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Remnants of the nonrelativistic Casimir effect on the lattice
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The Casimir effect is a fundamental quantum phenomenon induced by the zero-point energy for a quantum
field. It is well known for relativistic fields with a linear dispersion relation, while its existence or absence
for nonrelativistic fields with a quadratic dispersion is an unsettled question. Here, we investigate the Casimir
effects for various dispersion relations on the lattice. We find that Casimir effects for dispersions proportional
to an even power of momentum are absent in a long distance but a remnant of the Casimir effect survives in a
short distance. Such a remnant Casimir effect will be experimentally observed in materials with quantum fields
on the lattice, such as thin films, narrow nanoribbons, and short nanowires. In terms of this effect, we also give
a reinterpretation of the Casimir effect for massive fields.
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I. INTRODUCTION

Zero-point energy is a fundamental concept predicted in
quantum mechanics. In fact, the Casimir effect [1] is a
quantum phenomenon induced by the zero-point energy for
photons confined by a spatial boundary condition and was
experimentally established [2] (see Refs. [3–7] for reviews).
The photonic Casimir effect will be useful in the field of
nanophotonics [8], while analogous effects for quantum fields
on the lattice in solid states, such as electrons, phonons, and
magnons, will open engineering fields which may be named
Casimir electronics and Casimir spintronics.

For relativistic degrees of freedom with the linear disper-
sion relations as shown in Fig. 1(a), such as the photon and the
massless Dirac fermion, the occurrence of the Casimir effect
is well known. On the other hand, an unsettled question is
whether the Casimir effect for nonrelativistic fields exists. In
general, the existence or absence of the Casimir effect for a
quantum field depends on the following three points:

(i) the existence/absence of zero-point energy,
(ii) the form of the dispersion relation, and
(iii) the spatial boundary condition.
Absence of the Casimir effect can be realized by any

of these conditions. For example, when we consider a free
Schrödinger field with a quadratic dispersion as shown in
Fig. 1(b), as usual in solid state physics, we can prove that
the zero-point energy is exactly zero. In this sense, by reason
(i), we may say that the Casimir effect for nonrelativistic
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fields described as the Schrödinger field does not occur. For
reason (ii), there are some examples. As shown in Fig. 1(c), a
flat band has no momentum-dependent dispersion. For such a
constant dispersion, the discretization of momenta in a finite
volume never produces any difference from the zero-point
energy in the infinite volume, so that the Casimir effect does
not occur. As another example, as shown in Fig. 1(d), for a
field with two quadratic dispersions consisting of positive and
negative eigenvalues, one can prove that the Casimir effect
disappears under a boundary condition (see, e.g., Refs. [9–12]
and a textbook [6]) [13]. Also, in this sense, the Casimir effect
for nonrelativistic fields seems to be prohibited. However, the
understanding of such a tendency is still not clear.

In this letter, we theoretically study the Casimir effect for
degrees of freedom with some types of dispersion relations on
the lattice, by using a lattice regularization approach [14–16].
We show that the Casimir effect for quantum fields on the
lattice with an even-order dispersion tends to be absent (which
is consistent with the case in continuous space), but a remnant
of the Casimir effect survives in a short distance (which is
distinct from the continuous case). We call this phenomenon
the remnant Casimir effect. This effect gives us a deeper
understanding of the Casimir effect, and moreover, it will
be experimentally observed in finite-size condensed matter
systems, such as thin films, narrow nanoribbons, and short
nanowires of materials. Throughout this letter, we use the
natural units h̄ = v = 1 for the reduced Planck constant h̄ and
the velocity of a particle v.

II. CASIMIR EFFECT ON THE LATTICE

First, we define the Casimir effect on the lattice. For sim-
plicity, we consider a real scalar field in the three-dimensional
(3D) lattice space (the cases in other spatial dimensions
are straightforward). We set the periodic boundary condition
(other boundaries will be discussed later) for the z axis in
momentum space as kz → 2lπ/Lz or akz → 2lπ/Nz, where
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FIG. 1. Examples of typical dispersion relations. (a) A relativis-
tic linear dispersion. (b) A nonrelativistically quadratic dispersion.
(c) A flat dispersion. (d) A quadratic dispersion.

