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Nonreciprocal interactions are present in many systems out of equilibrium. The rate of entropy production is a
measure that quantifies the time irreversibility of a system, and thus how far it is from equilibrium. In this work,
we introduce a nonmotile active particle system where activity originates from asymmetric, pairwise interaction
forces that result in an injection of energy at the microscopic scale. We calculate stationary correlation functions
and entropy production rate in three exactly solvable cases, and analyze a more general case in a perturbation
theory as an expansion in weak interactions. Our results show that equilibrium may be recovered by adjusting
the diffusion constants despite nonreciprocity, revealing an equivalence in the absolute amplitude of the force
and diffusivity. We support our analytical results with numerical simulations.
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Introduction. Nonreciprocal interactions are those that do
not obey Newton’s third law (actio equal reactio). These
generate intrinsically out-of-equilibrium dynamics [1–4] and
are often invoked to model striking dynamical pattern for-
mation such as flocking [5,6], worming [7], or traveling
states [8]. Common mechanisms that break reciprocity are
(anti-)alignment [9] and vision cone interactions [10–12].
Nonreciprocal interactions between two species play a crucial
role in numerous biological processes, such as predator-prey
dynamics [13,14] or collective cell migration [15]. Nonre-
ciprocity is found in attractive-repulsive interactions giving
rise, for example, to the chase-and-run dynamics present be-
tween a dog and a herd of sheep: while the dog runs toward
the sheep, sheep fearfully run away from the dog, following
a trajectory such as the one shown in Fig. 1(a). A remarkable
application of nonreciprocal interactions is the experimental
design of self-propelling colloids [4,16–19]. The underlying
principle of formation and self-propulsion of colloids such as
Janus dimers is based on attractive-repulsive interactions be-
tween two types of nonmotile microspheres that are sustained
by light [16,17], or by ion exchange [18]. The emergence
of self-propulsion due to interactions between particles that
are otherwise nonmotile indicates that the system is out of
equilibrium and that it therefore produces entropy through the
dissipation of heat.

Over the last decade, the rate of entropy production Ṡ has
become a prominent measure of irreversibility that quantifies
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how far from equilibrium a system is [20–23]. Beyond its
binary ability to determine whether a system is in thermal
equilibrium (Ṡ = 0) or not (Ṡ > 0), following Sekimoto’s
thermodynamic interpretation of Langevin dynamics, the en-
tropy production quantifies the average rate of heat dissipation
in the medium, or equivalently, the energetic cost of sustain-
ing a nonequilibrium steady state [1,24,25]. Measuring and
calculating the entropy production rate is, therefore, key to
understanding the nonequilibrium behavior of a system and
poses a major theoretical challenge in the case of interacting
many-particle active systems. Recent studies have focused on
the thermodynamic properties of nonreciprocity in a system
described by coupled, linear Langevin equations, where in-
teractions are modeled by harmonic oscillators [1,2,19,26].
References [1,19] showed that there exist systems with non-
reciprocal interactions that do satisfy detailed balance under
specific conditions. However, a fully microscopic calculation
of the entropy production of a many-particle system with
nonlinear and nonreciprocal interaction forces is lacking. The
power of microscopic theories in the study of active par-
ticle systems lies in the direct link they establish between
agents’ dynamics and their emergent phenomena. Deriving
exact results that serve as a benchmark is thus of paramount
importance [20,22].

In this Letter, we introduce a nonmotile active particle
system that is driven out of equilibrium by nonreciprocal
interactions between one particle and the rest [27]. We con-
sider three exactly solvable cases and a fourth, more general
case using a perturbative field theory: (a) two-particle sys-
tem, (b) equilibrium system, (c) chase-and-run dynamics, and
(d) sinusoidal interaction potentials. Case (a) is a model for
a single Janus dimer under a suitable choice of interaction
forces [16–18], whereas cases (b)–(d) involve a single particle
of one type, such as a tracer, in a dilute bath of particles of
another type under different assumptions on the interaction
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FIG. 1. Particle trajectories (x, y) described by Eq. (1) with one
particle of species A (red) and N = 10 particles of species B (gray),
sinusoidal interacting potentials, equal diffusivities, and zero drifts.
The sign of potential amplitudes a1 and a2 are indicated on the left.
Interactions are nonreciprocal in (a) and (b) and reciprocal in (c) and
(d). In this example, since D1 = D2, nonreciprocal systems are active
and reciprocal systems are passive.

