
PHYSICAL REVIEW RESEARCH 5, L022049 (2023)
Letter

Kagome chiral spin liquid in transition metal dichalcogenide moiré bilayers
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At n = 3/4 filling of the moiré flat band, transition metal dichalcogenide (TMD) moiré bilayers will develop
kagome charge order. We derive an effective spin model for the resulting localized spins and find that its further
neighbor spin interactions can be much less suppressed than the corresponding electron hopping strength. Using
density matrix renormalization group simulations, we study its phase diagram and, for realistic model parameters
relevant for WSe2/WS2, we show that this material can realize the exotic chiral spin liquid phase and the highly
debated kagome spin liquid. Our work thus demonstrates that the frustration and strong interactions present in
TMD heterobilayers provide an exciting platform to study spin liquid physics.
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Introduction. The recent surge in moiré materials has vastly
expanded the number of experimental platforms with strongly
correlated electrons. While this was jump-started by the dis-
covery of correlated insulating states and superconductivity
in twisted bilayer graphene [1–4], the strength of electron
correlations in bilayers of transition metal dichalcogenide
(TMD) materials exceeds those in their graphene cousins
[5]. Experiments in TMDs have revealed signatures of Mott
insulators [6–10], the quantum anomalous Hall effect [11],
and—in heterobilayers—generalized Mott-Wigner crystals at
fractional fillings [7,12–16]. When the electron charges are
localized, only the spin degree of freedom remains, and mag-
netism in TMD moiré bilayers started to be investigated in
recent experiments [17–19]. Heterobilayers realize an ex-
tended Hubbard model on the triangular lattice [20–23], and
consequently the localized spins are highly frustrated. This
frustration might lead to a spin liquid phase, an exotic state of
matter whose material realization is long sought for [24,25].

In this Letter, we show that the generalized Mott-Wigner
states at n = ±3/4 filling, reported for WSe2/WS2 bilayers
[12,13], can realize both a chiral spin liquid [26,27] and the
kagome spin liquid (KSL) [28–33]. At this particular filling,
electrons are localized on an effective kagome lattice, which
is known for its high degree of geometrical frustration. Here,
we demonstrate how realistic model parameters lead to an
effective spin model on this kagome lattice and investigate the
model using extensive state-of-the-art density matrix renor-
malization group (DMRG) simulations [34,35]. The tunability
of TMD bilayers—changing twist angle, gate tuning, material

*johannes.motruk@unige.ch

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

and dielectric environment choice, pressure, and so forth—
thus allows for a systematic pursuit of spin liquid phases
[36–39].

Model. The moiré pattern of TMD heterobilayers is formed
due to the lattice mismatch between the two layers, where
the effective moiré length can be tuned by adjusting the twist
angle. The interlayer band alignment ensures that the first
conduction or valence flat band is completely localized in one
of the layers. Based on our earlier work [22], we describe the
resulting flat bands by a spin-orbit-coupled extended Hubbard
model on the triangular lattice,

H =
∑

jk,σ

|t jk|e−iσφ jk c†
jσ ckσ

+ H.c.

+U
∑

j

n j↑n j↓ + V
∑

〈 jk〉,σ
n jσ nkσ , (1)

where 〈 jk〉 denotes nearest-neighbor sites. We include the
hopping matrix elements t jk up to third-nearest neighbor,
where φ jk represent their phases induced by spin-orbit
coupling.

