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Optical dispersions through intracellular inhomogeneities
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The transport of intensity equation (TIE) exhibits a noninterferometric correlation between the intensity and
phase variations of intermediate fields (e.g., light and electrons) in biological imaging. Previous TIE formulations
have generally assumed free-space propagation of monochromatic, coherent field functions crossing phase
distributions along a longitudinal direction. In this study, we modify the TIE with fractal (or self-similar)
organization models based on intracellular refractive index turbulence. We then implement TIE simulations over
a broad range of fractal dimensions and wavelengths. Simulation results show how the intensity propagation
through the spatial fluctuation of intracellular refractive index interconnects fractal dimensionality with intensity
dispersion (or transmissivity) within the picometer to micrometer wavelength range. Additionally, we provide
a spatial autocorrelation of phase derivatives, which allows for the direct measurement and reconstruction of
intracellular fractal profiles from optical and electron microscopy imaging.
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Introduction. Biological cells are the basic structural and
functional unit of life. All cells consist of a cytoplasm en-
closed within a membrane, which includes biomolecules
(e.g., proteins and nucleic acids) and intracellular organelles
(e.g., the endoplasmic reticulum, Golgi apparatus, and mi-
tochondria). These complex intracellular structures can be
visualized using optical imaging systems and electron micro-
scopes. As visible light has a wavelength ranging from 360
to 760 nm, which is up to 5 orders of magnitude longer than
the wavelength of electrons, optical imaging techniques tend
to filter out the inner structures of smaller intracellular objects
otherwise observable through electron microscopy.

The complex amplitude of a wave function describing
optical fields is generally composed of two major physical
quantities: amplitude and phase functions [1]. Variations in
amplitudes (or intensities) can be captured directly by pho-
tosensitive detectors such as the human eye and scientific
CMOS (complementary metal-oxide semiconductor) cam-
eras. Variations in phases, however, are barely visible using
optical microscopy systems and are sensitive to light scat-
tering and fluctuations due to invisible spatial distributions
of intracellular optical properties, e.g., refractive index and
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optical thickness. These phase variations have been formal-
ized into a partial differential equation, termed the transport
of intensity equation (TIE) [2–4], which is dependent on
the wavelength and the intensity variations of intermediate
fields (i.e., photon and electron). This equation represents,
in particular, the free space propagation of a monochromatic
coherent wave function to a given phase distribution along a
longitudinal direction.

A key challenge to bridging the large resolution gap that
lies between optical and electron microscopy techniques con-
sists of finding meaningful variations in both intensity and
phase functions. Over a broad range of wavelengths, the inten-
sity and phase variations of intermediate fields are inextricably
linked via the TIE. Previous TIE formalizations have gener-
ally assumed that a complex plane wave function describing
intermediate fields can be propagated through an arbitrary
phase distribution in free space. Intensity transport of the
wave functions interacting with the complex refractive aspects
of cellular interiors, however, remains elusive. In this Letter,
we modify the TIE with fractal (or self-similar) organization
models for intracellular refractive index turbulence. We then
implement the TIE simulation in the picometer to microm-
eter wavelength range, computing intensity dispersions and
reductions caused by inhomogeneous spatial distributions of
the intracellular refractive index. Crucially, we show how the
a priori lateral intensity distribution of a cell can be described
as a function of its fractal dimensions. Such fractal media are
optically thin and transparent through the visible wavelengths
but exhibit the compression of fractal dimensionality and
the increase of intensity dispersions in the wavelength range
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FIG. 1. For a given wavelength λ, the initial intensity distribu-
tion of a complex plane wave I (r⊥, zinitial ) propagates through the
intracellular refractive index n(r⊥, z), exhibiting the final intensity
distribution I (r⊥, zfinal ).

of electron microscopy imaging. We also derive a spatial-
autocorrelation function that interconnects phase derivatives
with intracellular fractal profiles, and we demonstrate the
direct measurements and reconstruction of optical properties
from fluorescent cell imaging. Our work facilitates further
extensions to bioimage simulation modules [5–14], incorpo-
rating, in particular, light scattering and fluctuations caused
by nonuniform spatial distributions of intracellular optical
properties. Such modification of the simulation is of partic-
ular relevance to the numerical evaluation and verification
of observational invariance (or symmetry) as postulated in
data science, likely leading to more realistic simulations of
biological imaging.

