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Cellular gradient flow structure linking single-cell-level rules and population-level dynamics
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In multicellular systems, single-cell behaviors should be coordinated consistently with the overall population
dynamics and functions. However, the interrelation between single-cell rules and the population-level goal is
still elusive. In this work, we reveal that these two levels are naturally connected via a gradient flow structure of
heterogeneous cellular populations and that biologically prevalent single-cell rules, such as unidirectional type
switching and hierarchical order in types, emerge from this structure. We also demonstrate the gradient flow
structure in a standard model of the T-cell immune response. This theoretical framework works as a basis for
understanding multicellular dynamics and functions.
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I. INTRODUCTION

Multicellular systems are organized dynamically and ro-
bustly to shape various populational patterns required to
achieve biological functions [1–3]. Because the population
dynamics are realized by single-cell-level processes, i.e.,
cellular proliferation, death, migration, and differentiation,
behaviors of individual cells should be coordinated consis-
tently with the overall population dynamics, which may rule
the single-cell processes.

For example, phenotypic switching and differentiation of
a cell in a population are often unidirectional. Moreover, the
multiple cell types are hierarchically ordered, and their ki-
netic properties, e.g., type-switching and proliferation rates,
also seem to be coupled. The existence of hierarchy, or
equivalently, acyclic cell-type lineage structures and kinetic
coupling are prevalent in multicellular systems from immu-
nity to development [4–7]. These single-cell rules emerging
in a population may be related to the functions and the coor-
dination of the population.

The notion of the epigenetic landscape has been used
pervasively to describe the robust and directional dynamics
among hierarchical cellular types, where individual cells are
likened to balls rolling down the landscape [8–10]. How-
ever, populationally coordinated behaviors cannot be achieved
merely by the independent dynamics of individual cells fol-
lowing the landscape. The individual landscapes should be
modulated by the dynamics of the other cells in the population
to attain functional and robust trajectories at the population
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level. Thus, not the individual cells but the population itself
follows the landscape characterizing the biological function.
Yet individual cells also seem to follow their own landscapes.
This entangled relation between landscapes for the whole
population and individuals has rarely been appreciated and
investigated [11–13].

In this work, we show that the interrelation between
single-cell and population levels can naturally emerge from
a gradient flow structure of a population. We model the
desirable population distribution for achieving a biological
function by the landscape of a biological utility function.
Then, we derive the population dynamics that maximize the
utility given the biological costs of single-cell processes,
which results in a gradient flow of the utility function. We
demonstrate as an example that the standard model of T-cell
population dynamics in the acute immune response [14] can
be understood as the gradient flow. From the populational gra-
dient flow structure, the single-cell-level landscape emerges,
from which the unidirectional type switching, hierarchical cell
type, and kinetic couplings are generally derived. Moreover,
the single-cell landscape is related to the population-level
utility landscape as its functional variation. Our result can
work as a theoretical basis to bridge single-cell-level rules
and behaviors with population-level dynamics and functions
of multicellular systems.

II. GRADIENT FLOW OF CELLULAR POPULATION
DYNAMICS

We first introduce the governing equations of the het-
erogeneous cellular population dynamics. We consider a
large heterogeneous population of cells with different types.
The state of population at time t is characterized by nt =
{nt (x)}x∈X , where nt (x) � 0 is the population size of the cells
with type x ∈ X . Here X is a set of all possible types. The state
of the population changes over time by the following cellular
actions: growth (proliferation minus death), type switching,
and immigration (recruitment) of new cells from outside of
the population. Their rates are assumed to be type dependent
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such that gt (x) is the growth rate of type x, vt (x, y) � 0 is the
type-switching rate from type x to type y, and mt (x) � 0 is
the immigration rate of type x. In this work, we focus on the
case where X is discrete, but it can be easily extended to the
continuum case. Then, the population dynamics of the cells
can be described by the following equations:

dnt (x)

dt
= nt (x)gt (x) + mt (x)

−
∑
y∈X

[nt (x)vt (x, y) − nt (y)vt (y, x)]

=: Fx(n, g, m, v), (1)

where we approximate nt (x) as a continuous variable, which
is valid if the population size is large enough. While we treat
the types as phenotypic states in this work, they can be treated
more generally to include any features of a cell such as posi-
tion or niche where it resides. For such a case, type switching
is understood as the migration of cells among different spatial
compartments in a metapopulation.