When the nearest-neighbor repulsion is sufficiently large,
a charge density wave is stabilized at commensurate fillings.
In particular, at n = ±3/4 filling, the charge order forms a
kagome lattice, as shown in Fig. 1(c) [40,41]. In the Sup-
plemental Material (SM) [42–44], we show, using a simple
mean-field theory, that the charges are almost completely lo-
calized on the kagome lattice when V/t1 � 5. To study the
spin degree of freedom of these localized charges, we derive
an effective spin model on the kagome lattice, starting from
the extended Hubbard model of Eq. (1) [45,46]. In our strong-
coupling expansion, we keep all terms of second and third
order in the hoppings, and up to fourth-order contributions
proportional to the nearest-neighbor hopping t1. We employ
the method introduced in Ref. [47] and the derivation and
coefficients of the model are provided in detail in the SM [42].
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FIG. 1. (a) Ground-state phase diagram of the effective spin model (2) for U/t1 = 75 and V/t1 = 10.5—corresponding to the interactions
for ε ≈ 9.5 in WSe2/WS2 at θ = 0◦—as a function of t2/t1 and t3/t1. The phases appearing are the chiral spin liquid (CSL), the kagome
spin liquid (KSL) connected to the ground state of the nearest-neighbor Heisenberg Hamiltonian, a valence bond crystal (VBC), and cuboc1∗,
q = (0, 0)∗, and

√
3 × √

3 or ferromagnetically ordered phases. The
√

3 × √
3 and ferromagnet are energetically degenerate. The red dot

indicates the t2/t1 and t3/t1 values for WSe2/WS2 at θ = 0◦. Arrows show how this point would shift qualitatively when tuning twist angle,
pressure or changing the effective mass by a different material choice. (b) Phase diagram for t2/t1 ≈ 0.145 and t3/t1 ≈ 0.08—corresponding
to WSe2/WS2 at θ = 0◦—as a function of U/t1 and V/U . Here, the cuboc2∗ phase emerges as an additional magnetically ordered phase. The
ratio of V/U can be tuned by the gate distance while U/t1 changes with different dielectric environment. Crucially, the system can be tuned
into the CSL by merely changing the gate distance across almost the entire range of interaction strength. The hatched area denotes the region
in which J1 is negative (ferromagnetic) and the red dot indicates the interaction values of panel (a). The data underlying the phase diagrams
have been obtained on an infinite YC8 cylinder. (c) Extended Hubbard model at 3/4 filling with all charges localized on a kagome lattice. The
unit cell of the charge ordering is indicated by the blue-lined box. When a spin-↑ particle hops from a site j to a site k along the direction of
an arrow, it picks up a phase of φ jk . (d) Interactions of the resulting spin model on the kagome lattice.

The resulting spin model is given by

Hspin =
∑

i j

Ji j
[
Sz

i Sz
j + cos(φ̃i j )

(
Sx

i Sx
j + Sy

i Sy
j

)

+ sin(φ̃i j )(Si × S j ) · ẑ
]
, (2)

where the φ̃i j are linear combinations of the φ jk phases from
Eq. (1), and we neglected very small four-spin terms. The
sum over i j runs over neighbors as illustrated in Fig. 1(d).
The spin model of Eq. (2) contains XXZ and Dzyaloshinskii-
Moriya (DM) terms caused by the nonzero phases φ jk in the
extended Hubbard model. These phases are constrained by
symmetry [22] and translate into the phases for the spin model
as follows: φ̃1 = 4π/3, φ̃2 = 0, and φ̃3 = 2π/3 for nearest,
next-nearest, and next-next-nearest neighbor couplings, re-
spectively. This combination allows for a local three sublattice
gauge transformation (a spin rotation in the x-y plane) [42]
that brings the model into SU(2)-invariant form, hence, the
model still exhibits a hidden SU(2) symmetry [48–50]. As a
result, the structure of the phase diagram of our kagome spin
model (2) coincides exactly with that of an SU(2)-invariant
J1-J2-J3-J ′

3 model on the kagome lattice, despite the presence
of the DM interactions. The phase diagram of this model for
J ′

3 = 0 has been studied previously with DMRG [51]. We
remark here already that the numerical results we report are
consistent with this previous work in the range of parameters
studied in Ref. [51]. Note, however, that the spin patterns in
the magnetically ordered phases are changed by the gauge
transformation relative to the phases of the SU(2)-invariant
model.

