
PHYSICAL REVIEW RESEARCH 5, L022058 (2023)
Letter

Effects of orbital selective dynamical correlation on the spin susceptibility
and superconducting symmetries in Sr2RuO4
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We investigate the connection between the local electron correlation and the momentum dependence of the
spin susceptibility and the superconducting gap functions in Sr2RuO4 using density-functional theory combined
with dynamical mean-field theory. Adopting a frequency-dependent two-particle vertex moves the zero-energy
spin susceptibility peaks towards the Brillouin zone center, compared with the random-phase approximation,
which basically retains the peak positions closer to the Brillouin zone boundary as determined by the Fermi-
surface nesting. We find that the dxy orbital plays a central role here via its enhanced correlation strength. Solving
the linearized Eliashberg equation from this spin susceptibility, the prime candidates for the superconducting
gap are an s-wave and a nearly degenerate d-wave solutions, all in the spin singlet. Furthermore, another set of
degenerate spin-singlet gap functions emerges, odd with respect to the k point as well as orbital exchanges. We
show that the stability of these gap functions is strongly dependent on the peak position of the spin susceptibility
in the Brillouin zone.
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Sr2RuO4 remains one of the most intriguing superconduc-
tors with the possibility of highly exotic and unconventional
superconductivity, even three decades after its discovery [1].
Noticing the analogy with superfluid 3He, earlier studies kin-
dled discussions of the px + ipy pairing [2–6]. This order
parameter can be characterized by two essentially independent
properties: the chirality, implying nonzero orbital magnetic
moment, and the spin-triplet pairing. The spin-triplet pairing
scenario, however, has come into serious question after recent
spin susceptibility measurements using the nuclear magnetic
resonance Knight shift [7,8] and polarized neutron scatter-
ing [9]. They showed that the susceptibility is suppressed
below Tc, more consistent with the spin-singlet pairing, over-
ruling an earlier contradicting Knight shift measurement [10].
The chirality, or time-reversal symmetry breaking (TRSB)
more generally, has been supported by a recent zero-field
muon spin relaxation (ZF-μSR) measurement under uniaxial
stress resulting in split superconducting and TRSB transi-
tions [11], together with earlier works using ZF-μSR [12]
and nonzero Kerr rotation [13,14]. Evidence of the two-
component order parameter [15,16] has also appeared and
can serve as a broader constraint on the nature of pairing in
which the possibility of the chirality is included. Combina-
tions among even-parity order parameters such as s, d , and
g symmetries are now generally considered plausible candi-
dates.
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The local electronic configuration near the Fermi en-
ergy EF comprises four electrons in t2g levels split from
empty eg levels within Ru d states, and hence, Sr2RuO4 is
a multiorbital system in which Hund’s coupling JH plays a
significant role in local Coulomb correlations. Consequently,
its normal-state behaviors, such as the crossover from a high-
temperature incoherent phase to a low-temperature Fermi
liquid [2,17–22], are understood in the context of Hund’s met-
als [23–26]. General features of Hund’s metals include strong
local spin fluctuation and orbital differentiation [27,28], as
manifested in Sr2RuO4 with a much enhanced effective
mass of the dxy-derived Fermi-surface (FS) sheet compared
with the dxz/yz-derived ones [2,23]. Then, an important ques-
tion follows that how the local correlation which governs
the normal state works on the superconductivity. Assuming
spin-fluctuation-mediated superconductivity, the two-particle
vertex, which forms fully interacting spin susceptibility χ

when combined with the polarization bubble χ0, is one of
the major channels through which the local correlation ef-
fect is incorporated in electron pairing. While some previous
theoretical studies adopted the random-phase approximation
(RPA) for the vertex with the lowest order scattering pro-
cess [29–34], others found that using a frequency-dependent
vertex produces qualitative differences in susceptibility and
superconductivity [35–37]. However, the distinctive roles
played by the orbital selectivity and its dynamic nature in
the susceptibility evaluation remain elusive, especially with
respect to the features critically connected to the pairing sym-
metry, such as the peak position of the susceptibility.