Next, we connect the population dynamics with biological
functions. To this end, we introduce a utility function Ut (n).
The utility function Ut (n) abstractly represents how good a
given population distribution n is under the situation at time t .
The time dependence of Ut (n) is essential for modeling vari-
ous biological situations. For example, if a pathogen invades
our body, a particular population distribution n of immune
cells would work more effectively than another n′, which is
represented as Ut (n) > Ut (n′). The utility may change after
the eviction of the pathogen, which is captured by the time
dependence of Ut (n). Therefore, the dynamics that can induce
the population distribution nt (x) into the one with a higher
utility more promptly would be more functional than other
dynamics.

However, the rates of growth, immigration, and type
switching cannot be arbitrarily high due to the biological
cost of those processes and physical constraints. In order to
account for it, we introduce the cost function Cn(g, m, v). The
cost function abstractly characterizes the instantaneous bio-
logical cost of taking cellular actions at given rates (g, m, v),
which is nonnegative and dependent on the current population
n. In this work, we consider the cost function to have the
following form:

Cn(g, m, v) = 1

2

∑
x∈X

n(x)wg(x)g(x)2

+ 1

2

∑
x∈X

wm(x)m(x)2

+ 1

2

∑
x,y∈X

n(x)wv (x, y)v(x, y)2 � 0, (2)

where wg, wm, and wv are positive weights whose values
depend on the single-cell level mechanisms of actions.

This form of the cost function is derived from three
assumptions: (1) costs for different cellular actions are inde-
pendent, i.e., the total cost is just a sum of them; (2) the growth
cost and the type-switching cost are proportional to the current
cell number n(x); and (3) for each cellular action, the cost
is a convex and superlinear function of the rate. The second

assumption is reasonable because growth and type-switching
costs are incurred for each cell in the current population.
In contrast, since immigration is usually independent of the
current population, the immigration cost is not proportional
to the current cell number. The third assumption is crucial to
prohibit the optimal action rates from being arbitrarily high.
Such unrealistic behavior can happen if the cost grows slowly
as the rates increase and if the increase in the utility can cancel
it out. While we focus here on the quadratic cost function, the
simplest convex function, our theory can be extended to more
general convex functions. The mathematical background and
biological interpretation of the cost function are presented in
the Appendix and Secs. B and C of the Supplemental Material
[15].

We consider the population dynamics of Eq. (1) where the
rates (gt , mt , vt ) are determined to maximize the value of the
utility function under the cost:

maximize
g,m,v

Ut+�t (nt+�t ) −
∫ t+�t

t
Cnτ

(gτ , mτ , vτ )dτ, (3)

subject to the governing equations in Eq. (1). The objective
is to maximize the utility at the future time point t + �t
while minimizing the cumulative cost from time t to t + �t .
To simplify the subsequent derivation, we assume that �t
is small, yet almost the same conclusions could be obtained
without this assumption. In the limit �t → 0, Eq. (3) becomes

maximize
g,m,v

Diffnt Ut (g, m, v) − Cnt (g, m, v), (4)

where Diffnt Ut (g, m, v) is the time derivative of Ut through
the time evolution of nt given rates (g, m, v):

Diffnt Ut (g, m, v) :=
∑
x∈X

δUt (nt )

δn
(x)Fx(nt , g, m, v).

We could obtain the explicit form of the unique optimum
(g†

t , m†
t , v

†
t ) of the above optimization problem as follows (see

Sec. A in the Supplemental Material [15] for the derivation):

g†
t (x) = 1

wg(x)

δUt (nt )

δn
(x), (5a)

m†
t (x) = 1

wm(x)

[
δUt (nt )

δn
(x)

]
+
, (5b)

v†
t (x, y) = 1

wv (x, y)

[
∇ δUt (nt )

δn
(x, y)

]
+
, (5c)

where [a]+ := max{a, 0} is the positive part of a ∈ R, and
∇ is the discrete gradient operator, i.e., for any φ : X → R,
∇φ(x, y) := φ(y) − φ(x). Note that these optimum rates are
scale invariant: they are invariant under the rescaling of the
utility function Ut and the cost function C with the same
factor.