Before presenting the numerical results, let us analyze how
the spin model coefficients emerge from realistic material pa-
rameters. In Fig. 2, we show the contributions of the different
orders of the expansion to J1, J2, and J3 for WSe2/WS2. It is
evident that the third and fourth orders are extremely impor-
tant to capture the correct physics. Being ferromagnetic for J1,
the third and fourth orders suppress J1 turning it even negative
for larger twist angles (smaller interactions). In the case of J2

and J3, on the other hand, the spin interactions are boosted by
the higher orders. In this way, J1, J2, and J3 can be of the same
order of magnitude permitting the rich phase diagrams tunable
with experimental parameters we report below, despite t2 and
t3 being an order of magnitude smaller than t1. Note that this
is not a sign of a breakdown of our expansion, but rather

FIG. 2. Contributions of the different orders of the effective
Hamiltonian from our DFT estimates for WSe2/WS2 and dielectric
screening with ε = 9.5 as a function of twist angle. Dashed lines
denote negative values.
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FIG. 3. CSL region as a function of t2/t1 and t3/t1 for various combinations of U and V from DMRG on an infinite YC8 cylinder as detected
by the absolute value of the chiral order parameter 〈Si · (S j × Sk )〉 averaged over all small nearest-neighbor triangles on the kagome lattice.
(a) U/t1 = 75 and V/U = 0.14 corresponding to the phase diagram in Fig. 1(a). (b) For decreased U/t1 = 70 with V/U = 0.14 unchanged, the
CSL region moves slightly to the lower right, but narrows. (c) Opposite effect when increasing to U/t1 = 70, still at V/U = 0.14. (d) Changing
V/U = 0.13 has a similar effect as decreasing U , (e) larger V/U = 0.15 behaves comparable to increased U .

comes from the fact that the higher orders include virtual
processes that do not involve intermediate states with a double
occupancy and whose contribution is therefore not suppressed
by factors of 1/U .

Numerical results. To obtain the ground-state phase di-
agram of our spin model, we perform DMRG simulations
on an infinite cylinder of YC8 geometry [29,42]. We map
out the phase diagram for fixed U/t1 = 75 and V/U = 0.14
for varying t2/t1 and t3/t1, and for fixed t2/t1 ≈ 0.145 and
t3/t1 ≈ 0.08 for varying U/t1 and V/U , shown in Figs. 1(a)
and 1(b), respectively. The interaction strengths of Fig. 1(a)
correspond to the estimates for WSe2/WS2 at θ = 0◦ twist
angle with dielectric constant ε ≈ 9.5. The same holds for the
t ratios of Fig. 1(b). The derivation of these model parameters
from ab initio calculations is detailed in our SM [42]. For
fixed interactions in Fig. 1(a), we find two spin liquid phases,
namely the CSL [51–55] and the KSL, which is connected
to the nearest-neighbor Heisenberg point. For small t2 and t3,
we observe a phase in which a ferromagnet and a

√
3 × √

3
state [56–58] in the x-y plane are the degenerate ground states
due to the gauge transformation [42]. In an SU(2)-invariant
version of the model, these would be the two degenerate√

3 × √
3 states with opposite vector chirality. Next to it, we

find a valence bond crystal (VBC) with spontaneous bond
order. Above the diagonal, the phase diagram is dominated
by the cuboc1∗ state, the gauge transformed version of the
cuboc1 state, a state with finite scalar chirality [59]. On the
bottom right, the ground state is the q = (0, 0)∗ state, the
gauge transformed version of the coplanar q = (0, 0) order
[56,58,60]. The relation between the magnetic orders, the
gauge transformation and the states of the SU(2)-invariant
Hamiltonian is further discussed in the SM [42].

The phase diagram in Fig. 1(b), with the hopping values
fixed at our estimates for WSe2/WS2 at θ = 0◦ similarly
exhibits a finite CSL region in the center. For stronger inter-
actions, the KSL takes over. For smaller U and V , we find the
cuboc2∗ state, the gauge transformed version of the cuboc2
magnetic order [59], and again a region with degenerate fer-
romagnetic and

√
3 × √

3 ground states. Most of these two
phases coincide with the area in which the nearest-neighbor
spin interaction turns ferromagnetic, in agreement with clas-
sical phase diagrams [59].

