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Topological phase diagrams of exactly solvable non-Hermitian interacting Kitaev chains
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Many-body interactions give rise to the appearance of exotic phases in Hermitian physics. Despite their
importance, many-body effects remain an open problem in non-Hermitian physics due to the complexity
of treating many-body interactions. Here, we present a family of exact and numerical phase diagrams for
non-Hermitian interacting Kitaev chains. In particular, we establish the exact phase boundaries for the dimerized
Kitaev-Hubbard chain with complex-valued Hubbard interactions. Our results reveal that some of the Hermitian
phases disappear as non-Hermiticity is enhanced. Based on our analytical findings, we explore the regime of the
model that goes beyond the solvable regime, revealing regimes where non-Hermitian topological degeneracy
remains. The combination of our exact and numerical phase diagrams provides an extensive description of
a family of non-Hermitian interacting models. Our results provide a stepping stone toward characterizing
non-Hermitian topology in realistic interacting quantum many-body systems.
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Introduction. Many-body interactions play a crucial role in
Hermitian quantum systems. The emergent correlation effects
in these systems give rise to a variety of collective phenomena,
such as spontaneous symmetry breaking [1–4], phase transi-
tions [5–8], and the emergence of fractionalized quasiparticles
[9–12]. Understanding these rich phenomena often requires
the combination of analytical and numerical techniques due
to the scarcity of exact solutions for many-body models.
Nonetheless, especially in one-dimensional (1D) systems, an-
alytical solutions in specific regimes are attainable [13–18].
Away from these parameter regimes, employing various nu-
merical methods [13,19–25] allows the underlying physics of
many-body systems in generic scenarios to be unveiled.

The presence of losses and dissipation in real systems pro-
vides natural platforms for realizing non-Hermitian models
[26–36]. Non-Hermitian quantum models have arisen as a
new paradigm to manipulate and interpret various emergent
phenomena [37,38]. Here, non-Hermiticity emerges as the
effective description [39–46] of out-of-equilibrium and open
quantum systems, e.g., in superconducting qubits [47–49],
giving rise to various phenomena absent in the Hermitian
counterpart. Paradigmatic examples are the occurrence of var-
ious non-Hermitian degeneracies [50–54] and non-Hermitian
(bulk) skin states [55,56]. Both of these phenomenologies are
mainly explored in effectively single-particle non-Hermitian
Hamiltonians, while non-Hermitian many-body effects have
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remained relatively unexplored, partly due to limitations
of numerical methods [57–62]. In particular, recent efforts
have addressed one-dimensional non-Hermitian fermionic
[63–68] and bosonic [69,70] Hubbard models. Here, the non-
Hermiticity is incorporated by having nonreciprocal hopping
[63], complex hopping [65], or complex Hubbard interaction
[64,66,67,71–73]. The latter form of non-Hermiticity provides
effective descriptions for experiments on open quantum sys-
tems with two-body loss [74–77].

In this Research Letter, combining exact analytical re-
sults and numerical calculations, we establish the phase
diagram of a family of non-Hermitian Kitaev chains [41,78–
80]. Our interacting model consists of a complex-valued
many-body interaction that may host Majorana modes, in
particular, realizable in an array of Josephson junctions [81].
Our results reveal that, depending on the relative couplings,
non-Hermitian interacting phases with topological degenera-
cies emerge in the system. We show how increasing the
non-Hermiticity parameters affects some of the many-body
topological phases. We furthermore present that the topologi-
cal degeneracies of the model remain in the nonanalytically
solvable regime by numerically solving the interacting
problem.