forces. In the dilute regime, interactions between particles of
the same kind are assumed to be negligible [28–30]. In case
(b) we find the condition for detailed balance that interaction
forces must satisfy for this system to be at equilibrium. Case
(c) explores chase-and-run dynamics, where interaction forces
between particles of different kinds are equal in magnitude
and have equal direction. This system is a model of predator-
prey dynamics [13,14], and collective cell migration [15]. In
case (d), we assume that interaction forces are given by a
sinusoidal pair potential with variable amplitude and explore
the phase space of attractive and repulsive forces. Our pertur-
bative approach provides a systematic framework to calculate
correlation functions and the short-time propagator, both of
which are essential to calculate the entropy production rate
[20,31–33]. Our analytical results are compared with the av-
erage rate of dissipated heat along the stochastic trajectories of
the particles in Sekimoto’s framework [1,25,34,35], showing
good agreement within the domain where our perturbative
treatment holds. We address the regime of small to interme-
diate particle numbers, and establish the path from Langevin
dynamics to emergent effective interactions.

Model. We consider a one-dimensional system with two
types of particles: one particle of species A at position x
and N particles of species B at y = (y1, . . . , yN ), with dif-
fusion constants D1 and D2, and drifts u1 and u2, that live
on a ring of length L. The interaction forces are mediated
by the periodic and bounded pair potentials V1 and V2, re-
sulting in the additional effective drifts −∑

i ∂xV1(x − yi ) for
particle A and −∂yiV2(yi − x) for each particle B. Accord-
ing to the structure of these pair interactions, B particles do
not directly interact with each other, although their trajecto-
ries are effectively coupled by means of particle A, as we
discuss below.

The system dynamics are described by the coupled, over-
damped Langevin equations,

ẋ = u1 −
N∑

i=1

V ′
1 (x − yi ) + ξ (t ), (1a)

ẏi = u2 − V ′
2 (yi − x) + ξi(t ), (1b)

where ξ and ξi are Gaussian white noises, with corre-
lators 〈ξ (t )ξ (t ′)〉 = 2D1δ(t − t ′) and 〈ξi(t )ξ j (t ′)〉 = 2D2δi, j

δ(t − t ′). We assume Boltzmann constant and mobility to be
unity, and therefore deem the diffusion constants to essentially
be temperatures. The stationary currents are

Jx =
(

u1 −
N∑

i=1

V ′
1 (x − yi ) − D1∂x

)
P(x, y), (2a)

Jyi = [u2 − V ′
2 (yi − x) − D2∂yi ]P(x, y), (2b)

where P(x, y) is the joint particle density of state x, y
[36]. If interactions are reciprocal, namely, the interac-
tion potentials satisfy V1(�) = V2(−�) ≡ V (�) with � = x −
y, then forces are conservative because Eq. (1) can be
derived from the Hamiltonian H = −u1x + ∑N

i=1[−u2yi +
V (x − yi )]. Conversely, nonreciprocal interactions result in
nonconservative forces. Figure 1 shows particle trajectories
described by Eq. (1) with different combinations of attrac-
tive and repulsive potentials, illustrating the breakdown of
time-reversal symmetry in the active systems in Figs. 1(a) and
1(b), in contrast to the passive systems in Figs. 1(c) and 1(d).
We simulate particle trajectories described by Eq. (1) using
standard Brownian dynamics simulations.

We calculate the entropy production to quantify the irre-
versibility of this system [21–23]. In Gaspard’s framework
[21], the entropy production of a Markov process is

Ṡ(t ) = lim
τ→0

1

(N!)2

∫ L

0
dx dx′dN y dN y′

×
{

P(x, y; t )Ẇ (x, y → x′, y′; τ )

× ln

(
P(x, y; t )W (x, y → x′, y′; τ )

P(x′, y′; t )W (x′, y′ → x, y; τ )

)}
, (3)

where W (x, y → x′, y′; τ ) is the transition probability for the
system to go from state x, y to state x′, y′ in an interval of time
τ . The Gibbs factor 1/N! in each integral over y in Eq. (3)
accounts for the phase space of the positions of B particles
being that of indistinguishable particles in the continuum,
where the probability that two particles are found at the same
position has zero measure.

Using the framework established in [20], the entropy pro-
duction in Eq. (3) in the stationary state simplifies to

Ṡ =
∫ L

0
dx dy

{
− V ′′

1 (x − y) + 1

D1

(u1

N
− V ′

1 (x − y)
)2

− V ′′
2 (y − x) + 1

D2
[u2 − V ′

2 (y − x)]2

}
P1,N

1,1 (x, y)

+
∫ L

0
dx dy dy′ 1

D1

(u1

N
− V ′

1 (x − y)
)

×
(u1

N
− V ′

1 (x − y′)
)

P1,N
1,2 (x, y, y′), (4)
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FIG. 2. Rescaled two-point correlation function P1,N
1,1 (x, y) of

