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We show that existing traveling wave parametric amplifier (TWPA) setups, using superconducting nonlinear
asymmetric inductive elements (SNAILs), admit soliton solutions that act as analog event horizons. The SNAIL-
TWPA circuit dynamics are described by the Korteweg–de Vries or modified Korteweg–de Vries equations in
the continuum field approximation, depending on the external magnetic flux bias, and validated numerically. The
soliton spatially modulates the velocity for weak probes, resulting in the effective realization of analog black hole
and white hole event horizon pairs. The SNAIL external magnetic flux bias tunability facilitates a three-wave
mixing process, which enhances the prospects for observing Hawking photon radiation.
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Introduction. Analog black holes have been proposed in
various laboratory systems as a means of verifying the basic
principle of Hawking radiation [1], which could provide a clue
for unifying gravity and quantum mechanics. In 1981, Unruh
pioneered the study of analog black holes by showing the
analogy between the behavior of sound waves in a transonic
fluid flow and that of light in the spacetime of a black hole
[2]. The basic idea is to create a spatially varying fluid flow
so that sound waves cannot escape from a certain boundary
corresponding to a black hole event horizon (i.e., a sonic event
horizon). Based on this idea, thermal properties of stimulated
Hawking emission and the correlations that are associated
with the Hawking effect have been observed in a water flume
[3,4]. However, such experiments cannot capture the quantum
spontaneous emission aspects of Hawking radiation due to the
overwhelming classical thermal noise.

In order to observe quantum effects, analog black holes
have been proposed in various systems such as Bose-Einstein
condensates [5,6], optical fibers [7–9], and superfluids in
polariton microcavities [10,11]. Cryogenic, superconducting
transmission line circuits have advantages over the above
schemes in controllability, scalability, and low-noise opera-
tion, making the detection of quantum correlated Hawking
radiation involving photons a very real possibility [12–14].
A spatially varying microwave velocity is a necessary re-
quirement for creating an analog black hole in such a circuit
[15–21]. This can be achieved by introducing an effective
spatially dependent inductance L or capacitance C, since the
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electromagnetic wave velocity is given by v = a/
√

LC with
unit cell length a. The problem of heating that hinders the
observation of Hawking radiation [15] has been addressed by
using superconducting circuits [16]. Additionally, the issue
of pulse instability arising from dispersion has been over-
come by utilizing solitons [17], leading to classically stable
horizons. However, there is still some way to go in terms of
realizing the design, fabrication, and measurements in order
to successfully observe Hawking radiation. One unexpected
obstacle is the Kerr effect itself inherent in conventional
Josephson systems, i.e., the fourth-order nonlinearity of the
Josephson effect required for soliton formation as well as
the Hawking pair creation from the vacuum. The Kerr in-
teraction causes higher-order harmonic generation due to
four-wave mixing, which reduces the degree of entanglement
and squeezing performance essential for Hawking radiation
detection [22,23].

A three-wave mixing process caused by a third-order
nonlinear potential can improve these aspects. However, the
ordinary Josephson effect alone cannot produce odd-order
nonlinearities such as a cubic potential. One way to achieve
this is through a superconducting nonlinear asymmetric in-
ductive element (SNAIL) [24], which is a superconducting
loop consisting of a single small Josephson junction (JJ) and
several larger junctions in parallel as shown in Fig. 1. This
results in a third-order nonlinear effect, in addition to the
leading fourth-order nonlinear effect of a single JJ. Trav-
eling wave parametric amplifier (TWPA) transmission line
devices incorporating SNAILs have demonstrated remarkable
results in recent experiments [25,26]. Specifically, paramet-
rically generated multimode entangled microwave photons
were successfully observed, which highlights the promising
prospect for generating and detecting Hawking radiation in
such devices. However, it is not a priori obvious whether such
a third-order nonlinearity can give rise to a soliton with an
analog black hole event horizon.
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FIG. 1. Schematic diagram of the traveling wave parametric am-
plifier (TWPA) transmission line with superconducting nonlinear
asymmetric inductive element (SNAIL) unit cells in series, alternat-
ing with shunt capacitors Cg in parallel (all assumed to be identical).
The quantities In, Vn, and φn represent the current, voltage, and phase
difference of the nth SNAIL, respectively. Each SNAIL has a small
JJ with Josephson energy αEJ (α < 1) in one branch and two larger
JJs (with Josephson energy EJ ) in the other, parallel branch, forming
a loop that is threaded by an external applied magnetic flux �ext .

