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Electrons in two-dimensional (2D) Dirac materials carry local band geometric quantities, such as the Berry
curvature and orbital magnetic moments, which, combined with electron-phonon coupling, may affect the
phonon dynamics in an unusual way. Here, we propose intrinsic nonreciprocal linear and circular phonon
dichroism in magnetic 2D Dirac materials, which originate from nonlocal band geometric quantities of electrons
and reduce to pure Fermi-surface properties for acoustic phonons. We find that to acquire the nonreciprocity,
the Fermi pocket anisotropy rather than the chirality of electrons is crucial. Two possible mechanisms of Fermi
pocket anisotropy are suggested: (i) trigonal warping and out-of-plane magnetization or (ii) Rashba spin-orbit
interaction and in-plane magnetization. As a concrete example, we predict appreciable and tunable nonreciprocal
phonon dichroism in 2H-MoTe2 on a EuO substrate. Our finding points to a different route towards electrical
control of phonon nonreciprocity for acoustoelectronics applications based on 2D quantum materials.
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Introduction. Electrons in two-dimensional (2D) Dirac ma-
terials, including graphene [1] and transition metal dichalco-
genides [2], carry local band geometric quantities, such as
Berry curvature [3–5] and orbital magnetic moments [6,7],
as a result of broken time-reversal or inversion symmetry.
These geometric quantities have recently been recognized to
play pivotal roles in various electronic phenomena. When fur-
ther taking into account the electron-phonon (e-ph) coupling,
the geometric information of electrons can be inherited by
phonons, leading to unusual phononic behaviors, e.g., phonon
Hall viscosity [8], anomalous phonon effective charges [9,10],
phonon magnetochiral effects [11,12], and phonon helic-
ity [13].

On the other hand, phonon nonreciprocity, referring to the
asymmetric phononic behaviors upon reversing the propaga-
tion vector q, are attractive for phononic applications [14].
The physical origins of phonon or surface-acoustic-wave
nonreciprocity have been ascribed to Lorentz force [15,16],
asymmetric magnon-phonon coupling or magnon disper-
sion [17–23], nonlinearity [24], and parametric time de-
pendence [25]. In contrast, electrically controlled phonon
nonreciprocity based on e-ph coupling has been less ex-
plored [12]. One possible reason is that such phenomena of
nonreciprocity are generally weak in bulk materials. Given the
enhanced e-ph interaction and highly tunable electronic band
structure [26–30], 2D materials seem to be promising in the
pursuit of e-ph coupling-driven nonreciprocity.
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An attempt has been made to study the circular phonon
dichroism (CPD) in monolayer transition metal dichalco-
genides [31], where there is a difference of absorption coef-
ficients γ between left (L)- and right (R)-handed circularly
polarized phonons [see Fig. 1(d)]. Based on symmetry princi-
ples [32–34], such CPD was expected to be nonreciprocal, i.e.,
distinct γ when reversing q to −q, as a result of the simultane-
ously broken time-reversal T̂ and space-inversion symmetry
Î . However, analytical calculations suggested unexpected re-
ciprocal behaviors γ L/R(q) = γ L/R(−q), and nonreciprocal
behaviors γ L/R(M) �= γ L/R(−M) under the reversal of mag-
netization M. More surprisingly, when further incorporating
the Rashba spin-orbit interaction (SOI), the reciprocity in
phonon attenuation between ±q survives despite the fact that
the system becomes chiral due to the lack of mirror planes.
This is in stark contrast to the phonon magnetochiral effect
in bulk crystals [see Figs. 1(a) and 1(b)], which shows non-
reciprocal (reciprocal) behaviors when the underlying system
is chiral (nonchiral) [11,12]. Here, we adopt the concept of
chirality from chiral crystals [19,35], that is, a system is chiral
when distinguishable from its mirror image. From the view-
point of symmetries, an electron acquires chirality when all
mirror symmetries and time-reversal symmetry are broken,
otherwise it is nonchiral. The different nonreciprocal behav-
iors between CPD and the phonon magnetochiral effect raise
a question: What kind of geometric information (beyond the
chirality) of electrons is inherited by phonons and induces the
phonon nonreciprocity? To address it, a deeper understanding
of the interplay of electronic band geometry, symmetry, and
phonon nonreciprocity is required.