Let us consider the dynamics with the optimal rates
(gt , mt , vt ) = (g†

t , m†
t , v

†
t ). Under this dynamics, the value of

the utility function Ut (n) evolves as

d

dt
[Ut (nt )] = ∂Ut

∂t
(nt ) + Diffnt Ut (g

†
t , m†

t , v
†
t )

= ∂Ut

∂t
(nt ) + 2Cnt (g

†
t , m†

t , v
†
t ), (6)
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which is also derived in the Supplemental Material. Since the
instantaneous cost Cnt is nonnegative, the value of the utility
function always increases when ∂Ut

∂t vanishes. Indeed, when
Ut does not depend on t , the dynamics is a generalized gra-
dient flow of U , where C is considered a dissipation function
[16–18].

III. T-CELL IMMUNE RESPONSE MODEL

We demonstrate that a model of T-cell population dynam-
ics in the acute immune response [14] is a gradient flow in
our sense. Here we introduce a slightly modified version of
the model proposed in [14]. The model assumes three types
of T cells—naive (N), activated effector (A), and memory
(M)—and the numbers of these cells nt (N ), nt (A), and nt (M )
are described by the following ordinary differential equations:

dnt (N )

dt
= mN + gN nt (N ) − vNAIt nt (N ),

dnt (A)

dt
= (gA0 + gA1It )nt (A) + vNAIt nt (N )

+ vMAIt nt (M ) − vAM (1 − It )nt (A),

dnt (M )

dt
= gMnt (M ) − vMAIt nt (M )

+ vAM (1 − It )nt (A), (7)

where g, m, and v are constant growth, immigration, and
type-switching rates, and It represents the temporal change in
the environmental situation such that It = 0 when the immune
cells should contract to recover to the normal state, and It = 1
when they should expand to eliminate pathogens [Fig. 1(a)].
We assume an on/off transition:

It =
{

1 if τ0 � t < τ1

0 otherwise. (8)

A typical time evolution is depicted in Fig. 1(b). In the
expansion phase (τ0 � t < τ1), the number of activated T cells
rapidly increases, whereas, in the contraction phase (τ1 � t),
the number of memory T cells increases instead.

There are several versions of the T-cell immune response
model, and their mathematical properties were investigated in
[19–21]. The model we introduced in Eqs. (7) and (8) is sim-
ple yet includes immunologically realistic factors. Notably, a
simplified version of the model introduced here was shown
to reproduce experimental data [14,22]. In Secs. D–G of the
Supplemental Material, we list some other T-cell immune
response models and discuss their gradient flow structures.

The model of Eqs. (7) and (8) is a gradient flow in our
framework on three-type space X = {N, A, M} with the fol-
lowing utility function Ut and the cost function C. The utility
function is a time-dependent linear function

Ut (n) = uN n(N ) + u(It )
A n(A) + uMn(M ), (9)

with coefficients uN := gNρNw0, u(It )
A := (gA0 + gA1It )w0,

and uM := gMρMw0, indicating that each cell type has differ-
ent importance depending on the environmental situation. The
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FIG. 1. (a) Schematic illustration of the immune response model
with three types: naive (N), activated (A), and memory (M) T cells.
(b) Time evolution of the numbers of T cells of the three types.
(c) Time evolution of the utility Ut (nt ), the estimated utility based
on Eq. (6), and the time integral of the cost 2

∫ t
0 Cnτ

(g†
τ , m†

τ , v
†
τ )dτ .

A sketch of single-cell-level utility landscapes ut (x) = δUt (nt )
δn (x)

is also shown in the inset. The parameters are mN = 0.01, gN =
0.001, gA0 = −1, gA1 = 2, gM = −0.01, vN,A = vM,A = 1, vA,M =
0.05 day−1, w0 = 10−3, and ρN = ρM = 1. The simulation starts
at t = 0 with n0(N ) = 100, n0(A) = n0(M ) = 0 and the value of It

switches at time τ0 = 1.5 and τ1 = 8 day.

cost function [Eq. (2)] is specified with the weights

wg(N ) = ρNw0, wg(A) = w0, wg(M ) = ρMw0,

wm(N ) = uN

mN
= gNρN

mN
w0,

wv (N, A) = u(1)
A − uN

vNA
= (gA0 + gA1) − gNρN

vNA
w0,

wv (M, A) = u(1)
A − uM

vMA
= (gA0 + gA1) − gMρM

vMA
w0,

wv (A, M ) = uM − u(0)
A

vAM
= gMρM − gA0

vAM
w0, (10)

and all the other weights are +∞. Here, w0, ρN , and ρM are
arbitrary positive constants. By taking account of the scale
invariance of the optimal rates, w0 is the scaling factor for
the utility function and the cost function. We define it as the
same as the growth weight for activated T cells. ρN and ρM

are the relative growth weights for naive and memory T cells.
To demonstrate that the model is actually a gradient flow,

we numerically calculated Ut (nt ), the value of utility function
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along the time evolution of nt [Fig. 1(c)]. The result shows
that Ut (nt ) is monotonically increasing except at the change
point t = τ1, where ∂Ut

∂t in Eq. (6) becomes nonzero. Thus, the
gradient flow structure completely explains this behavior.