In this Research Letter, we propose an analog black hole
soliton realization based on a Kerr-free nonlinearity using a
transmission line comprising SNAIL unit cells. In particular,
we shall establish both analytically and numerically the ex-
istence of soliton solutions to the nonlinear transmission line
dynamical equations for the SNAIL phase difference coordi-
nates. These obtained solitons spatially modulate the velocity
of weak “probes,” and two stable horizons occur where the
probe and soliton velocities coincide, resulting in an analog
black hole and white hole horizon pair. Neglecting (quantum)
noise and dissipation in the circuit dynamics, a soliton will
propagate along the transmission line without broadening, in
contrast to a background “pulse” solution to the linear phase
coordinate wave equations, which undergoes dispersion [16].
This stability has the advantage that the effective Hawking
temperature (which depends on the probe velocity gradient at
the effective horizon) does not decrease as the soliton propa-
gates (with back reaction neglected).

Model. Consider a transmission line with SNAILs as
shown in Fig. 1, where the Josephson energies of the small and
large junctions are αEJ and EJ , respectively (with α < 1), and
all capacitors have the identical capacitance Cg in the shunt
branch. In the following, we consider the circuit equations of
the transmission line, beginning first with the potential energy
of a single SNAIL, which is given as

U (φ) = −αEJ cos (φ) − 2EJ cos

(
φ − φext

2

)
+ const

� EJ

[
α̃(φext )

2!
φ̃2 + β̃(φext )

3!
φ̃3 + γ̃ (φext )

4!
φ̃4

]
. (1)

Here, φ is the phase difference across the smaller junction, and
φext = 2π�ext/�0, with �ext and �0 = h/(2e) being the (tun-
able) external magnetic flux bias and magnetic flux quantum,
respectively; the Taylor expansion around the local minimum
φ∗ of the potential is performed, with φ̃ being the variation
about φ∗ and setting U (φ∗) = dU/dφ|φ=φ∗ = 0. In contrast
to a single JJ, the SNAIL has the advantage of a nonzero, odd-
order nonlinearity because of quantum interference. Figure 2
gives the φext flux dependence of these coefficients normalized
by α̃(φext ) [i.e., c3 = β̃(φext )/α̃(φext ), c4 = γ̃ (φext )/α̃(φext )].
The coefficients of the third- and fourth-order nonlinearities

FIG. 2. The external flux φext dependence of the respective third-
and fourth-order nonlinear coefficients c3 = β̃(φext )/α̃(φext ) (solid
line) and c4 = γ̃ (φext )/α̃(φext ) (dashed line) of a SNAIL.

are anticorrelated, and either can be selectively set to zero by
tuning φext. Thus we can choose either a three- or four-wave
mixing process induced by the third- or fourth-order nonlin-
earities, respectively, by controlling the external magnetic flux
in situ, without the need to alter the circuit design hardware.

With the approximate potential energy of the SNAIL in
hand, we can write down the circuit equations for the TWPA.
From Kirchhoff’s current conservation law and the Josephson
voltage relation, we obtain the following circuit equations:

d2φn

dt2
− r

d2

dt2
(φn+1 − 2φn + φn−1)

− ω2
0

3∑
j=1

[
c j+1

j!

(
φ

j
n+1 − 2φ j

n + φ
j
n−1

)]

= 0, (2)

where c2 = 1, r = CJ/Cg with Cg being the shunt capacitance
and CJ being the Josephson capacitance of the SNAIL, and
ω0 = 1/

√
L0Cg with L0 = h̄/[2eIcα̃(φext )] and Ic being the

critical current of the larger JJ in the SNAIL.
In the continuum approximation, the circuit equation (2)

becomes [27]

∂2φ

∂t2
−ra2 ∂4φ

∂x2∂t2
−v2

0
∂2

∂x2

(
φ + c3

2!
φ2 + c4

3!
φ3

)
= 0, (3)

where v0 = aω0 with unit cell length a. The second (fourth-
order derivative) term gives rise to dispersion, while the last
two terms are the third- and fourth-order nonlinearities, re-
spectively (where the order terminology refers to the degree of
the nonlinearity in the potential energy function). Equation (3)
is equivalent to Eq. (7) in Ref. [27] by replacing the phase
difference coordinate φ with the node phase coordinate.

Classical background solitons. With eventual Hawking ra-
diation signals in mind, we wish to consider the behavior
of a weak “probe” signal δφ (which when quantized yields
Hawking radiation) on top of a strong classical background
φ̄ (which yields the analog black hole soliton). By substitut-
ing φ = φ̄ + δφ into the circuit equation (3), we obtain the
background dynamics expression [O(δφ0) term] for φ̄, which
coincides with Eq. (3), and the equation for the weak probe
signal δφ affected by the background [O(δφ) term], which we
consider in the next section.