Model. The Hamiltonian for the non-Hermitian dimerized
Kitaev-Hubbard chain, schematically shown in Fig. 1, reads

H = −
L−1∑
j=1

[t j (c
†
j c j+1 + c†

j+1c j ) + � j (c
†
j c

†
j+1 + c j+1c j )]

+
L−1∑
j=1

(Uj − iδ j )(2n j − 1)(2n j+1 − 1)

− μ

L∑
j=1

(
n j − 1

2

)
, (1)

2643-1564/2023/5(2)/L022046(7) L022046-1 Published by the American Physical Society

https://orcid.org/0000-0002-7725-7037
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.L022046&domain=pdf&date_stamp=2023-06-02
https://doi.org/10.1103/PhysRevResearch.5.L022046
https://creativecommons.org/licenses/by/4.0/


SHARAREH SAYYAD AND JOSE L. LADO PHYSICAL REVIEW RESEARCH 5, L022046 (2023)

FIG. 1. Schematic illustration of a 1D dimerized Kitaev-Hubbard
chain with dimerized hopping t , pairing �, and complex-valued Hub-
bard interaction U − iδ. Here, η denotes the dimerization parameter,
and O ∈ {t,�,U, δ}.

where L denotes the length of the chain and c†
j (c j ) creates

(annihilates) a spinless fermion at site j associated with the
fermion density n j = c†

j c j . Here, μ adjusts the on-site en-
ergy, and t j , � j , and Uj are the real-valued site-dependent
hopping amplitude, superconducting pairing amplitude, and
Hubbard interaction, respectively. The dimerized parameter
O j ∈ {t j,� j,Uj, δ j} for 1 � j � L reads

O j =
{
O(1 − η), j mod 2 = 0

O(1 + η), j mod 2 = 1,
(2)

where η is the real-valued dimerization parameter and O ∈
{t,�,U, δ} stands for site-independent parameters; see also
Fig. 1. Considering such a form of dimerization for all pa-
rameters enables us to explore a family of Kitaev-Hubbard
models but is mainly motivated by the limitation of obtaining
exact solutions for our model. We note that despite dimerizing
parameters, the system is still reciprocal; hence we do not
expect the occurrence of the skin effect in our model.

The Hamiltonian in Eq. (1) at μ = 0 remains invariant
under c j → (−1) jc†

j , which enforces the charge conjugation
symmetry. We note that respecting this symmetry ensures that
eigenvalues of the Hamiltonian come in complex-conjugate
pairs making this model not directly realizable in open
quantum systems [40], which can be resolved by a nega-
tive imaginary shift of all eigenvalues [82]. Nevertheless,
preserving the charge conjugation symmetry in Hermitian
models (δ = 0) at the symmetric point � = t allows exact
phase diagrams for arbitrary η to be calculated [13–17,83].
In the following, we present that there exists an analytical
solution for the non-Hermitian model when the charge conju-
gation symmetry is respected, i.e., at μ = 0 and � = t . When
� �= t or μ �= 0, we compute the topological phase diagram
numerically.

Exact solution at μ = 0 and � = t . To obtain the exact
phase diagram of the model Hamiltonian at μ = 0, we employ
two Jordan-Wigner transformations and one spin rotation; see
the Supplemental Material (SM) for details [84]. This proce-
dure maps our initial non-Hermitian interacting Hamiltonian
into a non-Hermitian quadratic fermionic model given by

H =
∑

j

−t j[ f †
j+1 f j + f †

j f j+1 + f †
j f †

j+1 + f j+1 f j]

+
∑

j

Ũ j[ f †
j+1 f j + f †

j f j+1 − f †
j f †

j+1 − f j+1 f j], (3)

FIG. 2. Phase diagrams of the non-Hermitian Hamiltonian and
associated orders of degeneracies on the (U/t − η) plane at μ = 0
and � = t . The non-Hermiticity parameter is set to δ/t = 0 (a), 0.5
(b), 1.0 (c), and 1.5 (d). The yellow dashed lines display the exact
phase boundaries given by Eq. (6). The heat map shows the degen-
eracies obtained numerically for a chain with length L = 16, shown
in red, green, and blue for fourfold, twofold, and no degeneracies,
respectively.

which in the momentum space casts

H =
∑

k

(−t + Ũ )[zk f †
kB fkA + z∗

k f †
kA fkB]