Finally, we discuss that the gradient flow structure is quali-
tatively consistent with biologically plausible parameters. The
structure imposes the positivity of the weights [Eqs. (10)]
of the cost function. Rearranging the terms, we obtain the
following constraints on the growth rates:

0 < gN < (gA0 + gA1)
1

ρN
,

gA0
1

ρM
< gM < (gA0 + gA1)

1

ρM
. (11)

If these inequalities do not hold, the increase in utility is no
longer guaranteed. The existence of expansion and contraction
in the immune response naturally requires that the growth rate
for the activated T cells in the contraction phase is negative
(gA0 < 0) and that the growth rate for the activated T cells
in the expansion phase is positive (gA0 + gA1 > 0). If, in ad-
dition, the growth rate gN for the naive T cells is positive,
there exist the weight parameters ρN and ρM satisfying the
constraints. According to [23], naive T cells in humans have
a relatively high proliferation rate to maintain the size of
the naive T-cell population, implying the growth rate gN for
the naive T cells to be positive. Thus, the gradient flow struc-
ture is consistent with biologically plausible parameters.

IV. EMERGING SINGLE-CELL RULES

While our gradient flow is derived from the optimization at
the population level, i.e., what kind of populational change is
better than others, it also determines the behaviors of each cell,
i.e., what a cell of type x should do or should not do. We will
show two such rules derived from the gradient flow structure.
In both rules, the functional derivative δUt (nt )

δn (x) := ut (x) of
the utility function plays a vital role. One can interpret this
function ut (x) as a utility function at the single-cell level
because it defines which type is preferable to the other types.
This contrasts with the original utility function Ut (n), which
defines a metric only for the population of cells. The relation-
ship of Ut (n) and ut (x) is also close to that of thermodynamic
potential and chemical potential in thermodynamics [24].

In the T-cell immune response model, the single-cell level
utility is given by ut (N ) = uN = gNρNw0, ut (A) = u(It )

A =
(gA0 + gA1It )w0, and ut (M ) = uM = gMρMw0. If the condi-
tions in Eqs. (11) hold, the activated T cell has the highest
utility ut (A) = (gA0 + gA1)w0 > 0 in the expansion phase,
whereas it has the lowest utility gA0w0 < 0 in the contraction
phase [see the inset of Fig. 1(c)].

A. Unidirectional phenotypic transition

In multicellular systems, unidirectional phenotypic switch-
ings are commonly observed in single-cell-level dynamics,
which supports the notion of the epigenetic landscape.
For example, the T-cell immune response model does not
have bidirectional or cyclic-type switchings. We show that
such unidirectionality is tightly linked to the gradient flow
structure.

A

(1) (2) (3) (4)

B

C

A

B

C

A

B

C

A

B

C

FIG. 2. Examples of type-switching graphs of three types X =
{A, B,C}. While acyclic graphs (1) and (3) are allowed in the gradient
flow, graphs (2) and (4) contain a cycle and never appear in the
gradient flow. For graphs (2) and (4), the edge with the cross is
incompatible with the ordering by ut (x) = δUt (nt )

δn (x).

To this end, we consider a type-switching graph Gt . The
nodes of the graph Gt are types X , and an edge from type x to
y exists if and only if the type-switching rate is not zero, i.e.,
v

†
t (x, y) > 0. One can show that this graph Gt for any gradient

flow is always acyclic (Fig. 2). In the simplest case, the types
x and y cannot have bidirectional type switching because
v

†
t (x, y) and v

†
t (y, x) cannot be simultaneously positive from

Eq. (5c). Depending on the sign of ∇ut (x, y), either or both
of v

†
t (x, y) and v

†
t (y, x) is zero. In other words, cells of type x

switch to type y if and only if y is better than x, which means
that

ut (x) < ut (y). (12)

If we place all the types X vertically in the order of ut as in
Fig. 2, every type-switching edge points upward. Thus, more
generally, three or more types cannot have any cyclic-type
switching. If a cycle exists, at least one of the edges points
downward, which contradicts the ordering by ut .