We shall now derive classical background φ̄ wave solutions
to Eq. (3) that propagate along the TWPA without chang-
ing their shape, i.e., solitons. Such a wave is obtained when
the competing effects of dispersion (which broadens a wave)
and nonlinearity (which sharpens a wave) are balanced. We
derive a scale-invariant nonlinear evolution equation with a
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stationary wave solution in the vicinity of a linear approxi-
mation by using the reductive perturbation method [28–30],
which employs the so-called “stretched” variables through
the Gardner-Morikawa transformation: ξ = ε1/2(x − v0t ) and
τ = ε3/2t . These correspond to slowly changing variables in
relation to changes in x and t , with ε assumed to be small.
The phase difference coordinate is expanded as follows: φ̄ =
εiφ̄(1) + ε2iφ̄(2) + · · · , where i is a rational number to be de-
termined by requiring that the dispersion and nonlinear effects
are balanced.

Recall that the coefficients c3 and c4 of the nonlinear terms
are controllable by varying the external magnetic flux φext (see
Fig. 2); from now on, we consider the situation where either
one or the other of these coefficients vanishes. For the case
c3 �= 0 and c4 = 0, we obtain

∂φ̄(1)

∂τ
+ c3v0

2
φ̄(1) ∂φ̄(1)

∂ξ
+ r

2
a2v0

∂3φ̄(1)

∂ξ 3
= 0 (4)

for the balanced lowest-order ε3 dispersion and nonlinear
terms, obtained by setting i = 1. This equation is called the
Korteweg–de Vries (KdV) equation [31] and is known to
have soliton solutions [32]. The KdV equation can be solved
by means of the inverse scattering transform method [33]. A
single soliton solution is given as [33]

φ̄KdV(x, t ) = Asech2

[
1

a

√
c3A

12r
(x − vst )

]
, (5)

with the soliton amplitude A, velocity vs= v0(1 + c3A/6), and
half width w ∼ 2a

√
12r/(c3A). The sign of the nonlinear term

c3 changes the polarity of the soliton; when c3 > 0 (c3 < 0),
the soliton amplitude becomes A > 0 (A < 0).

For the case c3 = 0 and c4 �= 0, we obtain the so-called
modified Korteweg–de Vries (mKdV) equation [34]

∂φ̄(1)

∂τ
+ c4v0

4
(φ̄(1) )2 ∂φ̄(1)

∂ξ
+ r

2
a2v0

∂3φ̄(1)

∂ξ 3
= 0 (6)

for the balanced lowest-order ε5/2 dispersion and nonlin-
ear terms, obtained by setting i = 1/2. The sign of the
nonlinear (c4) term in the mKdV equation makes a dif-
ference to the soliton solution, in contrast to the KdV
equation; when c4 > 0, the equation is termed “mKdV+”
and admits a bell-shaped soliton solution given by the ex-
pression φ̄mKdV+ (x, t ) = Asech[(A/a)

√|c4|/(12r)(x − vst )].
On the other hand, for c4 < 0, the equation is termed
“mKdV−” and admits a shock-wave-type soliton [35,36]
given by φ̄mKdV− (x, t ) = A tanh[(A/a)

√|c4|/(12r)(x − vst )].
Both soliton types have amplitude A, velocity vs, and half
width w ∼ (2a/A)

√
12r/|c4|.

We emphasize that both types of soliton (KdV and mKdV)
are predicted to exist in the very same transmission line, which
has not been considered before. This prediction is based on the
reductive perturbation method, and thus the SNAIL-TWPA
transmission line provides a unique opportunity to verify this
method of analysis experimentally and understand the result-
ing soliton dynamics.

The above approximate, continuum field equa-
tion (m)KdV-soliton solution derivations are also verified
in part by numerically solving the discrete SNAIL-TWPA
transmission line circuit equations (2). In particular, we

FIG. 3. Collision of two solitons propagating in opposite di-
rections. The numerical solutions of the circuit equation (2) are
indicated at various time instants, where t̄ = ω0t . We set the ini-
tial right-propagating (r) and left-propagating (l) wave values to be
Ar = 0.04, Al = 0.02, nr

0 = 110, and nl
0 = 190. The circuit parame-

ter values are given as c3 = 0.32, c4 = 0, and r = 0.1.

consider the situation where the TWPA has a third-order
nonlinearity and set the parameter values to be c3 = 0.32,
c4 = 0, and r = 0.1. Setting the initial phase difference
coordinate and phase velocity boundary values as
φn(0) = φ̄KdV(a(n − n0), 0) and φ̇n(0) = ˙̄φKdV(a(n − n0), 0),
where the dot denotes the time derivative, we confirm that the
numerical solution propagates along the TWPA transmission
line without changing shape and is well approximated by the
analytical solution (5) obtained by the reductive perturbation
method; the numerical half width of the soliton is about
27 unit cells when the amplitude A = 0.02, which is large
enough for the continuum approximation solution (5) to be
valid.