In this study, we demonstrate how the dynamic local cor-
relations shape the susceptibility in k space and the pairing
symmetry in Sr2RuO4 within the framework of density-
functional theory combined with dynamical mean-field theory
(DFT+DMFT). Adopting the dynamic vertex results in the
peak position of spin susceptibility being closer to the
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Brillouin zone (BZ) center compared with the RPA case, in
better agreement with experimental measurements. We argue
it originates from the stronger frequency dependence of the
vertex within the dxy orbital than in the other t2g components,
relocating the peak from the position determined by simple
FS nesting as in the RPA case. When the linearized Eliashberg
equation is constructed from the susceptibility and solved, the
most probable gap function turns out to be s-wave symmetry
with nodes followed by a d-wave solution that is slightly
less stable, suggesting a possible two-component order pa-
rameter with accidental degeneracy. Other plausible solutions
are found to be symmetry-protected doubly degenerate ones
which are odd with respect to both k and orbital exchanges.
We show that the relative stability of these gap functions
changes drastically between the respective susceptibility peak
positions from the dynamical vertex and RPA, emphasizing
the importance of an accurate evaluation of the susceptibility
in k space and of the orbital selective and dynamic local
correlation effects which enable it.

We use the modern implementation of the DFT+DMFT
method within the all-electron embedded DMFT ap-
proach [38] which is based on WIEN2K [39], without
downfolding or other approximations. The code is freely
available on the web [40]. We employ the local-density ap-
proximation exchange-correlation functional [41,42], and the
quantum impurity model is solved using the continuous-time
quantum Monte Carlo impurity solver [43]. Here sampled
quantities are expanded in the basis function obtained by
the singular-value decomposition of the kernel for analytic
continuation, ensuring reduced high-frequency noise [44]. In-
ternal atomic positions are optimized, and U = 4.5 eV and
J = 1.0 eV are adopted, consistent with a previous study on
this material [45] employing the same computational method.
We use the Slater parametrization of the Coulomb interac-
tion in this study, and our U and J parameters are defined
with respect to the three Slater parameters in such a way
that F 0 = U , F 2 = 112/13 J , and F 4 = 70/13 J . BZ inte-
gration is done on the 30 × 30 × 30 k-point mesh for the
body-centered tetragonal primitive unit cell to obtain the con-
verged charge density and self-energy, while a 40 × 40 × 2
mesh in the BZ for the conventional tetragonal unit cell is
used for the susceptibility and gap function calculations. All
calculations are done at 116 K. Spin-orbit coupling (SOC) can
have non-negligible effects on the electronic structure, mainly
near the region where different sheets of FS intersect, via
strong orbital mixing [46–50]. As evaluating the two-particle
vertex including SOC is still not possible and also considering
that susceptibilities are less affected by SOC than one-particle
spectra [33], we neglect SOC in this work.

Figure 1(a) shows our calculated FS in the body-centered
tetragonal BZ. Two one-dimensional (1D) FS sheets (α and
β) are almost purely dxz and dyz derived, respectively, while
the two-dimensional (2D) FS (γ ) is from dxy, consistent with
previous studies. All local correlation effects as contained
in the dynamical self-energy are included. Then we evalu-
ate the susceptibility χ , the polarization bubble χ0, and the
two-particle vertex �, which are related by the Bethe-Salpeter
equation for a given bosonic Matsubara frequency � which is
fixed to zero in this work: χ

s/c
αα′;ββ ′ (iν, iν ′, q) = {[χ0(q)]−1 −

�s/c}−1
αα′;ββ ′ (iν, iν ′). All the two-particle quantities are defined

FIG. 1. (a) Fermi surface shown on the kz = 0 plane. Orbital
character is denoted by the depth of the color as well as the thickness
of the line. (b) [�χ�]s

αα;αα (iν, iν ), where α = dxy and iν ≈ 0 on the
kz = 0 plane. The momentum transfer of one of the four equivalent
peaks inside the first Brillouin zone is marked by Qω. (c) Infinite
series expansion of [�χ�]s