Lz ≡ aNz is the distance with the lattice constant a, and l =
0, 1, · · · , Nz − 1 within the first Brillouin zone (BZ), 0 �
aki < 2π (i = x, y, z). The Casimir energy ECas for the lattice
number Nz on the z axis (per the lattice number NxNy on
the surface area) is defined as the difference between the
zero-point energies E sum

0 with discrete energy levels ωk⊥,l and
E int

0 with a continuous energy level ωk [14,15] (also see the
Supplemental Material [17]):

aECas ≡ aE sum
0 (Nz ) − aE int

0 (Nz ), (1)

aE sum
0 (Nz ) =

∫
BZ

d2(ak⊥)

(2π )2

⎡
⎣1

2

Nz−1∑
l=0

a|ωk⊥,l |
⎤
⎦, (2)

aE int
0 (Nz ) =

∫
BZ

d2(ak⊥)

(2π )2

[
Nz

2

∫
BZ

d (akz )

2π
a|ωk|

]
, (3)

where the momentum integral is over the first BZ, k2
⊥ ≡ k2

x +
k2

y , and d2(ak⊥) ≡ d (akx )d (aky). The factor of + 1
2 comes

from the zero-point energy for the real scalar field.

III. DISPERSION RELATION DEPENDENCE OF
CASIMIR EFFECT

By using the definition in Eq. (1), we can investigate the
Casimir energies for various dispersion relations. Massless
dispersion relations with a 3D momentum k = (kx, ky, kz ) in
continuous space are defined as

aωk = ±|ak|s = ±(
a2k2

x + a2k2
y + a2k2

z

)s/2
, (4)

where s is the order of dispersion. For example, s = 1 corre-
sponds to a field with the linear dispersion ωk = ±|k|, such as
the massless Klein-Gordon field. Here, s = 2 is a field with the
quadratic dispersion ωk = ±k2. A dispersion relation in lat-
tice space is obtained by replacing ak with ak̃ = a(k̃x, k̃y, k̃z )

TABLE I. Classification of Casimir effects for fields with various
dispersion relations in the continuous spacetime or the lattice space
defined by Eq. (5).

Order s Continuous Lattice (periodic boundary)

1(m = 0) Lasting Lasting
1(m �= 0, m �= ∞) Damping Damping
2 No Remnant (Nz = 1)
4 No Remnant (Nz = 1, 2)
...

2n No Remnant (Nz = 1, 2, · · · , n)
2n − 1(m = 0) Lasting Lasting

using a2k̃2
i = 2 − 2 cos aki:

aωk = ±|ak̃|s = ±
⎡
⎣ ∑

i=x,y,z

(2 − 2 cos aki )

⎤
⎦

s/2

. (5)

By substituting this form into Eqs. (2) and (3), we can calcu-
late the Casimir energy.

In Fig. 2, we show the results for the dimensionless Casimir
energy aECas and the Casimir coefficient (which is a conve-
nient quantity to check the N3

z dependence of aECas) C[3]
Cas ≡

N3
z aECas for the linear (s = 1), quadratic (s = 2), quartic (s =

4), or sextic (s = 6) dispersion relation. The result at s = 1 is
evaluated by numerical integrals, and the others can be analyt-
ically obtained. For s = 1, we see the well-known behaviors
of the Casimir effect: aECas decreases as Nz increases. In the
large Nz region, C[3]

Cas approximately approaches the analytic
solution known in continuous space C[3]

Cas = −π2/90. On the
other hand, the result for s = 2 is quite distinct, where we
find that a nonzero ECas survives only at Nz = 1, while ECas

is exactly zero at Nz > 1. It is easy to analytically derive this
behavior: using aE sum

0 = 2 and aE int
0 = 3 at Nz = 1, we obtain

aECas ≡ aE sum
0 − aE int

0 = −1, while using aE sum
0 = aE int

0 at
Nz > 1, ECas = 0. Furthermore, we can easily derive that this
behavior does not depend on the spatial dimension. Similarly,
also for s = 2n (n = 1, 2, · · · ), we find a nonzero ECas only at
Nz � n. We call this behavior the remnant Casimir effect. Note
that, for odd-order dispersions s = 2n − 1, ECas is nonzero at
any Nz, and C[2+s]

Cas ≡ N2+s
z aECas approximately approaches a

constant value.
We comment on the other types of boundary conditions.

For the antiperiodic boundary [akz → (2l + 1)π/Nz with l =
0, · · · , Nz − 1], the remnant Casimir effect does not change
qualitatively, except for its magnitude and sign. For a phe-
nomenological boundary [akz → lπ/Nz with l = 1, · · · , 2Nz

(or l = 0, · · · , 2Nz − 1)], there are no remnants at any Nz for
s = 2, while we find a remnant appears at Nz = 1 for s = 4, 6
and remnants at Nz < n + 1 for s = 4n, 4n + 2. Thus, various
boundary conditions can induce the remnant Casimir effect.