In this Letter, we show that linear and circular phonon
dichroism arise from nonlocal band geometric quantities
of electrons in magnetic 2D Dirac materials. For acoustic
phonons, these effects reduce to pure Fermi-surface proper-
ties. To acquire the nonreciprocity, we find that the chirality is
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FIG. 1. Schematics of the phonon magnetochiral effect for
(a) nonchiral and (b) chiral bulk crystals, and (c) linear and (d) cir-
cular phonon dichroism for T̂ - and Î-broken 2D crystals. γ i(q) are
the phonon absorption coefficients, with phonon wave vector q and
polarization i. In (a) and (b), q‖ (q⊥) is parallel (perpendicular) to
the external magnetic field B. In (c) and (d), q is in plane while
magnetization M is out of plane. l (t) labels phonons with longitu-
dinal (transverse) polarization, and L (R) labels left- (right-) handed
circular phonons. The polarization is indicated by double arrows in
(c) and (d). Dashed lines refer to the reversal process when changing
q to −q.

not a necessary condition (as summarized in Table I), whereas
the anisotropy of each Fermi pocket is crucial, particularly in
multivalley systems. We propose two possible mechanisms to
realize the Fermi pocket anisotropy (as shown in Table I):
(i) trigonal warping and out-of-plane magnetization or (ii)
Rashba SOI and in-plane magnetization. To demonstrate
our theory, nonreciprocal LPD and CPD are discussed in

TABLE I. Chirality and reciprocity for phonon magnetochiral
effect (PMC), linear phonon dichroism (LPD), and circular phonon
dichroism (CPD). H0, HZ , HX , HR, and Hw are the Hamiltonian for
intrinsic monolayer transition metal dichalcogenides, out-of-plane
magnetization, in-plane (zigzag-direction) magnetization, Rashba
SOI, and trigonal warping, respectively.

Reciprocal Reciprocal
Chiral (q → −q) (B/M → −B/M)

PMC (bulk) [11] No Yes Yes
PMC (bulk) [12] Yes No No
LPD/CPD
(H0 + HZ ) [31]

No Yes Yes (LPD), No (CPD)

LPD/CPD (H0 +
HZ + HR) [31]

Yes Yes Yes (LPD), No (CPD)

LPD/CPD
(H0 + HZ + Hw)

No No No (LPD), No (CPD)

LPD/CPD
(H0 + HX )

No Yes Yes (LPD), No (CPD)

LPD/CPD
(H0 + HX + HR)

No No No (LPD), No (CPD)

2H-MoTe2 deposited on a EuO substrate. Our study uncovers
a connection between electronic band geometry and nonre-
ciprocal phonon attenuation, and paves the way towards the
electrical control of phonon nonreciprocity for acoustoelec-
tronics applications.

Linear and circular phonon dichroism. The Hamiltonian
reads Ĥ = Ĥe + Ĥe-ph, where Ĥe and Ĥe-ph correspond to
electronic and e-ph coupling terms, respectively. The general
form of e-ph coupling follows Ĥe-ph = ∑

k,q ψ+(k)[u(q) ·
T̂ (q)]ψ (k − q) [31,36–39], where ψ (k) and ψ+(k) are the
annihilation and creation operators of electrons. For acoustic
phonons, u(q) is a Fourier transform of in-plane collective
displacement u(r) = (ux, uy) from the equilibrium position of
ions, with phonon propagation vector q. T̂ (q) can be regarded
as a force operator acting on ions exerted by electrons.