αα′;δδ′ (iν, iν ) by the Bethe-Salpeter equa-
tion. Here the polarization bubble χ 0 is assumed to be diagonal in
orbital indices (see the text). (d) Same as (b), but using the frequency-
averaged constant two-particle vertex instead of the dynamic vertex.
The peak is denoted by QRPA.

in the particle-hole channel if not explicitly indicated other-
wise, and s/c stands for spin/charge. �s/c is a dynamic local
quantity containing all two-particle-irreducible diagrams and
is obtained in the impurity solver [51,52], as is the self-energy,
which is the one-particle counterpart of the two-particle ver-
tex. We display �sχ s�s ≡ [�χ�]s, which acts as an effective
pairing potential in the Eliashberg equation, for the dxy or-
bital channel at the lowest fermionic Matsubara frequency
(iν = iν ′ ≈ 0) [53] in Fig. 1(b). There is a strong peak at q =
(0.3, 0.3) ≡ Qω, where the X point is at (0.5,0.5), reproducing
the peak position of χ from measurements [54] and previous
calculations [36]. Note that [�χ�]s has basically the same
peak structure as χ s in the BZ since the matrix multiplication
between �s and χ s corresponds to the weighted summation
over different frequency components of χ s which have sim-
ilar momentum structures to one another. To highlight the
effect of the frequency dependence of the vertex, we evalu-
ate [�χ�]s in Fig. 1(d) using the frequency-averaged (static)
vertex corresponding to the equal-time component, which is
equivalent to RPA. The peak is now at q = (0.35, 0.35) ≡
QRPA, which is closer to X compared with Qω, also consis-
tent with the previous calculation [36], suggesting that the
momentum structure of the susceptibility alters with local
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FIG. 2. With interorbital components of the vertex � set to zero,
[�χ�]s

αα;αα (iν ≈ 0, iν ≈ 0) is calculated for α = dxz/yz/xy in (a)–(c).
(e)–(g) are the same as (a)–(c), but with the frequency-averaged
constant two-particle vertex instead of the dynamic vertex. (d) is
obtained by multiplying (a), (b), and (c), while (h) is obtained
by multiplying (e), (f), and (g). The peak position is denoted by
Q′

ω/Q′
RPA in (d) and (h).

correlations with different dynamic structures. dxz/yz com-
ponents have the same peak position as dxy, but with a
distinctively reduced amplitude, for both dynamic and static
vertices where the orbital selectivity is inscribed. The charge
counterpart, [�χ�]c, is found to be negligible compared with
[�χ�]s for the dynamic vertex, while they are comparable for
the static vertex. See Appendix A for a detailed discussion of
the orbital dependence of spin/charge susceptibilities.

Now we are ready to reveal the mechanism of how the
orbital selectivity encoded in the local vertex determines
the peak position of the susceptibility in k space. To help
isolate the role of each orbital in its respective dynamic
structure, we calculate [�χ�]s with interorbital components
of the vertex turned off, i.e., �s

αα′;ββ ′ = �s
αα′;αα′δα,βδα′,β ′ ,

and display the result in Fig. 2. Since the FSs are almost
completely decoupled in orbitals, as seen in Fig. 1(a), the
polarization bubble, defined as the product of two coun-
terpropagating one-particle Green’s functions, is also nearly
diagonal: χ0

αα′;ββ ′ (q) ≈ χ0
αα′;ββ ′ (q)δα,βδα′,β ′ ≡ χ0

αα′ (q). Then
[�χ�]s

αα;αα (iν, iν ′, q) is mostly composed of χ0
αα (iν ′′, q)

with the weight of �s
αα;αα (iν ′′, iν ′′′) for the intermediate

frequencies iν ′′ and iν ′′′, but without incorporating orbital
components other than α in the infinite series, as illustrated
in Fig. 1(c). The diagonal component of [�χ�]s in the dxz

orbital for iν = iν ′ ≈ 0 is shown in Fig. 2(a). The stripe
pattern along the x direction is from the FS nesting in the
dxz-originated 1D FS sheet, and the same is true for the dyz

component displayed in Fig. 2(b) with π/2 rotation. The fact
that the k dependence of [�χ�]s is determined by the simple
FS nesting suggests that the vertex depends only weakly on
the frequency, decoupling the polarization bubble from the
vertex in the frequency domain for a given order of the infinite
series in Fig. 1(c). Then the summation of the intermediate
frequency produces