Transport of intensity equation. For a specific intermedi-
ate field wavelength λ, the TIE can be formulated using the
laws of conservation of energy (i.e., Helmholz equation) and
parametrized with a complex refractive index for the intracel-
lular media,

n(r⊥, z) = n0[1 + �n(r⊥, z) + iκ (r⊥, z)], (1)

where n0 and �n(r⊥, z) are the mean and spatial fluctuation
of the refractive index, respectively. κ (r⊥, z) in the imaginary
part denotes the spatial distribution of the attenuation index.
In this formulation, a monochromatic coherent wave function
propagating through the refractive index distribution along the
axial axis (see Fig. 1) is given by

ψ (r⊥, z) = A(r⊥, z)eikn0z, (2)

where A(r⊥, z) is the scalar complex amplitude of the wave
function, and k is the wave number in free space k = 2π/λ.
Substituting Eqs. (1) and (2) into the Helmholtz equation, we
can deduce a paraxial wave equation,

[
∇2

⊥ + 2kn0i
∂

∂z
+ 2kn0

∂

∂z
(β + iα)

]
A(r⊥, z) = 0, (3)

where ∇⊥ is the two-dimensional nabla operator in the trans-
verse direction, i.e., ∇⊥ = (∂/∂x, ∂/∂y). The α and β factors
represent amplitude and phase variations arising from the
spatial fluctuations of the refractive and attenuation indexes:

α(r⊥, z) = kn0

∫
[1 + �n(r⊥, z)] κ (r⊥, z)dz (4)

and

β(r⊥, z) = kn0

∫ [
�n(r⊥, z) − 1

2
κ (r⊥, z)2

]
dz. (5)

Assuming the scalar complex amplitude of the parax-
ial wave function to be A(r⊥, z) = √

I (r⊥, z)eiφ(r⊥,z), it is
straightforward to derive a modified form of the TIE:

∂I (r⊥, z)

∂z
= − 1

kn0
∇⊥ · [I (r⊥, z)∇⊥φ(r⊥, z)]

− 2
∂α(r⊥, z)

∂z
I (r⊥, z), (6)

where I (r⊥, z) and φ(r⊥, z) denote the intensity and the phase
of the paraxial wave function. The β factor vanishes in the TIE
modification but may be more relevant to phase changes in the
transport of phase equation [3]. Furthermore, the derivation
details are discussed in Sec. A.1 of the Supplemental Material
(SM) [15].

The left-hand side of Eq. (6) represents the axial intensity
differentiation that guides the intensity propagation along the
z axis. The right-hand side of the equation exhibits the total
energy variation in a lateral intensity distribution. Such energy
variations are composed of two parts.

(i) The first part, −∇⊥ · [I∇⊥φ]/(kn0), represents the
intensity and phase variations arising from the spatial fluc-
tuation of the refractive and attenuation index. There are two
terms in these variations. I∇2

⊥φ can be interpreted as the in-
tensity fluctuation stemming from the convergent or divergent
behavior of the intensity at the radius of the local phase curva-
ture, the reciprocal of which is proportional to the Laplacian of
the phase. ∇⊥I · ∇⊥φ represents a measure of the translational
effects of the phase gradient in the direction of the intensity
gradient.

(ii) The second part, −2(∂α/∂z)I , relates to Beer-
Lambert’s law of intensity reduction in an inhomogeneous
medium, exhibiting, in particular, the energy absorption and
scattering of the intermediate fields traveling through an in-
tracellular medium.