−
∑

k

(t + Ũ )[wk f †
−kA f †

kB + w∗
k fkB f−kA], (4)

where Ũ = U − iδ, zk = (1 + η) + e−ika(1 − η), and wk =
(1 + η) − e−ika(1 − η). Diagonalizing this Hamiltonian, we
obtain the energy spectrum of this four-band system given by

�2
k

4
=

{
Ũ 2(1 + η)2 + t2(1 − η)2 − 2tŨ (1 − η2) cos(k)

Ũ 2(1 − η)2 + t2(1 + η)2 − 2tŨ (1 − η2) cos(k),
(5)

where Ũ 2 = U 2 − δ2 − 2iδU . As eigenvalues of our system
appear in complex-conjugate pairs, due to the charge conju-
gation, zero modes in �k emerge when Re[�k] = 0 at

U

t
=

√
δ2

t2
− (1 ± η)2

(1 ∓ η)2
, (6)

which is obtained at k = ±π/2. In the Hermitian limit (δ =
0), Eq. (6) reproduces the Hermitian results [13–17]. Equa-
tion (6) shows the boundaries between various phases in
our system, presented using yellow dashed lines in Fig. 2.
These boundaries delineate phases with fourfold, twofold, and
no degeneracies, respectively, shown in red, green, and blue
in Fig. 2. The order of degeneracy is determined by χ =∑L

i=0 exp[−λ|εi − ε0|]. This quantity measures the degener-
acy between the first eigenvalue ε0 and the smallest eigenvalue
εi within the energy resolution of 1/λ (= 0.05). Here, the
eigenvalues are calculated using the numerical exact diag-
onalization method. The difference between the numerical
boundaries and the exact solution should be attributed to the
finite-size effect. In the thermodynamic limit (L = ∞), one
can recover the exact phase boundaries; see the SM [84]. The
topological superconducting phase residing in the boundaries
surrounding U = 0 [85] shrinks as non-Hermiticity increases.
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At the critical value δ = t , this topological phase fades away,
resulting in the mixing of other twofold degenerate phases. It
is also worth noting that the exact phase boundaries in Eq. (6)
are associated with transitions between non-Hermitian spectra
with different types of gap in the non-Hermitian effective
model in Eq. (4); see also the SM [84].

Many-body Majorana edge modes. To identify Majorana
modes in our model, in the next step, we rewrite the Hamilto-
nian in Eq. (3) in terms of Majorana fermions ϒA

j = f †
j + f j

and ϒB
j = i( f †

j − f j ).The Hamiltonian then reads

H = i
∑

j

[
t jϒ

B
j ϒA

j+1 + Ũjϒ
A
j ϒB

j+1

]
. (7)

We note that interactions and hopping amplitudes between the
same sublattices or within each unit cell vanish. Hence Eq. (7)
can be decoupled into two independent noninteracting Kitaev
chains with length L/2 such that H = HI + HII, where

HI =
L/2∑
j=1

[−it2 j�
A
I, j+1�

B
I, j + iŨ2 j−1�

A
I, j�

B
I, j

]
, (8)

HII =
L/2∑
j=1

[
iŨ2 j�

B
II, j+1�

A
II, j − it2 j−1�

B
II, j�

A
II, j

]
, (9)

with �A
I, j = ϒA

2 j−1, �B
I, j = ϒB

2 j , �B
II, j = ϒB

2 j−1, and �B
II, j =

ϒA
2 j . Introducing Majorana particles from the electron oper-

ators as γ A
j = c†

j + c j and γ B
j = i(c†

j − c j ), one can show that
ϒ operators are products of γ operators such that [15,17,86–
89]

ϒA
j =

⎧⎪⎨
⎪⎩

∏ j−1
k=odd

[
iγ B

k γ A
k+1

]
γ A

j , j = odd

∏ j−3
k=odd

[
iγ A

k γ B
k+1

]
(iγ A

j−1γ
A
j ), j = even,

(10)

ϒB
j =

⎧⎪⎨
⎪⎩

∏ j−2
k=odd

[
iγ A

k γ B
k+1

]
iγ A

j γ B
j , j = odd

∏ j−1
k=odd

[
iγ B

k γ A
k+1

]
γ B

j , j = even.