Chiral spin liquid. To identify the CSL, we primarily use
the chiral order parameter (OP) 〈Si · (S j × Sk )〉 where i, j, and
k denote the sites around a small triangle in the kagome lattice
formed out of nearest-neighbor bonds. The chiral OP for the
various values of U and V is depicted in Fig. 3 and clearly
indicates the region of the CSL. We observe that the CSL re-
gion widens or narrows and shifts with changing interactions.
We note that both the cuboc1∗ phase as well as the q = (0, 0)∗
phase can attain a nonzero chirality on the small triangles, but
in a staggered pattern such that it averages out over the unit
cell.

Since the chiral OP alone is not an unambiguous signa-
ture of the CSL, we also compute the momentum-resolved
entanglement spectrum and the spin Hall conductivity from
flux insertion. In the entanglement spectrum, a momentum
ky around the cylinder and Sz eigenvalue of the correspond-
ing Schmidt state can be assigned to each level. The chiral
SU(2)1 Wess-Zumino-Witten (WZW) conformal field theory
describing the edge of the CSL then predicts a certain mul-
tiplet structure in each Sz sector [61–63], which we confirm
in Fig. 4(a). We show the response of the system when
threading spin flux through the cylinder in Fig. 4(b). We

FIG. 4. (a) Momentum-resolved entanglement spectrum in the
CSL phase on a YC12 cylinder. The Sz sectors of the levels show the
counting pattern expected from the CFT describing the edge states
(1, 1, 2, 3, 5, 7, . . .). (b) Expectation value 〈Sz

L〉 value of the left half
of the cylinder under spin flux insertion. �〈Sz〉 = 1/2 is pumped
from the right to the left half of the cylinder under 2π flux insertion
indicating a spin Hall conductivity of σ spin

xy = 1/2.
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FIG. 5. Absolute values of J ratios from our DFT estimates for
WSe2/WS2 as a function of twist angle for different values of ε.
For ε = 7 and 11, the ratio J2/J1 changes sign due to J1 becoming
negative indicated by the blue (positive) and red (negative) shading.
At ε = 15, J1 is negative over the entire twist angle range. J2 and J3

are positive everywhere while J ′
3 is always negative. We chose the

absolute values here for better presentation clarity on a log scale.
We also include the ratio of V/t1 (red line) and V/t1 = 5 (red dashed
line). Above this value, almost the entire particle density is local-
ized on the kagome lattice, ensuring the validity of our spin model
description.

replace each term S+
j S−

k → S+
j S−

k eiφext (y j−yk )/Ly , so that a spin
up picks up a phase of eiφext when going around the cir-
cumference. After φext = 2π flux insertion, the expectation
value of the spin in the left half of the system increases by
〈Sz〉 = 1/2, which implies a quantized spin Hall conductiv-
ity of σ

spin
xy = 1/2, as expected for the Kalmeyer-Laughlin

CSL [26].
Kagome spin liquid. The presumed ground state of the

kagome spin model with only nearest-neighbor Heisenberg
coupling is also a spin liquid, whose nature remains under
debate [28–33,64–69]. In our t2-t3 phase diagram in Fig. 1(a),
we find a small strip of the KSL below the CSL. However,
the separation between the KSL the q = (0, 0)∗ state is subtle
to detect. The spins in the q = (0, 0)∗ can partly point out
of the x-y plane which happens in the region of the phase
diagram that we ascribe to the q = (0, 0)∗ phase. The part
that we identify as the KSL has 〈Sz

i 〉 = 0. The latter region
could also be a weakly ordered q = (0, 0)∗ state with spins
lying in the x-y plane. However, at negative t3/t1 ≈ −0.032
and t2/t1 ≈ 0.04, J2 and J3 almost vanish and we obtain a
nearly-only nearest-neighbor spin model. Since we find no
signs of a quantum phase transition between this point and
the 〈Sz

i 〉 = 0 region in question, we assign it to the KSL phase
and take the line at which a finite 〈Sz

i 〉 develops as the phase
boundary. The details of this reasoning are given in the SM
[42]. We emphasize that it is not within the scope of this work
to give further insight into the nature of the KSL phase, but
that we identify a phase with paramagnetic features which
is distinct from the q = (0, 0)∗ phase and adiabatically con-
nected to the ground state of the nearest-neighbor-only model.
By this identification of phases, the entire upper right region
in the V -U phase diagram of Fig. 1(b) falls into the KSL phase
as well.