Fractal cell modeling. A wave function of intermediate
fields propagating through a biological medium can encounter
structures with dimensions ranging from the size of a protein
macromolecule (1–4 nm) and intracellular compartments: for
example, membranes (10 nm), nucleus (5–10 μm), and mi-
tochondria (0.2–2.0 μm). Cells also contain a cytoskeleton
made of filaments (7–25 nm), as well as nucleoli (0.5–1.0 μm)
and DNA in the form of chromatin in the nucleus. These
complex structures are often modeled under the assumption
that the constituents of cellular interiors are tightly filled with
various discrete particles, with their surfaces pushed together
to form contiguous biological components. Such cell model-
ing, when combined with Mie scattering theory, provides a
homogeneous medium in a limited range of wavelengths and
voxel size of the cell simulations [16–18]. Because of these
constraints, the spatial fluctuations arising from the interac-
tions between incoherent wave functions and discrete particles
cannot be made to line up at the microscopic levels of intensity
transport theory without breaking modeling assumptions.

Interactions of a wave function with intracellular inhomo-
geneities are associated with a turbulence in the refractive
index distribution for which the spatial fluctuations are fractal
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FIG. 2. Fractal model of intracellular refractive index turbulence.
(a) The WM covariance as a function of distance between two dif-
ferent pixel positions ρ. Each colored line denotes one of the four
representative models of fractal media: medium I (blue), medium
II (green), medium III (magenta), and medium IV (orange). (b) An
example of the mean differential scattering cross section per unit
volume plotted in spherical coordinates (lc = 30 nm). An incident
wave function polarized in the vertical plane can propagate from left
to right along the longitudinal direction. The dimple is located at the
origin.

in nature [19–21]. For the sake of model simplicity, we con-
sider intracellular constituents as a continuous fractal medium
rather than the aggregation of various discrete particles. For
a given fractal dimension D f , which usually represents a
mathematical index for characterizing fractal patterns or reg-
ularities by quantifying their complexity, continuous random
fields of refractive index fluctuation �n can be modeled by the
Whittle-Matérn (WM) covariance (or correlation) function,

Bn(ρ) = σ 2
n 21−ν

|�(ν)|
(

ρ

lc

)ν

Kν

(
ρ

lc

)
, (7)

where lc are σ 2
n are the correlation length and the variance

of the excessive refractive index, respectively. Kν (·) denotes
the νth index of the modified Bessel function of the second
kind ν = (D f − 3)/2. The shape of the WM covariance func-
tion can be exhibited in a wide range of plausible fractal
dimensions including the power law for D f < 3, Henyey-
Greenstein for D f = 3, the stretched exponential for 3 <

D f < 4, Kolmogorov/von Karman for D f = 3.67, the expo-
nential for D f = 4, and the Gaussian as D f → ∞. Figure 2(a)
shows the WM covariance function for four different fractals
models (see Sec. A.2.1 of the SM [15] for model parametriza-
tions).

While the attenuation function in the fractal cell model
can be represented by the intensity absorption coefficient μa

and the scattering coefficient μs, most cells are transparent,
weakly absorbing intermediate fields passing through their
interiors. In a limiting case where μa � μs, we consider the
four following assumptions: (i) the attenuation function is
independent of the spatial variation of scattering coefficient,
(ii) no backward scattering of the wave function, (ii) No de-
polarization effects, and (iv) the attenuation function can be
written in the form

κ (r⊥, z) =
〈
μs(kn0)

〉
kn0

= 1

kn0

∫∫
�

〈
σ
(
k̂o, k̂i

)〉
d�, (8)

where � and kn0 are the solid angle and the effective
wave number of intermediate fields, respectively. 〈μs(kn0)〉
represents the mean scattering coefficient derived from an

integration of the mean differential scattering cross sec-
tion 〈σ (k̂o, k̂i )〉 over all angles. Figure 2(b) shows an example
of the scattering cross section in spherical coordinates, ex-
hibiting, in particular, forward-directed scattering along the
longitudinal direction (see Sec. A.2.2 of Ref. [15] for the σ

definition and more figures for the four representative fractal
media).