A and B particles at x and y, with sinusoidal interaction poten-
tials and a1 = −0.2, a2 = −0.3, u1 = u2 = 0, D1 = 1, D2 = 0.1,
L = 2. Symbols show numerical estimates; dashed lines, exact result
Eq. (5); and solid lines, perturbative prediction [37].

which is derived in the Supplemental Material (SM) [37], and
where P1,N

1,n is the correlation function of an A particle and n B
particles is a system of one A particle and N particles of type
B. In the SM [37], we derive the entropy production in a more
general system, namely, M particles of type A that interact
with N particles of type B. We obtain Eq. (4) by setting
M = 1. Equation (4) shows that the entropy production of this
system depends on the two-point P1,N

1,1 and three-point P1,N
1,2

correlation functions [20]. In the absence of an exact solution,
we calculate these correlation functions perturbatively, using
a Doi-Peliti field theory that captures the Langevin dynamics
in Eq. (1).

Two-particle system. The system with one particle of each
species is tractable exactly. This is a model of a Janus dimer if
V1 and V2 are chosen to be one attractive and the other repul-
sive, such that attractive forces dominate over repulsive forces
[16–18]. Without self-propulsion, u1 = u2 = 0, the two-point
correlation function is the barometric formula [36,38]

P1,1
1,1 (x, y) = 1

LN e− V1 (x−y)+V2 (y−x)
D1+D2 , (5)

with N such that
∫ L

0 dx dy P1,1
1,1 (x, y) = 1, which is represented

with dashed lines in Fig. 2. The three-point correlation func-
tion is naturally P1,1

1,2 = 0. Setting the currents to zero, Jx = 0
and Jy = 0, gives the condition for detailed balance for this
system,

V ′
1 (x − y)

D1
= −V ′

2 (y − x)

D2
, (6)

showing an equivalent role in the amplitude of interaction
force and diffusion. The system can therefore be out of equi-
librium due to particle interactions even in the absence of
self-propulsion. The detailed balance condition in Eq. (6) is
consistent with the detailed balance condition found in [1]
for the special case of interactions modeled by harmonic os-
cillators and in [4] for interaction forces that differ by their
amplitude. Using Eq. (5) in Eq. (4), the stationary entropy

production is

Ṡ =
∫ L

0
d�

ρ(�)

D1 + D2

⎛
⎝

√
D2

D1
V ′

1 (�) +
√

D1

D2
V ′

2 (−�)

⎞
⎠

2

, (7)

where ρ(x − y) = LP1,1
1,1 (x, y). The entropy production is zero

only if Eq. (6) is satisfied. In the case of a Janus dimer, Eq. (7)
gives the average energetic cost of sustaining the structure and
active motion of the colloid by laser light [16,17], according to
Sekimoto’s framework. Figure 3 shows Ṡ for the two-particle
case, N = 1, for sinusoidal interaction potentials.

Equilibrium system. Imposing the detailed balance condi-
tion in Eq. (6) and zero drifts u1 = u2 = 0, the stationary joint
particle density is

P(x, y) = 1

LN e− ∑N
i=1

V1 (x−yi )+V2 (yi−x)
D1+D2 , (8)

with normalization N such that
∫ L

0 dx dN y P(x, y) = N!.
The currents in Eq. (2) vanish, implying that the detailed
balance condition in Eq. (6) generalizes to the many-
particle system. This is an important result, though not
surprising: by adding a new B particle to the equilib-
rium system, the system remains at equilibrium as long
as the new particle satisfies the detailed balance condi-
tion stated above. Following the same procedure, we find
that the detailed balance condition in Eq. (6) is general to
the system with M particles of species A, as well as for
the system with interactions between particles of the same
species.

Chase and run. The limiting case where interaction forces
between species are attractive-repulsive with equal magni-
tude and equal directions is of particular interest both for its
biological motivation [13–15], as well as for its mathemat-
ical tractability. Assuming that interaction potentials satisfy
V1(�) = −V2(−�) ≡ V (�), the two-particle system is uni-
formly distributed, Eq. (5), because the distance � = x − y
diffuses in the comoving frame, and it is the center of mass
that spins with velocity −V ′(�). By the same reasoning, the
stationary joint particle density stays uniform when adding
new B particles to the system. By marginalization, the (1 +
n)-point correlation function is

P1,N
1,n (x, y1, . . . , yn) = N!

(N − n)!Ln+1
, (9)

with 0 � n � N . The entropy production in Eq. (4) is, thus,

Ṡ = N

L

(
1

D1
+ 1

D2

) ∫ L

0
d� [V ′(�)]2, (10)

yielding an exact result for arbitrary particle number N , shown
in Fig. 3. Equation (11) shows that the system with chase-
and-run dynamics is out of equilibrium independently of the
magnitude of interaction forces. Indeed, the chaser tends to
run behind the chased, exhibiting the breakdown of time-
reversal symmetry.