In order to further verify the soliton aspects of the prop-
agating wave [37], we also consider two solitons initially
propagating towards each other by setting the initial phase
difference coordinate and phase velocity boundary values
to be φn(0) = φr

n(0) + φl
n(0), φ̇n(0) = φ̇r

n(0) − φ̇l
n(0), where

the right- (left-)propagating wave and the time derivative
are given by φr(l )

n (0) = φ̄KdV(a(n − nr(l )
0 ), 0) and φ̇r(l )

n (0) =
˙̄φKdV(a(n − nr(l )

0 ), 0), respectively. Figure 3 shows that the
later time soliton shapes are unaffected by the collision, co-
inciding with the earlier shapes.

We now briefly consider the observation of solitons in a
possible experiment setup. The solitons may be detected by
measuring the time variation in the voltage at the opposite
end of the TWPA transmission line from the initial, injected
pulse end. We assume various circuit parameter values to be
comparable in magnitude to those quoted in Ref. [25]: r =
CJ/Cg = 0.1, Ic = 1.5 µA, a = 10 µm, α = 0.2, and φext =
1.19π giving α̃(φext ) = 0.37, c3 = 0.32, and c4 = 0. The
voltage amplitude of the soliton with A = 0.02 in the phase
difference coordinate is estimated as V = 1

a
h̄
2e

∫
∂φ̄(x′,t )

∂t dx′ =
h̄ω0/(2e)(1 + c3A/6)A = 0.86 µV, and the soliton temporal
width is �t = w/vs = 0.21 ns. In our SNAIL-TWPA model,
solitons form spontaneously when an initial pulse is injected
at one end. The soliton profile can be estimated using the
initial pulse via inverse scattering theory [33]. The effect of
disorder in a real array will cause some attenuation of the
soliton amplitude as it propagates down the transmission line
[38]. The SNAIL-TWPA is engineered in such a way as to be
impedance matched with 50-� transmission lines connected
at the end [25,26] in order to minimize reflection of the soliton
waves.
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FIG. 4. (a) Dependence of the probe signal velocity in the back-
ground soliton’s comoving frame with spatial coordinate η = x −
vst . The probe velocity is modulated by the soliton solution of the
KdV equation. The horizontal dashed line indicates the soliton ve-
locity. Two horizons are formed where the velocities of the probe and
the soliton are the same, i.e., v(η) = vs. The filled and open circles
represent the horizons for the black and white holes, respectively.
Regions I and III, demarcated by the vertical dashed lines, corre-
spond to the black hole and white hole interiors, respectively, while
region II corresponds to the exterior region between the black hole
and white hole horizons. (b) The dispersion relation of the probe for
each region is represented by the solid line in the plot. The existing
modes are indicated by the intersections with the dotted line, which
shows the Doppler shift. The directions of these modes are illustrated
by arrows in (a), where the solid (dotted) arrow indicates the mode
with a positive (negative) frequency.

Soliton as analog black hole and white hole event hori-
zons. We now move on to considering the behavior of a
weak “probe” (Hawking radiation) signal propagating in a
background soliton field, described by the O(δφ) part of the
φ = φ̄ + δφ substitution into Eq. (3):[

∂2

∂t2
− ra2 ∂4

∂x2∂t2
− ∂2

∂x2
v2(x, t )

]
δφ = 0, (7)

where the probe field velocity is v(x, t ) =
v0

√
1 + c3φ̄ + 1

2 c4φ̄2. Note that the probe wave velocity
is modulated by the classical background soliton solution
through the space- and time-dependent effective inductance
term L = L0/(1 + c3φ̄ + 1

2 c4φ̄
2). Figure 4(a) gives the

resulting spatial dependence of the probe velocity in the
comoving frame η = x − vst traveling at the soliton velocity
vs.