TIE simulations via fractal cell modeling. Fundamental
characteristics of the intensity transport through continuous
fractal media can be extracted from numerical simulations and
analyses of the TIE. Here we assume that phase functions in
the TIE are given by Eq. (5), i.e., φ(r⊥, z) = −β(r⊥, z), and
we then implement TIE simulations over a wide range of frac-
tal dimensions and wavelengths, computing the propagation
and variation of the lateral intensity distribution through the
fractal cell models along the axial direction (see Fig. 1). The
finite difference approximation of the intensity propagation
for the nth image frame can be represented in the form

In+1
i j = In

i j + δz

(
∂I

∂z

)n

i j

= In
i j + δz

{
1

kn0
[∇⊥ · (I∇⊥β )]

− 2[1 + �n(r⊥, z)]
〈
μs(kn0)

〉
I

}n

i j

, (9)

where i and j represent the index of the pixel position for a
given image frame, with the convergence condition for TIE
simulations being δz < kn0δxδy.

To analyze biophysical effects arising from intensity prop-
agation via fractal cell modeling, we run the TIE simulations
for the following two initial intensity conditions I (r⊥, zinitial ):
a uniform intensity distribution 1000 counts/pixel, and a
standard image in an intensity range from 500 to 1000
counts/pixel. Our simulation results for a thicker cell sample
(∼10 μm) are summarized in Fig. 3 (see Sec. B of the SM [15]
for more simulation results. For λ = 507 nm, the intensity
propagation of the standard image through the fractal medium
III (D f = 4.00) exhibits intensity attenuation and intensity
dispersion in the final intensity image [see Fig. 3(b)]. Fig-
ure 3(d) shows a comparison between initial and final intensity
histograms, thereby dispersing and reducing the intensity dis-
tribution of the initial standard image. However, for the fractal
medium I (D f = 3.25), there is significant transmissivity in
the final intensity distribution [see Fig. 3(a)]; almost complete
overlap between initial and final intensity histograms is shown
in Fig. 3(a).

Convergence and stability of the TIE simulation can be
seen in the size and the fractional error of the intensity disper-
sion which varies with axial distance. Figure 3(e) exhibits rel-
atively fast convergence of the variation of root-mean-square
(RMS) values along the axial direction (z > 2–3 μm). The
TIE simulation for fractal medium I (D f = 3.25) and medium
II (D f = 3.67) converges to steady state at relatively lower
RMS values, roughly 50 (green line) and 11 (red line). How-
ever, at higher fractal dimensions, i.e., D f = 4.00 and 5.00,
the RMS value that gives rise to convergence of intensity dis-
persion is about 250 (magenta line) and 500 (orange line). In
addition, Figure 3(f) shows propagation of averaged fractional
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FIG. 3. The simulation results for thicker cell sample (∼10 μm).
(a) Final intensity distribution for medium I (Df = 3.25). Scale bar:
1.00 μm. (b) Final intensity distribution for medium III (Df = 4.00).
(c) Histogram comparison between initial and final intensity distribu-
tions for medium I (Df = 3.25). Blue and red colored areas represent
histograms for initial and final intensity distributions, respectively.
(d) Comparison of intensity histograms for medium III (Df = 4.00).
(e) RMS variations arising from intensity propagation shown as a
function of the z axis. Each colored line denotes one of the four dif-
ferent fractal models: medium I (blue), medium II (green), medium
III (magenta), and medium IV (orange). (f) Averaged fractional
errors shown as a function of the z axis.

errors along the z axis, ε(zp)=|I (zp)−I (zp−1)|/I (zp), thus im-
plying no divergence of numerical errors.