∑
ν χ0(iν) = χ0(� = 0), the polariza-

tion bubble in zero bosonic frequency which is characterized
by the FS nesting. Indeed, these results are almost identical to
those from the frequency-averaged static vertex, as displayed

in Figs. 2(e) and 2(f). In the case of the dxy channel, [�χ�]s

exhibits a fourfold rotation symmetry with weights around X
points in the BZ reflecting the symmetry of the orbital, as
shown in Figs. 2(c) and 2(g) for the dynamic and frequency-
averaged static vertices, respectively. In contrast to the dxz/yz

channels, however, there is a noticeable difference between
the two vertices. Weights are distributed farther away from
the � point for the dynamic vertex, which results from the
frequency-dependent coefficient of χ0(iν) (i.e., vertex) in the
frequency ν summation, as elaborated in Appendix B.

As the next step, orbital-separate contributions shown in
Figs. 2(a)–2(c) and 2(e)–2(g) can be effectively coupled again
to reintroduce interorbital components in [�χ�]s by sim-
ply multiplying the contributions from each orbital channel.
This is because interorbital terms consisting of the product
of χ0 with different orbital indices, such as χ0

xy xyχ
0
xz xz, are

restored by the multiplication in the infinite series expansion
of [�χ�]s, as displayed in Fig. 1(c). Figures 2(d) and 2(h)
are obtained by multiplying Figs. 2(a)–2(c) and 2(e)–2(g),
respectively, and indeed reproduce the strong peak structure
seen in the original full vertex calculation result in Figs. 1(b)
and 1(d) which includes both intra- and interorbital compo-
nents. Moreover, the peak position from the dynamic vertex
in Fig. 2(d) at Q′

ω ≈ (0.32, 0.32) is closer to the zone center
than that from the static vertex at Q′

RPA ≈ (0.35, 0.35), also
in accordance with the full vertex results. As we have demon-
strated that [�χ�]s can be effectively reconstructed from the
product of orbital-separate components, it is evident that the
difference in the peak position when using the dynamic and
static vertices mainly originates from the contrasting weight
distributions of the dxy contribution: weight is distributed
closer to the �(X ) point in Fig. 2(c) [Fig. 2(g)], resulting in the
peak being closer to the � (X ) point in Fig. 2(d) [Fig. 2(h)].
Therefore, we can conclude that the dxy component of the
vertex is responsible for the shift of the peak position from
QRPA = (0.35, 0.35), as determined by the FS nesting, to
Qω = (0.3, 0.3) via its strong frequency dependence. This is
true not only for α = dxy but also for α = dxz/yz in [�χ�]s

αα;αα

(see Appendix A), which also incorporates χ0
xy xy through the

interorbital vertex. The pronounced dynamic nature of the dxy

component of the vertex is consistent with the dxy orbital’s
larger mass enhancement factor, pointing to a larger correla-
tion effect than dxz/yz, which was suggested to originate from
the proximity of the Van Hove singularity of the dxy band
to EF [23].