In order to derive the effective curved spacetime ana-
log of the probe wave (7), we first transform to the
comoving frame of the soliton pulse. Equation (7) then
becomes [−∂2

t + 2vs∂η∂t + ∂η(v2(η) − v2
s )∂η]δϕ = 0, where

the phase field coordinate δϕ is defined in terms of the
original probe coordinate by δφ = a(dδϕ/dη). This (1 + 1)-
dimensional wave equation is conformally invariant, which
prevents us from introducing an effective, curved spacetime
metric. However, taking into account the two additional “in-
ert” transverse y, z dimensions of the transmission line, the

resulting (3 + 1)-dimensional wave equation can be formally
expressed in the following general covariant form [15,39]:
(1/

√−g)∂μ(
√−ggμν∂νδϕ) = 0, where g = det(gμν ), with ef-

fective metric given by

gμν = 1

v(η)

⎛
⎜⎜⎝

−1 vs 0 0
vs v2(η) − v2

s 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠. (8)

The weak probe field can therefore be considered as propa-
gating in an effective curved spacetime, and an event horizon
occurs at g11 = 0, i.e., v2(η) = v2

s . For a background field
solution corresponding to a single, right-moving classical soli-
ton traveling with velocity vs > 0, two horizons are formed as
shown in Fig. 4(a), where the leading and trailing edges of
the soliton correspond to the white and black hole horizons,
respectively. In the comoving frame of the soliton, the probe
signal travels to the right between the horizons and to the
left otherwise (also in the comoving frame). A probe signal
trailing the soliton (in the laboratory frame) cannot reach the
black hole horizon, so that the region to the left of the black
hole horizon corresponds to its interior. Furthermore, a right-
moving probe signal in the neighborhood of the soliton peak
(i.e., the “exterior” region in between the black hole and white
hole horizons) cannot cross the white hole horizon, so that the
region to the right of the white hole horizon corresponds to
the white hole interior.

Figure 4(b) gives the dispersion relation for a probe wave in
the laboratory frame (curved solid lines) and the Doppler shift
ω = ω′ + vsk (dotted straight lines), where ω′ is the fixed fre-
quency in the comoving frame. The intersections indicate the
existing modes in our system. In regions I and III, there is only
one mode, labeled kH̄, which travels to the left in the comoving
frame. On the other hand, in region II, the dispersion relation
is modulated by the soliton, and there exist three modes: one
moving to the right (kH) and the other two traveling to the left
in the comoving frame (kP and kN, with “P” and “N” denoting
the positive and negative frequency ω aspects). In vacuum,
pair production occurs spontaneously through quantum fluctu-
ations; photons with positive (kH) and negative (kH̄) frequency
ω correspond to the Hawking particles and their partners,
respectively. Mode conversion (kH + kH̄ � kP + kN) occurs
at both horizons, which behave like a cavity, resulting in lasing
[40,41]; Hawking radiation is amplified as a result, which
makes its observation easier.

The Hawking temperature in our system is given as TH =
h̄/(2πkB)|∂v(η)/∂η|η=ηh , where kB is the Boltzmann con-
stant and ηh is the position of the horizon in the comoving
frame [15]. For the parameters of the SNAIL-TWPA de-
vice investigated in Ref. [25], TH ∼ 0.1 mK, which may be
just detectable using, for example, a nuclear demagnetization
cryostat setup such as that of Ref. [42]. However, the Hawking
temperature can be increased by optimizing the circuit param-
eters, ensuring a sufficient level of quantum fluctuations and a
soliton width large enough for the continuum approximation
to hold. By utilizing a different set of feasible SNAIL param-
eter values comparable in magnitude to those of the device
investigated in Ref. [26], Ic = 1 µA and r = CJ/Cg = 1, the
Hawking temperature can reach several tens of millikelvins,
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which is observable under ordinary dilution fridge operat-
ing temperature conditions. This enhancement occurs due to
the larger capacitance ratio r = CJ/Cg, resulting in a larger
soliton amplitude for a given width w ∼ 2a

√
12r/(c3A), and

increased gradient |∂v(η)/∂η|η=ηh .
Conclusion. We have shown that (m)KdV-soliton solutions

exist for the circuit equations describing a TWPA trans-
mission line comprising SNAIL elements. The soliton wave
changes the velocity of a weak probe signal, describable as
an effective curved spacetime with analog black hole and
white hole event horizons. Suitable devices have already
been experimentally demonstrated as sources of parametri-
cally generated multimode, entangled microwave photons.
Therefore the experimental verification of microwave analog

black hole and white hole pairs and Hawking radiation is a
promising prospect. An analysis of the corresponding quan-
tum soliton dynamics, with back reaction taken into account
resulting in soliton evaporation due to Hawking radiation las-
ing, will be the subject of a follow-up work.
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