Electron microscopy is capable of imaging thinner cell
sample sizes less than 150 nm [22]. In the wavelength range
of electron beams, we consider optical depth (or thickness)
to quantify a specific level of transparency of the four fractal
media. Optical depth is a dimensionless factor that generally
represents a measure of scattering and absorption up to a spe-
cific “depth” of intracellular media when intermediate fields
(e.g., light and electron) travel through the structure inside the
sample. In fractal cell modeling, optical depth can be defined
as follows:

τ =
∫ L

0
〈μs(kn0)〉dz, (10)

where L is the physical thickness of biological samples. For
L = 110 nm, Figure 4 shows the optical depth over a broad
range of wavelengths from electron beams (blue region, λ =
1.00 pm to 1.00 nm) to visible light (green region, λ = 360–
760 nm). The fractal media are optically thin (τ � 1) and

FIG. 4. Optical depth for sample thickness (L = 110 nm) repre-
sented over a wide range of effective wave number kn0 values, from
visible light (green) to electron beam (blue). Color lines denote the
four different fractal media. If τ � 1, then the sample is optically
thick. If τ � 1, then the sample is optically thin. The dashed line
represents τ = 1.

transparent through the visible light wavelength, weakly dis-
persing the light intensities passing through their interiors.
Such intensity dispersion thus provides approximately invari-
ant transport between initial and final intensity distributions,
I (zfinal ) ∼ I (zinitial ) (see Fig. S10(a) in Sec. B2 of the SM
[15]). However, in a wavelength range of electron microscopy
imaging, there is a significant tradeoff between fractal di-
mensionality and optical depth. Fractal medium I (blue),
medium II (green), and medium III (magenta) are optically
thick (τ � 1), exhibiting, in particular, intensity attenuation
as well as intensity dispersion in the final standard image (see
Figs. S10(d)–S10(f) of Ref. [15]). Mathematically speaking,
as the fractal dimensions increase, the optical depth becomes
thinner and the transmissivity thereof can be increased in
fractal medium IV (orange).

Application. A further motivation for our work is the
direct measurement and reconstruction of the refractive in-
dex profiles of cellular interiors. Recent experimental studies
using the TIE via bioimaging [4,23], for example, have re-
constructed intracellular phase distributions without modeling
the refractive index turbulence. Likewise, Rogers and his
colleagues have verified the apparent similarity in power
spectral densities between the WM covariance function and
scanning electron microscopy images [20]. These qualitative
verifications, however, were made without applying intensity
transport theory and so cannot be valid as direct measurements
of the refractive index profiles. For a proper comparison and
measurement in bioimaging, a mathematical relation between
the phase factor and the WM covariance model can be derived
from the spatial autocorrelation of Eq. (5) and then written in
the form〈

∂β(r)

∂z

∂β(r + ρ)

∂z

〉
= (kn0)2Bn(ρ) +

[ 〈μs(kn0)〉√
2kn0

]4

(11)

when satisfying the four assumptions declared in the cell
modeling section (see Sec. C.1 of the SM [15] for deriva-
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tion details). In this formula, the WM covariance function
Bn(ρ) and the mean scattering coefficient 〈μ(kn0)〉 represent
the shape and offset of the phase-differential autocorrelation
along axial directions. Figure S11 of Ref. [15] shows no sig-
nificant shape differences over a broad wavelength range from
electron beams (dashed lines) to visible lights (solid lines);
a large variation of the offset is found at ρ > 10 μm due
to the dependence on the effective wave number. Moreover,
we use this mathematical relation to reconstruct intracellular
optical properties (e.g., fractal dimension and scattering coef-
ficient) from fluorescent cell imaging. In our demonstration,
the covariance function is directly compared and fitted to the
observed spatial-autocorrelation curves of phase derivatives.
Table S4 and Fig. S14 of Ref. [15] not only represent the best
estimates in fractal model parameters but also their statistical
uncertainties which give a numerical indication of the level of
validity and confidence in our fitting results (see Sec. C.2 of
the SM [15] for analysis details; see also Refs. [3,4,24–33]).