Experimental realization and detection. The red dots in our
phase diagrams in Fig. 1 mark our estimate for the hopping
and interaction values at ε ≈ 9.5 for the first flat valence band
in aligned WSe2/WS2 [22,42]. We thus predict that aligned
WSe2/WS2 falls just onto the transition line between the

CSL and the KSL, suggesting a real material manifestation
of these exotic spin states. As in any TMD heterobilayer, the
interaction strengths U/ti and V/ti are tunable through en-
gineering the dielectric environment. The ratio V/U can be
changed by adjusting the screening length, which can be mod-
ified by the distance between the conducting gates and the
bilayer. The influence of these two tuning knobs is demon-
strated in Fig. 1(b), which shows that the system can be
driven deeper into one of the spin liquid phases. In addition
to the dielectric environment and gate distance, there are
several other tuning parameters. The choice of TMD mate-
rial influences the effective model—most notably, compounds
with Mo have a larger particle effective mass than We-based
TMDs, which then leads to flatter bands and larger effective
interactions U/ti, V/ti. Similarly, applying uniaxial pressure
onto the bilayer increases the interlayer moiré potential, which
strengthens interactions as well. We found that these two fac-
tors also lead to a slight increase in the t3/t2 ratio. On the other
hand, the interaction strength can be reduced by increasing the
twist angle.

The values of the resulting spin interactions in WSe2/WS2

as a function of twist angle for different values of ε are
shown in Fig. 5. Generally, the magnitudes of the coeffi-
cients are distributed as expected with |J1| > |J2| > |J3| >

|J ′
3|. As discussed above, J1 turns negative and we obtain a

ferromagnetic model for larger ε and/or twist angle while
J2 and J3 always stay positive and J ′

3 negative. The relevant
energy scale for the spin physics we consider is given by the
nearest-neighbor exchange constant J1 which is rather small
due the large length scale in moiré systems. For the value of
U/t1 = 75 in Fig. 1(a), our estimates lead to J1 ≈ 0.03 meV
corresponding to ≈350 mK which severely challenges ex-
perimental detection of the exotic spin phases. It has been
proposed that magnetic order can be diagnosed by the split-
ting of exciton resonances [70]. Further promising techniques
include magnetic resonance force microscopy (MRFM) [71],
spin-polarized scanning tunnel microscopy (STM) [72], and
nitrogen vacancy (NV) centers [73]. The detection of spin
liquids beyond the absence of magnetic order is even more
challenging. One possible approach is to use the optical access
to the spin degree of freedom in TMDs due to spin-valley
locking [74,75] which may allow for the dynamical detection
of the time-reversal symmetry breaking or quantized spin Hall
conductivity of the CSL. Recently, magneto-optical Faraday
rotation was proposed to detect the CSL in the triangular
lattice Hubbard model [37,76].

Conclusion. We have demonstrated that a variety of mag-
netic phases can be realized in an effective spin model
on the kagome lattice which describes TMD bilayers at a
filling of 3/4 holes or electrons. In particular, the chiral
spin liquid as well as the kagome spin liquid can emerge
for experimentally realistic parameters, in addition to sev-
eral magnetically ordered phases. Moreover, the tunability of
TMD moiré systems allows for a systematic search of elusive
spin liquid physics, and as such it opens up a promising new
direction in the search of highly entangled quantum mat-
ter. Apart from our approach, two additional proposals for a
kagome charge arrangement in twisted TMD bilayers have
recently been put forward whose spin physics has yet to be
investigated [77,78].
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The data and code used to create the reported results are
available at [79].
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