One can view ut = δUt (nt )
δn as a kind of epigenetic land-

scape of single cells [8]. We note that it depends on time t
and the current population nt , which could be interpreted as
fluctuations of the epigenetic landscape due to time-dependent
external signals and cell-cell interactions.

We also note that the type-switching graph of a gradient
flow may appear to have a cycle if one ignores the time
dependence of the graph. Indeed, the type-switching graph of
the T-cell immune response model contains a cycle (from acti-
vated to memory and from memory to activated) if one lumps
the type-switching edges throughout the immune response.

B. Coupling

Growth, immigration, and phenotypic switching in mul-
ticellular systems are not independent. For example, in the
T-cell immune response model, the growth and type-switching
rates change simultaneously when the environmental condi-
tion changes. We show that the gradient flow structure implies
cooperative relationships among growth, immigration, and
type-switching rates.

Consider the simplest setting where all the weights are fi-
nite and constant, wg(x) = wm(x) = wv (x, y) = 1 ∀x, y ∈ X .
From the fact that the growth rates, immigration rates, and
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type-switching rates [Eqs. (5)] have the same term δUt (nt )
δn =

ut , we find some relations among them. When there is an
immigration flux to type x, the growth rate of type x must be
positive and vice versa:

m†
t (x) > 0 ⇔ g†

t (x) > 0. (13)

When the type-switching rate from type x to y is positive,
the growth rates of the source type x must be lower than the
growth rate of the destination type y:

v†
t (x, y) > 0 ⇔ g†

t (x) < g†
t (y). (14)

One can intuitively understand these effects as cooperation
among growth, immigration, and type switching to achieve
the same goal: maximizing the utility function.

The T-cell immune response model has this cooperative
coupling as long as the inequalities in Eq. (11) are satisfied.
The coupling between growth and type switching was also
predicted in Furusawa and Kaneko’s model: the growth rate
of stem-type cells is lower than differentiated-type cells [12].
Moreover, this kind of coupling has been observed in cell
biology: cells undergoing differentiation stop the cell cycle
and do not divide [7]. Other coupling properties predicted
from the gradient flow structure can be used to search for the
structure in actual biological systems.

V. DISCUSSION

In this work, we proposed a theoretical framework that
links the functional dynamics of multicellular systems with
the individual dynamics of constituent cells. The rules in
the single-cell level dynamics were naturally derived and
explained from the functionality and coordination of the
population from this framework. A standard T-cell immune
response model was shown to be consistent with these results.
By examining the model, we demonstrated that the framework
could identify the crucial characteristics in the single-cell
dynamics for the whole populational system to be functional.

While we employed the immune response as an example,
the framework may be applied to other multicellular systems
and phenomena. However, quantitative models consistent
with experiments like Eq. (7) may not always be available. For
such a case, the crucial step would be systematic identification
or inference of the utility and cost functions from experi-
mentally observed dynamics for a given phenomenon. To this
end, our formulation may be combined with techniques in
machine learning and single-cell omics to infer the dynamics
with potential landscapes [25,26]. We may also derive the cost
function from the physical and thermodynamic principles,
e.g., by the large deviation theory [18]. In either case, our
framework will serve as a basis for linking the single-cell and
population properties.

Finally, it should be noted that a given population dynamics
may not always fall into the class of gradient flow in the
strict sense. Some modifications of the T-cell model [Eqs. (7)
and (8)] can violate the conditions to be a gradient flow,
e.g., having bidirectional type switching or having negative
growth rate and positive immigration rate at the same time.
Nevertheless, the gradient-flow-like behaviors can still survive
if the modification is moderate, and the utility monotonically
increases in time (see Supplemental Material for more details

[15]). Our theory can be used to search for such behaviors.
Alternatively, we can further extend the notion of gradient
flow [27,28] to accommodate oscillatory components, e.g.,
cell cycle, and others. It expands the applicability of our
approach to a wide range of multicellular phenomena and will
be pursued.
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APPENDIX: GENERALIZED GRADIENT FLOWS

In this Appendix, we briefly review the generalized gra-
dient flow and explain a geometric interpretation of the cost
function in Eq. (2). For details, see Sec. B of the Supplemental
Material [15].