Conclusion. The TIE plays a key role in bridging the
resolution gap between optical and electron microscopy
techniques, providing, in particular, a noninterferometric cor-
relation between intensity and phase functions of intermediate
fields (e.g., electrons and light) over a broad range of wave-
lengths. These microscopy techniques are capable of directly
imaging the intensity variations of intermediate fields passing
through the interior of cells. Variations in phases, however,
are barely visible with bioimaging systems and are sensitive
to light scattering and fluctuation through invisible (or unob-
servable) spatial distributions of intracellular refractive and
attenuation indexes. In this paper, we reformulated the TIE
through fractal modeling of these two indexes. Our results
from these TIE simulations revealed that intensity propa-
gations through the refractive index fluctuation can lead to
nonintuitive interconnections of fractal dimensionality and
intensity dispersion (or transmissivity) in the picometer to
micrometer wavelength range. We also derived the spatial
correlation of phase derivatives that enables the direct mea-

surements of the WM covariance model parameters from
optical and electron microscopy imaging.

Of further significance to our work is a numerical
evaluation and verification of observational invariance (or
symmetry) as postulated in data science. Most subcellular
observations made via optical imaging are dedicated to an
empirical (or data-driven) approach, its main function being
to allow biophysicists to extract the regularities and pat-
terns of the apparent intracellular properties captured with
photosensitive devices [34–38]. These regularities are often
formalized into network models, mainly as a function of the
observable intracellular components. However, in actual intra-
cellular imaging, propagations and variations of light through
inhomogeneous intracellular structures are dependent on the
wavelength of light, as well as intracellular optical properties
such as the refractive index, optical thickness, and attenua-
tion coefficients. These optical dependencies raise questions
regarding whether the subcellular model representations can
be conserved or violated through observational processes. Our
work sheds light on these questions from the perspective
of fundamental optics and also suggests new developments
and extensions to bioimage simulation modules [5–14],
including, in particular, light scattering and fluctuations
caused by the nonuniform spatial distributions of intracellular
optical properties. Such an implementation is of broad rel-
evance beyond just the TIE simulations presented here and
will likely lead to more realistic simulations of biological
imaging.
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Amselem, and J. Elf, Pointwise error estimates in localization
microscopy, Nat. Commun. 8, 1 (2017).

[9] V. Venkataramani, F. Herrmannsdörfer, M. Heilemann, and
T. Kuner, SuReSim: simulating localization microscopy ex-
periments from ground truth models, Nat. Methods 13, 319
(2016).

[10] M. Watabe, S. N. V. Arjunan, W. X. Chew, K. Kaizu, and
K. Takahashi, Simulation of live-cell imaging system reveals
hidden uncertainties in cooperative binding measurements,
Phys. Rev. E 100, 010402(R) (2019); M. Watabe, S. N. V.
Arjunan, S. Fukushima, K. Iwamoto, J. Kozuka, S. Matsuoka,
Y. Shindo, M. Ueda, and K. Takahashi, A computational frame-
work for bioimaging simulation, PLoS ONE 10, e0130089
(2015).

L022043-5

https://doi.org/10.1364/JOSA.73.001434
https://doi.org/10.1016/j.optlaseng.2020.106187
https://doi.org/10.1093/jmicro/dfaa053
https://doi.org/10.1021/acsphotonics.1c01469
https://doi.org/10.1371/journal.pcbi.1006079
https://doi.org/10.1371/journal.pone.0161602
https://doi.org/10.1093/bioinformatics/btw109
https://doi.org/10.1038/ncomms15115
https://doi.org/10.1038/nmeth.3775
https://doi.org/10.1103/PhysRevE.100.010402
https://doi.org/10.1371/journal.pone.0130089


MASAKI WATABE et al. PHYSICAL REVIEW RESEARCH 5, L022043 (2023)

[11] J. Angiolini, N. Plachta, E. Mocskos, and V. Levi, Exploring the
dynamics of cell processes through simulations of fluorescence
microscopy experiments, Biophys. J. 108, 2613 (2015).