(11)

These relations keep the Majorana anticommutation relations
unchanged, i.e., {ϒα

i , ϒ
β
j } = {γ α

i , γ
β
j } = 2δi, jδ

α,β . We note
that ϒ operators which are composed of an odd (even) number
of Majorana fermions (i.e., γ ’s) belong to subsystem I (II)
described by HI (HII).

The quadratic Hamiltonian in Eq. (7) may host two types
of boundary modes (Q). These boundary modes are con-
structed from linear combinations of �

A/B
I/II operators, i.e.,

Qα
β = ∑

j�0 aβ, j�
α
β, j with α = A, B and β = I, II. As Q con-

sists of higher-order multiple Majorana fermions, it is dubbed
a “many-body Majorana operator” [89]. In the Hermitian
limit, Q operators are conserved, [H,Q] = 0, and using the
iteration procedure, one can determine the coefficients (a) as
[15,89,90]

aI, j = −
(

U (1 + η)

t (1 − η)

) j−1

, aII, j = −
(

t (1 + η)

U (1 − η)

) j−1

.

(12)

In non-Hermitian systems, the operator O is conserved if it
satisfies [HR,O] = {HI,O} = 0, where H = HR + iHI [54].
We note that based on the structure of HI and HII in Eqs. (8)

FIG. 3. Phase diagrams of the non-Hermitian Hamiltonian and
associated orders of degeneracies on the (U/t − η) plane at μ = 0
and � �= t . The heat map corresponds to the degeneracies obtained
numerically for a system with L = 16. The superconducting pairing
amplitude and non-Hermiticity are set to (�/t, δ) = (0.5, 0.0) (a),
(1.5,0.0) (b), (0.5,1.0) (c), and (1.5,1.0) (d). The yellow dashed lines
are phase boundaries at � = t and are shown as a guide for the eye.

and (9), {HI,O} = 0 is by construction satisfied and fulfilling
[HR,O] = 0 results in obtaining Eq. (12). Hence the bound-
ary modes in our non-Hermitian system are continuously
(δ → 0) connected to the zero-energy boundary modes.

The Majorana boundary mode QI consists of odd num-
bers of higher-order Majorana operators (γ ), is fermionic,
and satisfies {Z2,QI} = 0, with Z2 being the fermion parity
operator Z2 = (−1)

∑
j c†

j c j , in the infinite-chain limit [90].
However, the QII mode comprises even numbers of higher-
order Majorana operators (γ ) and is bosonic as [Z2,QII] = 0
[14,15,89]. Regions with fourfold degeneracies in Fig. 2 host
both (QI,QII ). The topological superconducting phase en-
closing U = 0 merely hosts QI, in agreement with Hermitian
noninteracting intuition [85]. The other two twofold degener-
ate phases accommodate QII.

Beyond exact solutions. Let us now present the phase di-
agram of our system away from the integrable regime � = t
and μ = 0. First, we consider �/t ∈ {0.5, 1.5} and plot the
associated phase diagrams with δ ∈ {0.0, 1.0} in Fig. 3 for a
finite-size system with L = 16. Similar to the phase diagram
of the system at � = t , we witness phases with fourfold,
twofold, and no degeneracies. Comparing the exact phase
boundaries at � = t , in yellow dashed lines, with boundaries
of regions with 2n-fold degeneracies, in red or green, we
identify deformation of the phase boundaries toward U < 0
(>0) for � < t (> t).