Consider the set of cell number distribution of types X as
a smooth manifold M = R|X |

�0, which is a subset of finite-
dimensional linear space. We write TnM ∼= R|X | and T ∗

n M ∼=
R|X | to stand for the tangent and cotangent spaces at a point
n ∈ M. We denote by 〈u, v〉 the bilinear product of a cotan-
gent vector u ∈ T ∗

n M and a tangent vector v ∈ TnM.
The gradient flow can be intuitively formulated as the

steepest ascent of a differentiable function U : M → R.
Given nt at time t , we choose nt+�t so that U (nt+�t ) is as large
as possible while the distance d (nt+�t , nt ) should be less than
or equal to a given small value ε > 0, i.e., nt+�t is the optimal
n of the following optimization problem:

maximize
n

U (n), such that 1
2 d (n, nt )

2 � ε.

Equivalently, we maximize U (nt+�t ) with the distance
d (nt+�t , nt ) as a penalty:

maximize
n

U (n) − 1

2�t
d (n, nt )

2. (A1)

Taking the limit �t → 0, the optimization provides the
continuous-time evolution of nt . Equation (A1) is called a
minimizing movement scheme of the gradient flow [16].

Alternatively, we may directly specify the tangent vector
ṅ ∈ TnM at each point n ∈ M. Let ‖ · ‖n : TnM → [0,∞)
be a norm on the tangent space at n. The tangent vector is
determined to maximize the increase of U while the (squared)
length of the tangent vector should be minimized.

maximize
ṅ

U (nt+�t ) −
∫ t+�t

t

1

2
‖ṅτ‖2

nτ
dτ,

where the curve {nτ }τ∈[t,t+�t] satisfies dnτ

dτ
= ṅτ and nt = n. In

the limit �t → 0, the above problem becomes

maximize
ṅ∈TnM

DiffnU (ṅ) − 1
2‖ṅ‖2

n, (A2)

where DiffnU (ṅ) := 〈DU (n), ṅ〉 = d
dt U (nt )|nt =n, and DU ∈

T ∗
n M is the derivative of U with respect to n. The solution

to this optimization is the optimal tangent vector ṅ†(n) as a
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function of n, which induces the gradient flow dnt
dt = ṅ†(nt ),

and U (nt ) monotonically increases in time.
In the above formulations, d and ‖ · ‖n satisfy the axiom

of distance and norm. However, we can choose more general
functions for d and ‖ · ‖n that are not necessarily distance
or norm. One generalization is, instead of a norm, to use a
dissipation function 	n : TnM → [0,∞] which is nonnega-
tive, strictly convex, differentiable, superlinear, and satisfying
	n(0) = 0, for each point n ∈ M. The optimization problem
to determine the tangent vector at n is just replacing 1

2‖ · ‖2
n in

Eq. (A2) with 	n,

maximize
ṅ∈TnM

DiffnU (ṅ) − 	n(ṅ).

One can show that the optimal solution ṅ†(n) satisfies
DiffnU [ṅ†(n)] � 0. The conditions on 	n guarantee that the
U (nt ) increases in time. This formulation is described in, e.g.,
[17].

One further generalization is to introduce a linear
parametrization of the tangent space. Let 
n be the param-
eter space at n ∈ M, and we have a linear mapping An :


n → TnM. We define a function Cn : 
n → [0,∞] which
is nonnegative, strictly convex, differentiable, superlinear, and
satisfying Cn(0) = 0. For each n ∈ M, the optimal parameter
θ†(n) is determined by the following optimization problem:

maximize
θ∈
n

DiffnU (θ ) − Cn(θ ),

where DiffnU (θ ) := DiffnU (Anθ ) = 〈DU (n), Anθ〉. With the
optimal parameter θ†(n), the time evolution of n is written by

dnt

dt
= Ant θ

†(nt ) = Ant ∂C∗
n

[
A�

n DU (n)
]
,

where C∗
n is the Legendre transform of Cn. One can show that

DiffnU [θ†(n)] � 0. This formulation is described in [29].
We use the last formulation to derive the gradient flow

for cellular population dynamics. The growth, immigration,
and type-switching rates correspond to the parameter θ =
(g, m, v), and the mapping An is given by the function F in
Eq. (1). Also, the cost function Cn in Eq. (2) satisfies the above
conditions. Therefore, the cost function can be interpreted as a
normlike function on the tangent space but parametrized with
rates (g, m, v).
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