For multivalley systems, the valley-resolved retarded re-
sponse function reads [40]

χτ
αβ (q, ω) =

∑
n,m

∫
h̄d2k

ρ(2π )2
F τ

nm(ω, k, q)
[
Sτ

αβ (ω, k, q)
]

mn,

(1)
where α, β = x, y, τ = ±1 labels valley K±, ρ is the 2D mass
density, and m, n are band indices. The dynamical factor

F τ
nm(ω, k, q) = fτ,m,k − fτ,n,k′

ω + iδ + Eτ,m,k − Eτ,n,k′
(2)

and geometric factor[
Sτ

αβ (ω, k, q)
]

mn = 〈ψτ,m,k|T̂ τ
α (q)|ψτ,n,k′ 〉

× 〈ψτ,n,k′ |T̂ τ
β (−q)|ψτ,m,k〉, (3)

where Eτ,m,k and |ψτ,m,k〉 are the eigendispersion and wave
functions of Ĥe, respectively. k′ = k − q. fτ,m,k ( fτ,n,k′ ) is the
Fermi distribution function and δ is a positive infinitesimal.
T̂

τ
(q) is the valley-dependent force operator.
We mainly focus on the anti-Hermitian part of [χαβ] ma-

trix, that is, −2iωγ (q, ω), which physically describes the
dissipation of phonons. The form of the Hermitian matrix
γ (q, ω) reads [40]

γ (q, ω) =
[
γD + γD̄ γĀ + iγA

γĀ − iγA γD − γD̄

]
, (4)

where γD = (γxx + γyy)/2 and γD̄ = (γxx − γyy)/2 refer to
the symmetric and antisymmetric normal (longitudinal)
absorption. γĀ = Re[γxy] and γA = Im[γxy] refer to the
symmetric and antisymmetric anomalous (Hall) absorption.
When linearly polarized longitudinal or transverse phonons
are injected, i.e., |ul (q)〉 = [cos φq, sin φq]T and |ut (q)〉 =
[− sin φq, cos φq]T , the damping (absorption) coefficients
γ l/t = γD ± cos 2φqγD̄ ± sin 2φqγĀ, where the azimuthal an-
gle φq = tan−1(qy/qx ). The difference between γ l and γ t

defines the linear phonon dichroism (LPD) [see Fig. 1(c)].
On the other hand, when circularly polarized phonons are
considered, |uL/R(q)〉 = 1√

2
[1,±i]T , the damping coefficients

γ L/R = γD ∓ γA. The difference between γ L and γ R defines
the circular phonon dichroism (CPD) [see Fig. 1(d)]. As LPD
and CPD effects arise from different parts of the γ matrix, the
two phenomena may behave rather differently (see Table I).
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FIG. 2. Schematics of (a) the lattice and (b) electronic band
structure of 2H-MoTe2 on a EuO substrate. Pseudospin structure on
the Fermi surface [intersected by EF in (b)] at (c) valley K+ and
(d) valley K−. In (b), red (green) arrows label spin-up (spin-down)
bands. In (c) and (d), purple arrows denote the in-plane projection of
pseudospin for states lying on the Fermi surface. The phonon wave
vector q is assumed to be along the x̂ (zigzag) direction, connecting
two electronic states with wave vector k and k′ = k − q. k0 is a
small deviation of wave vector from the Fermi surface due to energy
offset ω.

Geometric origin. We now reveal the geometric origin of
LPD and CPD effects. For 2D materials, the acoustic phonon
energy ω is usually much smaller than the electronic Fermi
energy EF . In this sense, in the low-temperature limit, the
dynamical factor reduces to

Im
[
F τ

nm

] ≈ −πωδ(Eτ,m,k − EF )δ(ω + Eτ,m,k − Eτ,n,k′ ). (5)

Physically, this means that acoustic phonons only introduce
transitions between electrons on the Fermi surface. If a single
band is intersected by the Fermi level at each valley [see
Fig. 2(b)], only the intraband transition m = n is allowed.

The geometric factor (Sτ
αβ )mn characterizes a connection

between states with wave vector k and k′, triggered by the
force operator T̂

τ
(q). Here, k and k′ = k − q are not neces-

sarily close [see Figs. 2(c) and 2(d)], suggesting that (Sτ
αβ )mn

has a nonlocal nature in the momentum space. This is in
stark contrast to the optical [5] or phononic response in the
long-wavelength limit [12,13], where the occurrence of Berry
curvature and orbital magnetic moment all relies on the lo-
cal operations in the momentum space. As a comparison,
the long-wavelength limit of (Sτ

αβ )mn is also discussed in the
Supplemental Material [40].

