).

[37] The difference between the two mechanisms is also shown in
the fact that helicoidal spin density waves [35] do not possess
magnetoelectric multipoles.

[38] O. M. Volkov, D. D. Sheka, Y. Gaididei, V. P. Kravchuk,
U. K. Rößler, J. Fassbender, and D. Makarov, Mesoscale
Dzyaloshinskii-Moriya interaction: Geometrical tailoring of the
magnetochirality, Sci. Rep. 8, 866 (2018).

[39] D. D. Sheka, O. V. Pylypovskyi, O. M. Volkov, K. V. Yershov,
V. P. Kravchuk, and D. Makarov, Fundamentals of curvilinear
ferromagnetism: Statics and dynamics of geometrically curved
wires and narrow ribbons, Small 18, 2105219 (2022).

[40] D. Cortés-Ortuño and P. Landeros, Influence of the
Dzyaloshinskii–Moriya interaction on the spin-wave spectra of
thin films, J. Phys.: Condens. Matter 25, 156001 (2013).

[41] O. M. Volkov, U. K. Rössler, J. Fassbender, and D. Makarov,
Concept of artificial magnetoelectric materials via geometri-
cally controlling curvilinear helimagnets, J. Phys. D 52, 345001
(2019).

[42] D. D. Sheka, O. V. Pylypovskyi, P. Landeros, Y. Gaididei, A.
Kákay, and D. Makarov, Nonlocal chiral symmetry breaking in
curvilinear magnetic shells, Commun. Phys. 3, 128 (2020).

[43] B. B. Van Aken, J.-P. Rivera, H. Schmid, and M. Fiebig, Ob-
servation of ferrotoroidic domains, Nature (London) 449, 702
(2007).

[44] J. Lehmann, C. Donnelly, P. M. Derlet, L. J. Heyderman,
and M. Fiebig, Poling of an artificial magneto-toroidal crystal,
Nat. Nanotechnol. 14, 141 (2019).

[45] S. Bhowal and N. A. Spaldin, Magnetoelectric Classification of
Skyrmions, Phys. Rev. Lett. 128, 227204 (2022).

[46] P. Gentile, M. Cuoco, O. M. Volkov, Z.-J. Ying, I. J. Vera-
Marun, D. Makarov, and C. Ortix, Electronic materials with
nanoscale curved geometries, Nat. Electron. 5, 551 (2022).

L022063-6

https://doi.org/10.1103/PhysRevB.106.L100407
https://doi.org/10.1103/PhysRevB.97.054416
https://doi.org/10.1103/PhysRevLett.112.257203
https://doi.org/10.1103/PhysRevB.94.144402
http://link.aps.org/supplemental/10.1103/PhysRevResearch.5.L022063
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/RevModPhys.66.899
https://doi.org/10.1103/PhysRevB.48.4442
https://doi.org/10.1103/PhysRevLett.96.067601
https://doi.org/10.1103/PhysRevLett.98.257602
https://doi.org/10.1038/s41598-017-18835-4
https://doi.org/10.1002/smll.202105219
https://doi.org/10.1088/0953-8984/25/15/156001
https://doi.org/10.1088/1361-6463/ab2368
https://doi.org/10.1038/s42005-020-0387-2
https://doi.org/10.1038/nature06139
https://doi.org/10.1038/s41565-018-0321-x
https://doi.org/10.1103/PhysRevLett.128.227204
https://doi.org/10.1038/s41928-022-00820-z