IV. CLASSIFICATION OF CASIMIR EFFECTS

Based on the above investigation, we classify typical be-
haviors of Casimir effects into four types (see Table I for the
periodic boundary):

L022054-2



REMNANTS OF THE NONRELATIVISTIC CASIMIR … PHYSICAL REVIEW RESEARCH 5, L022054 (2023)

FIG. 2. Casimir energies aECas for massless real scalar fields
on the lattice, where the dispersion relation is (a) linear (s = 1),
(b) quadratic (s = 2), (c) quartic (s = 4), or (d) sextic (s = 6) order.
Insets: Casimir coefficients C[3]

Cas. The behaviors for s = 2, 4, and 6
are the remnant Casimir effect.

FIG. 3. Graphical interpretation for Casimir effects on the lat-
tice. Blue points: discrete energy levels. Red curves: continuous
energy levels. Blue and red colored regions correspond to aE sum

0 and
aE int

0 , respectively. (a) and (b) Linear dispersion at Nz = 1, 2. (c)–(f)
Quadratic dispersion at Nz = 1, 2, 3, 4.

(1) No Casimir effect—In any distance, the Casimir en-
ergy is exactly zero. A representative example is a field with
the even-order dispersion in continuous space.

(2) Lasting Casimir effect—The Casimir energy is
nonzero in a long distance, and the Casimir coefficient ap-
proaches asymptotically to a nonzero value. Such a behavior
is known for fields with a linear dispersion in both the contin-
uous and lattice space.

(3) Damping Casimir effect—The Casimir energy is
nonzero in a long distance, but the Casimir coefficient asymp-
totically approaches zero. Such a behavior is well known for
massive fields [3,18,19] because a mass parameter usually
tends to suppress the Casimir effect in a long distance.

(4) Remnant Casimir effect—The Casimir energy in a
long distance is exactly zero, but nonzero values (remnants)
survive only in a short distance. Such a behavior is realized
in fields with an even-order dispersion in lattice space. This is
the main finding in this letter.

V. GRAPHICAL INTERPRETATION

Here, we give a graphical interpretation for Casimir ef-
fects on the lattice. By the definition in Eq. (1), the Casimir
energy is defined as the difference between E sum

0 and E int
0 ,

where E sum
0 is the sum over discretized kz, and E int

0 is the
integral with respect to continuous kz. As shown in Fig. 3,
such a difference can be graphically understood by comparing
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(i) the sum of the areas of rectangles with a width 2π/Nz

and a height [2 − 2 cos(2lπ/Nz )]s/2 (blue region) and (ii) the
integral of the dispersion relation with respect to akz (red
region), within a BZ. For example, Figs. 3(a) and 3(b) for
s = 1 show that E sum

0 and E int
0 are different from each other.

Such a difference survives at any Nz, so that the resultant
Casimir energies are nonzero at any Nz. Similarly, in Fig. 3(c)
for s = 2 at Nz = 1, this situation does not change, which
is the origin of the only remnant for s = 2. On the other
hand, in Figs. 3(d)–3(f) for s = 2 at Nz > 1, we find an exact
cancellation between E sum

0 and E int
0 , which leads to the exactly

zero Casimir energy. Mathematically, this is nothing but the
property of 2 − 2 cos akz. Thus, the Casimir effect on the lat-
tice can be visually understood as a difference or cancellation
of the zero-point energies.

VI. REINTERPRETATION OF MASSIVE DISPERSION

Here, we discuss a connection between the the Casimir
effect for the s = 1 massive dispersion and the remnant
Casimir effect for even-order dispersions. The s = 1 disper-
sion relation with a mass (or a gap) m is expanded around
|k|/m = 0 as

ωk = ±
√

k2 + m2

= ±
(

m + k2

2m
− k4

8m3
+ k6

16m5
+ · · ·

)
. (6)

The first term is a flat band without any momentum depen-
dence, as in Fig. 1(c), and never contributes to the Casimir
effect. The other terms are regarded as the sum of various
even-order dispersion relations.