The role of T̂
τ
(q) in Eq. (3) can be viewed as a

rotation of (pseudo)spins of Bloch states. For conven-
tional deformation potentials T̂

τ
(q) = igq, χαβ reduces to

a normal electron polarization function [41,42], correspond-
ing to a vanishing CPD signal. In 2D hexagonal Dirac
crystals, the e-ph coupling behaves more as pseudogauge
potentials [37,43], e.g., T̂

τ=−1
(q) = ig[q · σ, (q × σ)z] and

T̂
τ=1

(q) = K[T̂
τ=−1

(−q)], with the complex conjugation K.
Here, T̂ τ

x (q) and T̂ τ
y (q) act as a rotation of angle π in the

(pseudo)spin subspace about the axis along the direction
(qx,−τqy ) and (τqy, qx ), respectively. In this sense, χαβ can
be regarded as a peculiar type of dynamical spin susceptibil-
ity [41,42], which, however, only depends on states on the
Fermi surface.

Model. To facilitate the discussion, we consider a
generic model for magnetic 2D Dirac materials: Ĥe =∑

k ψ+(k)He(k)ψ (k), with He(k) = H0 + Hn and

H0 = 

2
σz + h̄v(τσxkx + σyky) + τ sz(λcσ+ + λvσ−),

Hn = −s · n(Mcσ+ + Mvσ−). (6)

s and σ are Pauli matrices acting on spin and pseudospin
(orbital) subspace, respectively. σ± = 1

2 (σ0 ± σz ). Hn refers to
the magnetic exchange coupling. λc/v and Mc/v characterize
the intrinsic SOI and Zeeman field in the sublattice space,
respectively. This model can be applied to graphene [44],
monolayer transition metal dichalcogenides [45,46], and other
2D Dirac materials [47]. Here, we consider an out-of-plane
magnetization HZ ≡ Hn=ẑ and set the Fermi level in the
valence band, whose dispersion is shown schematically in
Fig. 2(b).

We find that γ τ
A = 0 exactly on the Fermi surface, whereas

γ τ
D/D̄/Ā

are generally nonzero [40]. The vanishing γ τ
A is a

result of Dirac model rather than specific symmetries. This
is in contrast to the nonvanishing optical conductivities of the
Dirac model. Such a difference originates from the different
optical and phononic processes. For optical processes, Hall
conductivities are contributed by the band geometric quanti-
ties of both conduction and valence bands since the interband
transitions of electrons are optically induced. For acoustic
phonons, electronic transitions are within valence bands with
different wave vectors since phonons are unable to induce
the transitions between conduction and valence bands [see
Fig. 2(b)]. As a result, γ τ

A depends on the information of
band geometries of purely valence bands, and vanishes for
the Dirac model. The vanishing γ τ

A , however, does not imply
that CPD vanishes since there is a small energy offset ω in
Im[F τ

vv] which drives electrons slightly away from the Fermi
surface [that is, k0 in Fig. 2(c)]. As a result, we find that
Im[Sτ

xy]vv ∝ ω [40], which gives rise to a finite, linear-in-ω
contribution to γ τ

A .
Nonreciprocity and symmetry. When reversing the phonon

propagation vector q, we find that γ i(q, ω) = γ i(−q, ω), with
i = l, t, L, R, indicating that both LPD and CPD are reciprocal
[see Figs. 1(c) and 1(d)]. To understand it, we check the
remaining symmetries for the electronic Hamiltonian He(k) =
H0 + HZ at each valley [40]: mirror reflection σ̂h (z → −z),
threefold rotation Ĉ3, and two hidden “inversion” symmetries
P̂1 = s0σz and P̂2 = szσz. Note that only P̂1 and P̂2 symme-
tries relate electrons with ±k at a single valley Kτ , that is,
P̂+

1(2)He(k)P̂1(2) = He(−k). By contrast, σ̂h relates (τ, k) to
itself and Ĉ3 relates (τ, k) to (τ, Ĉ3k), neither of which is
relevant to the reciprocal relations between ±q. Here, k is
a relative wave vector away from the valley center. Further-
more, we find that P̂1(2) transforms the force operator T̂

τ
(q)
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by P̂+
1(2)T̂

τ
(q)P̂1(2) = T̂

τ
(−q). As a result, we recognize that

either P̂1 or P̂2 symmetry is the origin of reciprocal relations
for phonon attenuation between ±q [40].