Having calculated [�χ�]s/c, we can solve the linearized
Eliashberg equation, which was also adopted in previous
works [33,34,37,55], derived from the divergence condition
of the susceptibility in the particle-particle channel:

− kBT
∑

k′ν ′α′β ′γ δ

�
pp,s/t
αβ;α′β ′ (kν; k′ν ′)χ0,pp

α′β ′γ δ (k′ν ′)�γδ (k′ν ′)

= λ�αβ (kν),

where the eigenvalue λ and the eigenfunction � can be
interpreted as the pairing strength and the gap function,
respectively. �pp,s/t is the irreducible vertex in the particle-
particle channel and consists of different combinations of
[�χ�]s/c in interchanged momentum and orbital indices de-
pending on spin singlet/triplet (s/t) pairing. The details of
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the formalism adopted in this study are given in Ref. [52].
Here we assume a constant frequency dependence of �pp

so that �pp(iν, iν ′) = �pp(iν ≈ 0, iν ′ ≈ 0); then the resultant
gap function �(k) does not depend on the frequency either,
like in the BCS approximation, where only even-frequency
solutions can be captured. Nevertheless, it should be noted
that the internal frequency summations are performed without
any approximation, which is found to be essential to obtain
the correct peak position of [�χ�]s, as demonstrated above.
The gap function so obtained is distributed over the entire BZ
in the orbital basis and, in principle, at zero energy and hence
needs to be projected to the FS, where the spectral function
should be evaluated at zero energy:

�i j (k) =
∑

αβ,i′ j′
�L

k,ii′Uk,i′α�αβ (k)U †
k,β j′�

R
k, j′ j .

Here �
L(R)
k,ii′ is the ith left (right) eigenvector in the i′th DFT

band basis of the complex DMFT eigenvalue equation at zero
energy, and Uk,i′α is the projector between orbital α and the
i′th DFT band at k [38,52]. This gives us more familiar gap
functions that are similar to those defined in the band-based
mean-field formalism instead of Green’s functions. The gap
functions for the three largest eigenvalues are displayed in
Figs. 3(a)–3(c), all of which are in the spin singlet. The most
probable solution with λ = 0.0111 is from the dxy band and
has the s-wave symmetry with nodes (“nodal s-wave,” A1g

irreducible representation), followed by a slightly less stable
solution (λ = 0.0101) that also has the dxy orbital character
but in the dx2−y2 symmetry (B1g irreducible representation).
Besides the symmetry-imposed nodes at the intersections be-
tween 2D and 1D FS sheets where the gap function changes
the sign, there are also regions with depleted weights around
the Van Hove point on the 2D FS for the dx2−y2 solution.
The proximity of the eigenvalues or the accidental (near)
degeneracy between the s- and d-wave solutions points to
the possibility of the TRSB s + id order parameter suggested
earlier [29–32], although it is s + idxy rather than s + idx2−y2

that is more consistent with recent experiments [15,16,31].
Meanwhile, the third-largest eigenvalue (λ = 0.0088) is as-
sociated with doubly degenerate solutions which are protected
by the lattice symmetry. Unlike s- and d-wave solutions which
represent intraorbital (intraband) pairings within the dxy or-
bital, the gap functions are interorbital between dxy and dxz/yz.
One can see that the sign of the gap function is the opposite
between dxy and dxz FSs where they meet, as in Fig. 3(c), indi-
cating it is odd with respect to the orbital (band) interchange.
Moreover, it is also odd in k space ( f -wave, Eu irreducible rep-
resentation), satisfying the antisymmetric fermion exchange
rule [56] : ŜP̂ÔT̂ = −1 × −1 × −1 × 1 = −1. Odd-parity
pairing, usually combined with a spin triplet, is here asso-
ciated with the spin singlet, which is only possible with the
extra degree of freedom of orbitals and hence is characteristic
of the multiorbital superconductivity. A degenerate pair of gap
functions, one from dxy and dxz and another from dxy and dyz

[Fig. 3(c) and its π/2 rotation], can form a TRSB chiral order
parameter f + i f .