[12] S. H. Rezatofighi, W. T. E. Pitkeathly, S. Gould, R. Hartley,
K. Mele, W. E. Hughes, and J. G. Burchfield, A framework
for generating realistic synthetic sequences of total internal
reflection fluorescence microscopy images, in Proceedings of
the IEEE 10th International Symposium on Biomedical Imaging
(IEEE, New York, 2013), pp. 157–160.

[13] I. F. Sbalzarini, Modeling and simulation of biological systems
from image data, BioEssays 35, 482 (2013).

[14] J. Boulanger, C. Kervrann, and P. Bouthemy, A simulation and
estimation framework for intracellular dynamics and trafficking
in video-microscopy and fluorescence imagery, Med. Image
Anal. 13, 132 (2009).

[15] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.5.L022043 for further details.

[16] J. M. Schmitt and G. Kumar, Optical scattering properties
of soft tissue: a discrete particle model, Appl. Opt. 37, 2788
(1998).

[17] K. Kaizu, K. Nishida, Y. Sakamoto, S. Kato, T. Niina, N.
Nishida, N. Aota, M. Koizumi, and K. Takahashi, E-Cell Sys-
tem Version 4, doi: 10.5281/zenodo.3365597 (2019).

[18] W. X. Chew, K. Kaizu, M. Watabe, S. V. Muniandy, K.
Takahashi, and S. N. V. Arjunan, Surface reaction-diffusion
kinetics on lattice at the microscopic scale, Phys. Rev. E 99,
042411 (2019); W.-x. Chew, K. Kaizu, M. Watabe, S. V.
Muniandy, K. Takahashi, and S. N. V. Arjunan, Reaction-
diffusion kinetics on lattice at the microscopic scale, ibid.
98, 032418 (2018); S. N. V. Arjunan and M. Tomita, A new
multicompartmental reaction-diffusion modeling method links
transient membrane attachment of E. coli MinE to E-ring for-
mation, Syst. Synth. Biol. 4, 35 (2010).

[19] A. K. Glaser, Y. Chen, and J. T. C. Liu, Fractal propagation
method enables realistic optical microscopy simulations in bio-
logical tissues, Optica 3, 861 (2016).

[20] J. D. Rogers, A. J. Radosevich, J. Yi, and V. Backman, Model-
ing light scattering in tissue as continuous random media using
a versatile refractive index correlation function, IEEE J. Sel.
Top. Quantum Electron. 20, 1 (2013).

[21] A. Wax and V. Backman, Biomedical Applications of Light Scat-
tering (McGraw–Hill, New York, 2010), p. 401; J. D. Rogers,
I. R. Capoglu, and V. Backman, Nonscalar elastic light scatter-
ing from continuous media in the Born approximation: Erratum,
Opt. Lett. 35, 1367 (2010).

[22] Electron microscopy, TEM vs SEM, Thermo Fisher
Scientific, https://www.thermofisher.com/jp/ja/home/materials-
science/learning-center/applications/sem-tem-difference.html,
accessed: 2022-12-27.

[23] S. K. Rajput, O. Matoba, M. Kumar, X. Quan, Y. Awatsuji,
Y. Tamada, and E. Tajahuerce, Multi-physical parameter cross-
sectional imaging of quantitative phase and fluorescence by

integrated multimodal microscopy, IEEE J. Sel. Top. Quantum
Electron. 27, 6801809 (2021).

[24] N. Yudistira, M. Kavitha, T. Itabashi, A. H. Iwane, and T.
Kurita, Prediction of sequential organelles localization under
imbalance using a balanced deep U-net, Sci. Rep. 10, 2626
(2020).

[25] T. M. Ichinose and A. H. Iwane, Cytological analyses by
advanced electron microscopy, in Cyanidioschyzon merolae,
edited by T. Kuroiwa, S. Miyagishima, S. Matsunaga, N. Sato,
H. Nozaki, K. Tanaka, and O. Misumi (Springer, Berlin, 2017),
pp. 129–151.