At finite chemical potential and δ = 0, all fourfold
degeneracies are lifted, and merely phases with twofold de-
generacies remain in the phase diagram; see Fig. 4. The
Hermitian phase boundary U = −0.5t at η = 0 is consistent
with previous calculations on the Kitaev-Hubbard chain [91];
see Fig. 4(a) at L = 16, Fig. 4(c) in the thermodynamics limit,
and the SM [84]. Witnessing merely twofold degeneracies in
phases with U > 1 in the Hermitian limit also persists as non-
Hermiticity is increased; see Fig. 4(b) at L = 16. While no
portion of the topological superconducting phase, the region
encircling U = 0, is present in Fig. 4(b) obtained at μ = 0.25
and L = 16, extrapolating the phase diagram using different
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FIG. 4. Phase diagrams of the non-Hermitian Hamiltonian and
associated orders of degeneracies on the (U/t − η) plane with μ �= 0.
The superconducting pairing amplitude is set to � = t . The chain
size is set to L = 16 in (a) and (b), and extrapolated data in the
thermodynamic limit are shown in (c) and (d). The yellow dashed
lines are phase boundaries at μ = 0 and are shown as a guide for the
eye. We took δ, μ = 0, 0.25t in (a) and (c) and δ, μ = 0.5, 0.25t in
(b) and (d).

system sizes, shown in Fig. 4(d), reveals the survival of this
phase at L = ∞.

Experimental measurement. We now address the signa-
tures of the zero modes from the experimental point of
view. In a tunneling experiment with a local probe [92–96],
the conductance at zero bias G(ω = 0, n) depends on the
probability of extracting (injecting) an electron in site n at
energy ω as dI/dV (n, ω) ∼ ∑

α |〈GS|c(†)
n |�α〉|2δ(ω − Eα +

EGS), where |GS〉 is the ground state and H |�α〉 = Eα|�α〉 are
the many-body excited states of the system. In the presence of
topological degeneracy, the ground state presents zero-mode
excitations that distinguish different ground states. In that
scenario, the zero-bias conductance at site n can be written
as dI/dV (n, ω = 0) ∼ �(n), where

�(n) =
∑

α

|〈�α|cn|GS〉|2 + |〈�α|c†
n|GS〉|2, (13)

which directly images the probability of a local excitation
between the ground state and its degenerate manifold. Here,
α runs over the ground state manifold. In particular, �(n)

allows one to directly observe the emergence of topological
zero modes associated with the topological degeneracy of the
ground state. With the previous quantity, the emergence of
topological zero modes associated with the topological degen-
eracy of the non-Hermitian model can be directly imaged. We
show in Fig. 5 the local correlator computed for the interacting
non-Hermitian model for different system sizes. As the system
becomes larger, an edge excitation emerges in the model,
which in the thermodynamic limit leads to decoupled modes
between the two edges; see also the SM [84]. The previous
quantity has been directly imaged in the realization of the
current model in the topological phase with δ = U = 0 and
η �= 0 [92], and a minimal chain with � �= 0 [96].

Conclusion. To summarize, we have presented a fam-
ily of non-Hermitian interacting models featuring different
classes of topological degeneracies. While noninteracting
non-Hermitian models can be studied with conventional
methodologies, the inclusion of many-body interactions ren-
ders exploring non-Hermitian systems greatly challenging.
This Research Letter establishes a family of solvable interact-
ing non-Hermitian models, providing ideal systems for bench-
marking methodologies to treat interacting non-Hermitian
models. Besides showing the emergence of different topolog-
ical phases in the solvable limit, we provided the many-body
operators accounting for the topological degeneracy of the
model. We showed how non-Hermiticity modifies topological
many-body models, substantially impacting the topological
phases of Hermitian systems. We benchmarked our analyti-
cal construction with exact numerical calculations of the full
many-body system, demonstrating that even for finite sys-
tems, the emergence of topological modes and topological
degeneracies can be observed. Our results establish a versatile
family of models featuring interacting topology, providing
a starting point for higher-dimensional solvable interacting
models.
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FIG. 5. Spatial distribution of the zero modes for different system lengths for the non-Hermitian model computed with the local response
function given by Eq. (13). It is observed that both in the presence of repulsive interactions and in the presence of attractive interactions,
an edge response appears, accounting for the topological degeneracy of the model. The edge excitations emerge both in the case of twofold
[(a) and (d)] and fourfold [(b) and (c)] degeneracy. We took μ = 0, � = t , η = −0.6, and δ = 0.5t .
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