Our s-wave solution changes sign at every π/4 and hence is
effectively stabilized by the repulsive pairing potential peak-
ing at the smaller momentum transfer Qω compared with

FIG. 3. Superconducting gap functions with the three largest
eigenvalues from the linearized Eliashberg equation, projected to the
DMFT band basis on the FS, all in the spin singlet. Gap functions in
(a) and (b) are from the dxy orbital with λ = 0.0111 and 0.0101 and
with s- and d-wave symmetries, respectively. λ = 0.0088 solutions
are doubly degenerate, where one has the interorbital gap function
between dxz and dxy as shown in (c) and the other is between dyz and
dxy with the gap function π/2 rotated from (c). These degenerate
gap functions have odd-orbital and odd-parity f -wave symmetry.
(d) Eigenvalue of each gap symmetry as a function of the peak
position (q, q) in the spin susceptibility from Qω (q = 0.30) to QRPA

(q = 0.35). The peak of the spin susceptibility in an arbitrary posi-
tion is approximated by a Gaussian function centered at the position.
Eigenvalues are rescaled so that they match the values from the
original full calculation at Qω.

the longer QRPA determined by the FS nesting. Qω is rather
short to connect the Van Hove regions with a higher den-
sity of states; hence, these regions are depleted in weight
for the d-wave gap, making it a relatively less stable solu-
tion. Indeed, Mazin and Singh adopted susceptibility with a
nesting-induced peak at Q ≈ (1/3, 1/3) to obtain a d-wave
gap with maximum weights at the Van Hove point in their
early work [57], while an s-wave gap has been suggested
by using the peak position determined by inelastic neutron
scattering at Q ≈ (0.3, 0.3) [54], consistent with our result.
To explicitly study the relative stability of each solution with
respect to the susceptibility peak position, we employ the spin
susceptibility [�χ�]s consisting of simple Gaussian peaks at
any desired position in the BZ, which should be a reasonable
approximation given the simple peak structures of the original
spin susceptibility shown in Fig. 1(b). Solving the gap equa-
tion from this susceptibility consisting of Gaussian peaks, we
display the result in Fig. 3(d). For s- and d-wave solutions, we
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adopt [�χ�]s with only the dxy diagonal component, while
for the f -wave gap only the interorbital components between
dxy and dxz/yz are set to be nonzero. The eigenvalue λ of each
solution as a function of the peak position is rescaled so that
it retains its original value from the full calculation at Qω.
As expected, the s-wave gap grows unstable with increasing
momentum transfer, while the d-wave gap is more stable at
QRPA. The stability of the f -wave gap also decreases from
Qω to QRPA, so that the d wave is dominant over other gap
symmetries at QRPA. Therefore, we can conclude that TRSB
s + id and chiral f + i f gap symmetries are stabilized by
the antiferromagnetic spin fluctuation near Qω = (0.3, 0.3),
which is only available by using the dynamical vertex
function.

Low-energy excitations and the presence of (vertical line)
gap nodes are other requirements for the feasible gap sym-
metries imposed by experiments [58–63]. Our s- and d-wave
solutions are from the dxy FS, so the 1D FSs from dxz/yz are
basically gapless for each of the two solutions [see Figs. 3(a)
and 3(b)] and also for their TRSB complex combination
s + id . When SOC is included, the dxy component will be
incorporated on the 1D FSs due to the orbital mixing, but it
is likely that some part of 1D FSs is still gapless. On the other
hand, the condition for the existence of gap nodes is tighter for
the chiral f + i f order parameter since both 2D and 1D FSs
participate in this interorbital electron pairing [Fig. 3(c) and
its π/2 rotation]. Nevertheless, the Van Hove points in the 2D
FS would have the least weight in the complex combination of
a sign-changing node and the relatively smaller weight on the
π/2 rotated point. Further studies might be required to elab-
orate on the compatibility of our suggested gap symmetries
with experimental observations, as well as the possible effect
of SOC [34,37].

In conclusion, we investigated the role of the dynamic local
correlation in the spin susceptibility and the superconducting
symmetry in Sr2RuO4 within the DFT+DMFT framework.
The two-particle vertex was found to weakly depend on the
frequency within dxz/yz orbitals, while its dxy component is
strongly frequency dependent, locating the peak of the spin
susceptibility closer to the BZ center compared with the FS
nesting-driven peak position. We found that the relatively
smaller momentum transfer in the spin susceptibility stabi-
lizes an s-wave gap with many sign-changing nodes, while it
is against the stability of the d wave, resulting in an accidental
near degeneracy of the two gap symmetries, both in the spin
singlet. Odd-parity and odd-orbital f -wave spin-singlet gap
functions were also found with symmetry-protected double
degeneracy, which can lead to the realization of chiral super-
conductivity. Our work demonstrates how the local correlation
and orbital selectivity in a Hund’s metal affect the nonlocal
electronic structure of the two-particle level and the supercon-
ductivity.