Using this form, the zero-point energy is rewritten as

E0 =
∫

dk
(2π )3

ωk =
∫

dk
(2π )3

√
k2 + m2

=
∫

dk
(2π )3

(
m + k2

2m
− k4

8m3
+ k6

16m5
+ · · ·

)
. (7)

We reexamine the Casimir effect from the last form of the
zero-point energy by using lattice regularization [20]. In
Fig. 4, we show the comparison between the Casimir energies
for the massive dispersion calculated from the third form of
Eq. (7) and the sum of remnant Casimir energies for lower
even-order dispersion (s = 2, 4, 6, · · · ) calculated from the
last form of Eq. (7), where we fix the dimensionless mass as
am = 5. Even at Nz = 1, the sum of the remnants up to s = 4
is almost consistent with that for the massive dispersion. We
find that, even at Nz = 3, the remnants up to s = 6 become a
good approximation. Thus, we have derived the picture that
the Casimir energy for s = 1 massive fields on the lattice
is regarded as the sum of the remnant Casimir energies for
massless fields of lower even orders.

It should be noted that, in continuous space, this pic-
ture of finite sum is not correct since the Casimir energies
for even-order dispersion relations are exactly zero. The
Casimir energy in continuous space is obtained only by in-
finite summation of all orders. This inconsistency is because
the dispersion relation on the lattice is slightly different from
that in continuous space.

FIG. 4. Comparison between the Casimir energy for a massive
real scalar field and the sum of remnant Casimir energies for lower-
even-order dispersions. The mass parameter is fixed as am = 5.

VII. EXPERIMENTAL REALIZATIONS

We emphasize that not only the lattice Casimir effect but
also the remnant Casimir effect intrinsically arise in rela-
tivistic condensed matter systems when its energy levels are
discretized by the finite size of a system. For example, a
quadratic dispersion relation as shown in Fig. 1(d) appears in
AB-stacked bilayer graphene [21,22], multi-Weyl semimetals
[23–25], and AB-stacked honeycomb bilayer magnets [26]. In
such materials, the Casimir effect is intrinsically realized on
nanoribbons of two-dimensional materials and in thin films
of 3D materials, and the Casimir energy is defined as an
energy difference relative to the infinite bulk. In this sense, the
Casimir energy is a physical quantity well defined in principle,
and thus, the remnant Casimir effect in even-order dispersion
systems is also well defined. We stress that such an energy
difference can influence thermodynamic properties of mate-
rials, such as magnetization. As a result, the Casimir effect
can be measured: One can observe it as a remnant behavior
of a physical quantity in a short distance and an unchanged
behavior in a long distance.

We remark on two points. First, the magnitude of the
remnant Casimir energy in a short distance is generally com-
parable with the free energy of the original (infinite-bulk)
system (which is proportional to aE int

0 ) because this remnant
is generated from a large difference between aE sum

0 and aE int
0 .

Second, the unchanged behavior in a long distance, the dis-
appearance of the Casimir effect, can be regarded as a no-go
theorem of the Casimir effect, which is always helpful for the
correct understanding for finite-size effects. Note that the band
structures in realistic materials may be slightly different from
the exact 2 − 2 cos ak band due to the existence of interactions
or impurities, but even in such a case, one can observe an
approximate effect: approximate remnants in a short distance
and approximate zeros in a long distance. In addition, if one
knows the form of 2 − 2 cos ak in the infrared region but does
not know its ultraviolet structure, the nonzero Casimir effect
in a long distance implies a difference from 2 − 2 cos ak in the
ultraviolet region.
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FIG. 5. Casimir energy and Casimir coefficient for phonons in
one-dimensional-like GaAs nanowires with the periodic boundary
condition.

As a demonstration, we consider phonon fields in GaAs
nanowires along the z axis, where there are four types of
phonons: the transverse optical (TO), longitudinal optical
(LO), transverse acoustic (TA), and longitudinal acoustic
(LA) modes. For dispersion relations, we use a model with
parameters estimated by fitting the experimental data of the
four modes in the whole BZ [27] (see the Supplemental Ma-

terial [17]). In Fig. 5, we show the numerical results for the
Casimir energy with the periodic boundary. We find that ECas

for the TO modes is strongly suppressed compared with the
other modes, except for Nz = 1. This is because the dispersion
relations for the TO modes are quadraticlike around both
akz = 0 and π , and other modes are not. This is regarded as
an approximate realization of the remnant Casimir effect.

VIII. CONCLUSIONS

In this letter, we have proposed the remnant Casimir effect
which is a unique property of even-order dispersion on the lat-
tice. This is a well-defined concept in principle and should be
experimentally realized. Our findings will become common
knowledge on Casimir effects on the lattice and will play a key
role in the Casimir engineering, which is the application of
quantum fluctuations on the lattice to engineering fields, such
as Casimir photonics [8], Casimir electronics, and Casimir
spintronics.
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