The role of chirality can be examined by incorporating the
Rashba SOI,

HR = λR(τ syσx − sxσy), (7)

into He(k). Such a term naturally breaks σ̂h symmetry, mean-
ing that no mirror plane exists. Given that time-reversal
symmetry is already broken in Eq. (6), the system becomes
chiral. Detailed calculations show that LPD and CPD are still
reciprocal (see Table I), thereby excluding a possible origin
of nonreciprocity due to nonzero chirality. On the other hand,
such a result can be explained by recognizing that an intro-
duction of HR still preserves P̂2 symmetry, which establishes
a link between ±k.

The role of Ĉ3 symmetry can be further examined by
replacing the out-of-plane magnetization HZ with the in-
plane magnetization HX ≡ Hn=x̂. We find that LPD and CPD
are reciprocal (see Table I) despite the fact that HX breaks
the Ĉ3 symmetry. This implies that Ĉ3 symmetry is also not the
origin of nonreciprocal behaviors. By contrast, HX preserves
P̂1 symmetry [40], which still provides a link between ±k.

Therefore to acquire the nonreciprocity, simultaneous
P̂1 and P̂2 symmetry breaking is required. This naturally
leads to an anisotropy of the Fermi pocket at each val-
ley. To realize it, two possible schemes are proposed in
the following. Moreover, the nonreciprocal responses un-
der the reversal of magnetization M → −M can be derived
by the generalized Onsager reciprocal theorem γ (q, M) =
γ T (−q,−M) [34,40,50,51] (see Table I).

Trigonal warping and out-of-plane magnetization. One
scheme to acquire nonreciprocity is to consider the Hamil-
tonian He(k) = H0 + Hw + HZ , with a trigonal warping
term [52–54]

Hw = λw

[(
k2

x − k2
y

)
σx − 2τkxkyσy

]
. (8)

This leads to the Fermi pocket anisotropy at each valley, as
shown in Fig. 3(a). The q-dependent γ l/t and γ L/R exhibit
two peaks for both positive and negative q [see Fig. 3(b)],
labeled by XA/Ā and XB/B̄. These peaks have distinct physical
origins. Peaks XA/Ā at q/kF = ±0.22 arise from the divergent
[dEτ=−1,v,k,k′/dk]−1 (valley K− is dominant over K+), which
can be regarded as a different type of joint density of states
between the wave vector k and k − q of the valence band.
This is a natural consequence of Fermi pocket anisotropy.
On the other hand, peaks XB/B̄ at q/kF = ±0.70 are due
to a sudden vanishing of contributions from valley K+ [see
Fig. 3(a)]. According to the dynamical factor Im[F τ

vv] from
Eq. (5), the critical value qc can be derived by solving the
condition ω(qc) + Eτ=1,v,k = Eτ=1,v,k−qc

for valley K+. When
q becomes larger than qc, electronic scattering within val-
ley K+ by phonons is inhibited, and only scattering within
valley K− exists and contributes to phonon absorption. The
degree of nonreciprocity can be defined as δγ i = [γ i(q) −
γ i(−q)]/[γ i(q) + γ i(−q)], where i = l, t, L, R label different
types of phonon polarizations. In Fig. 3(c), δγ i is tunable by
q and becomes pronounced around peaks XA/Ā and XB/B̄. The

FIG. 3. (a) Anisotropic (isotropic) Fermi pockets of monolayer
MoTe2 with (without) trigonal warping, denoted by solid (dashed)
lines and λw �= 0 (λw = 0). kF is the Fermi wave vector at valley
K− without trigonal warping. q = qx̂ and M = Mẑ. (b) Linear and
circular phonon dichroism γ l/t and γ L/R (in units of γ0) as functions
of phonon wave vector q (in units of kF ). (c) Degree of nonre-
ciprocity δγ i (with i = l, t, L, R) as functions of phonon wave vector
q. Parameters:  = 1.05 eV, λv = 0.11 eV, λc = 0.029 eV, h̄v =
2.33 eV Å, Mc = 0.206 eV, Mv = 0.17 eV [45], λw = −1.0 eV Å2,
EF = −0.5 eV, g = 0.32 eV [48], γ0 = 2.23 × 109 s−1 [31]. Phonon
dispersion ω = h̄cl/t |q|, with longitudinal (transverse) sound velocity
cl = 3.64 × 103 m/s (ct = 2.21 × 103 m/s) [49].

behaviors at peaks XB/B̄ are complex due to a competition of l
and t phonon modes, which have different critical values qc.