The author thanks Y. Bang, I. I. Mazin, E.-G. Moon, and
K. Haule for helpful discussions. This work was supported
by the Ministry of Science and ICT (Project Number: 2023-
22030003-50) and Commercialization Promotion Agency for
R&D Outcomes (COMPA).

FIG. 4. (a) [�χ�]s/c
αα;αα (iν, iν ), where α = dxz/yz/xy and iν ≈ 0

along the �-X path in the Brillouin zone. s and c represent spin and
charge. (b) Same as (a), but using the frequency-averaged constant
two-particle vertex instead of the dynamic vertex. (c)

∑
ν cνχ

0(iν ) in
the dxy orbital for the 10 lowest Matsubara frequencies, with a set of
positive and negative coefficients cν for lower and higher frequencies,
respectively. (d) Same as (c), but with a constant cν .

APPENDIX A: ORBITAL, SPIN/CHARGE, AND VERTEX
DEPENDENCE OF �χ�

The α = dxz/yz components of [�χ�]s
αα;αα have the same

peak position as α = dxy, but with distinctively reduced am-
plitudes for both the dynamic and static vertices, as shown in
Figs. 4(a) and 4(b), respectively. This feature results from the
orbital selectivity in Sr2RuO4, a Hund’s metal, as inscribed
in both of our vertices but not in a simple RPA in which
all orbitals are treated the same. Another hallmark of Hund’s
metals is the contrast between fast fluctuating charge due to
the reduced interorbital charge repulsion and slow spin fluctu-
ation with strong Hund’s coupling or a large difference in the
coherence temperatures between charge and spin [26–28,64–
66]. This feature can readily be seen with the much suppressed
charge fluctuation in Fig. 4(a), as estimated at the lowest
energy, owing to the dynamic nature of the vertex. It indicates
that the superconductivity is mainly determined by the spin
fluctuation, while the contribution of the charge fluctuation is
not significant in Sr2RuO4. In the case of our static vertex,
unlike a conventional RPA using the same single parameters
U , U ′, and J for all orbitals, the orbital differentiation be-
tween the xy and xz/yz orbitals is still present in this level
of approximation, as can be seen in Fig. 4(b) for the spin
fluctuation. Meanwhile, the charge fluctuation is found to
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be almost comparable in size to the spin fluctuation for the
static vertex in Fig. 4(b), implying that the separation of the
spin-charge coherence scales fails to emerge using a static
vertex. Consequently, this suggests that both charge and spin
fluctuations contribute to the superconductivity within static
vertex approximations, including RPA.

APPENDIX B: DIFFERENCE BETWEEN USING DYNAMIC
AND STATIC dxy-DIAGONAL VERTICES IN [�χ�]s

[�χ�]s
αα;αα calculated using an orbital-diagonal (interor-

bital scattering is prohibited) vertex in dxy exhibits consid-
erable difference between the dynamic and static vertices,

as shown in Figs. 2(c) and 2(g), respectively. Here we
demonstrate how the constant (static vertex) and frequency-
dependent (dynamic vertex) coefficients of χ0(iν) in the
frequency summation cause that difference, using only a small
number of frequencies. Figure 4(d) is obtained by adding
the first 10 Matsubara frequency components of χ0(iν) with
a constant coefficient, reproducing most of the features in
Fig. 2(g) from the summation of a much larger number of
frequencies. On the other hand, we need a set of positive co-
efficients at lower energies and negative coefficients at higher
energies among the 10 Matsubara frequencies in the χ0(iν)
summation to obtain Fig. 4(c), which also captures the feature
of weights distributed closer to the � point, as shown in
Fig. 2(c).
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