[26] S. Y. Miyagishima and K. Tanaka, The unicellular red alga
Cyanidioschyzon merolae—The simplest model of a photosyn-
thetic eukaryote, Plant and Cell Physiology 62, 926 (2021).

[27] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F.
Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu, and
the scikit-image contributors, scikit-image: Image processing in
Python, PeerJ 2, e453 (2014).

[28] S. Müller, L. Schüler, A. Zech, and F. Heße, GSTools v1.3: A
toolbox for geostatistical modelling in python, Geosci. Model
Dev. 15, 3161 (2022).

[29] H. Kimura, N. Takizawa, E. Allemand, T. Hori, F. J. Iborra, N.
Nozaki, M. Muraki, M. Hagiwara, A. R. Krainer, T. Fukagawa,
and K. Okawa, A novel histone exchange factor, protein phos-
phatase 2Cγ , mediates the exchange and dephosphorylation of
H2A-H2B, J. Cell Biol. 175, 389 (2006).

[30] M. Watabe, Physical constraints to phase retrieval using the
transport of intensity equation in fluorescence microscopy
imaging, presented at the 1st Conference for Sensing and
Imaging Through Scattering and Fluctuating Field in Biol-
ogy, Telecommunication and Astronomy (SI-Thru2022), April
19–22, 2022, at Pacifico Yokohama, Japan.

[31] S. Mazumder, Numerical Methods for Partial Differential Equa-
tions: Finite Difference and Finite Volume Methods, 1st ed.
(Academic Press, San Diego, 2016).

[32] B. Xue and S. Zheng, Phase retrieval using the transport of
intensity equation solved by the FMG-CG method, Optik 122,
2101 (2011).

[33] S. V. Pinhasi, R. Alimi, L. Perelmutter, and S. Eliezer, Topogra-
phy retrieval using different solutions of the transport intensity
equation, J. Opt. Soc. Am. A 27, 2285 (2010).

[34] E. Meijering, A bird’s-eye view of deep learning in bioimage
analysis, Comput. Struct. Biotechnol. J. 18, 2312 (2020).

[35] E. Moen, D. Bannon, T. Kudo, W. Graf, M. Covert, and D. Van
Valen, Deep learning for cellular image analysis, Nat. Methods
16, 1233 (2019).

[36] M. I. Jordan and T. M. Mitchell, Machine learning: Trends,
perspectives, and prospects, Science 349, 255 (2015).

[37] V. Marx, The big challenges of big data, Nature (London) 498,
255 (2013).

[38] G. Danuser, Computer vision in cell biology, Cell 147, 973
(2011).

L022043-6

https://doi.org/10.1016/j.bpj.2015.04.014
https://doi.org/10.1002/bies.201200051
https://doi.org/10.1016/j.media.2008.06.017
http://link.aps.org/supplemental/10.1103/PhysRevResearch.5.L022043
https://doi.org/10.1364/AO.37.002788
https://doi.org/10.5281/zenodo.3365597
https://doi.org/10.1103/PhysRevE.99.042411
https://doi.org/10.1103/PhysRevE.98.032418
https://doi.org/10.1007/s11693-009-9047-2
https://doi.org/10.1364/OPTICA.3.000861
https://doi.org/10.1109/JSTQE.2013.2280999
https://doi.org/10.1364/OL.35.001367
https://www.thermofisher.com/jp/ja/home/materials-science/learning-center/applications/sem-tem-difference.html
https://doi.org/10.1109/JSTQE.2021.3064406
https://doi.org/10.1038/s41598-020-59285-9
https://doi.org/10.1093/pcp/pcab052
https://doi.org/10.7717/peerj.453
https://doi.org/10.5194/gmd-15-3161-2022
https://doi.org/10.1083/jcb.200608001
https://doi.org/10.1016/j.ijleo.2011.01.004
https://doi.org/10.1364/JOSAA.27.002285
https://doi.org/10.1016/j.csbj.2020.08.003
https://doi.org/10.1038/s41592-019-0403-1
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1038/498255a
https://doi.org/10.1016/j.cell.2011.11.001