Rashba SOI and in-plane magnetization. Another scheme
to acquire the nonreciprocity is to consider the Hamil-
tonian He(k) = H0 + HR + HX , whose results are shown
in Fig. 4. Under a magnetization M along the x direc-
tion, the anisotropic Fermi pocket of each valley shifts
collectively along the y direction [see Fig. 4(a)]. This
excludes the possibilities of peaks XB/B̄ in γ l/L/R since
the critical value qc is always the same between valley
K+ and K−. The occurrence of peaks XA/Ā still arises
from the divergent [dEτ=±,v,k,k′/dk]−1, as characteristics
of Fermi pocket anisotropy. γ t is vanishingly small [see
Fig. 4(b)], since γ t = γD + γD̄ ∝ geometric factor [Sτ

xx]vv ∝
|〈ψτ,v,k|qyσy|ψτ,v,k−q〉kx=0|2 according to Eq. (3). Such a
matrix element almost vanishes since the pseudospin of
two states |ψτ,v,kx=0,ky〉 and |ψτ,v,kx=0,ky−qy〉 points oppositely
along the y direction [see Figs. 2(c) and 2(d)]. These lead to
nonreciprocal LPD and CPD as shown in Fig. 4(c). On the
other hand, when q is along the x direction, i.e., q ‖ M, the
nonreciprocity vanishes.

Discussion. We have studied the nonreciprocal phonon
dichroism induced by Fermi pocket anisotropy in 2D Dirac
materials. We find that these effects have the origin of non-
local electronic band geometries and are determined by the
Fermi-surface properties for acoustic phonons. In multialley
systems, the nonreciprocity is driven by the Fermi pocket
anisotropy rather than the chirality. Two possible schemes
are proposed to realize the Fermi pocket anisotropy in 2H-
MoTe2. Interestingly, similar proposals have been given in
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FIG. 4. (a) Anisotropic (isotropic) Fermi pockets of monolayer
MoTe2 with the Rashba SOI in the presence (absence) of in-plane
magnetization, denoted by solid (dashed) lines. kF is the Fermi wave
vector at valley K± without magnetization. q = qŷ and M = Mx̂.
(b) Linear and circular phonon dichroism γ l/t and γ L/R (in units of
γ0) as functions of phonon wave vector q (in units of kF ). (c) Degree
of nonreciprocity δγ i as functions of phonon wave vector q. Param-
eters: λR = 0.2 eV, EF = −0.6 eV.

electronic systems in order to acquire the nonreciprocal cur-
rent in noncentrosymmetric Rashba superconductors [55–57],
nonreciprocal resistivity in BiTeBr [58], and a unidirectional

valley-contrasting photocurrent [59]. Our findings suggest
that the geometric information of electrons can be inherited
by phonons through the pseudogauge e-ph coupling, thereby
inducing the phonon nonreciprocity.

In the above analysis, we have only considered the imag-
inary part of self-energy and neglected the real part. The
treatment is appropriate since we mainly focus on the acoustic
phonons, whose sound velocity is about two orders of magni-
tude smaller than the Fermi velocity of electrons. This leads to
|�s|/ω ∼ 10−6 when |q|/kF = 0.1, and |�s|/ω ∼ 10−3 when
|q|/kF = 1.8 [40]. �s is the real part of self-energy. Therefore
the correction from �s to the phonon dispersion can be safely
neglected.

Experimentally, the circular phonon dichroism can be
detected by the pulse-echo technique based on the differ-
ent absorption rates between left- and right-handed circular
phonons [60]. Alternatively, we can use the Raman spec-
troscopy analysis of phonon polarization [61]. Our studies can
be further generalized to other situations, such as discussing
the role of disorder, superconducting states, and the nonlinear
effect in phonon dichroism. These will be the subject of future
work.
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