Sinusoidal interaction potentials. To explore the parameter
space of attractive and repulsive interactions, we consider si-
nusoidal potentials V1(�) = a1 cos k1� and V2(�) = a2 cos k1�,
with k1 = 2π/L. The signs of a1 and a2 determine whether
interactions are attractive or repulsive: negative amplitudes
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FIG. 3. Entropy production Ṡ varying a1, (a) N ∈ {1, . . . , 30}
and (b) N ∈ {1, . . . , 5}, and fixed a2 = 0.05, D1 = 1, D2 = 0.1,
u1 = u2 = 0, L = 2. Symbols indicate numerical estimates using
Sekimoto’s framework, Eq. (11), and lines perturbative prediction in
[37]. The cases (i) chase-and-run dynamics a1 = −a2, Eq. (10), (ii)
reciprocal interactions a1 = a2, and (iii) equilibrium a1 = a2D1/D2,
are indicated. The system with reciprocal interactions is out of equi-
librium because D1 �= D2, Eq. (6).

result in attraction, whereas positive amplitudes result in re-
pulsion, as shown in Fig. 1.

We derive the two-point and three-point correlation func-
tions, in a perturbative expansion valid at small amplitudes a1

and a2 compared to the diffusion constants D1 and D2 in the
SM [37]. In Fig. 2, we show the two-point correlation function
P1,N

1,1 (x, y) of the A particle at position x and one out of N
particles of species B at y, as a function of the distance x − y,
varying N , for fixed negative amplitudes a1 < 0, a2 < 0. Due
to attractive interactions, short distances are favored over
longer distances, which is more prominent as N increases.
Figure 2 shows good agreement for small to intermediate N
and illustrates how the deviation of the numerical estimates
from the perturbative prediction increases with N .

Using the correlation functions P1,N
1,1 and P1,N

1,2 in Eq. (4)
we obtain the entropy production Ṡ, derived in the SM [37],
which is shown in Fig. 3 as a function of a1 (solid lines). The
behavior of Ṡ is shown for two ranges of N : the small to large
particle number in Fig. 3(a), and the small to intermediate par-
ticle numbers in Fig. 3(b). Following Sekimoto’s framework
[1,25,34,35], in Fig. 3 we compare the perturbative result for
Ṡ with the total entropy production

Ṡ = Q̇x

T1
+

N∑
i=1

Q̇yi

T2
(11)

FIG. 4. Rescaled entropy production Ṡ/N varying N and a1, for
fixed a2 = 0.05, D1 = 1, D2 = 0.1, u1 = u2 = 0, L = 2. The values
of Ṡ/N collapse onto a single point in case (i) chase-and-run dynam-
ics (a1 = −a2) due to the linear dependence of Ṡ in N , Eq. (10), and
in case (iii) equilibrium (a1 = a2D1/D2), where Ṡ = 0. For any other
values of a1, we find that Ṡ grows sublinearly in N .

estimated numerically from the average rate of dissi-
pated energy along particle trajectories, Q̇x = 〈[ẋ(t ) − ξ (t )] ◦
dx(t )〉/dt and Q̇yi = 〈[ẏi(t ) − ξi(t )] ◦ dyi(t )〉/dt , where ◦ de-
notes the Stratonovich product and where the temperatures
are T1 = D1/(kBμ) and T2 = D2/(kBμ), with Boltzmann con-
stant kB and mobility μ set to unity.

The cases of chase-and-run dynamics, reciprocal interac-
tions, and equilibrium are indicated in Fig. 3. Here, since
the diffusion constants are different, D1 �= D2, the system
with reciprocal interactions does not satisfy the condition for
detailed balance in Eq. (6) and is thus out of equilibrium.
The agreement is excellent between numerical results and
perturbative predictions within the validity regime, that is,
for |a1| and N sufficiently small. Increasing either of those
parameters leads to larger deviation of the numerical estimates
from the perturbative prediction.

The entropy production Ṡ shown in Fig. 3 corresponds
to the system in the attractive-repulsive regime for a1 < 0,
and the repulsive-repulsive regime for a1 > 0. We find that
Ṡ increases smoothly for amplitudes away from the equilib-
rium a1 = a2D1/D2, as well as for increasing N . We also
find that Ṡ grows faster in the attractive-repulsive regime
than in the repulsive-repulsive regime, showing that sustain-
ing interaction forces with opposite sign (attractive-repulsive)
is energetically more costly than forces with equal sign
(repulsive-repulsive). This is reflected, for instance, in Ṡ in-
creasing as a1 becomes more negative. Increasing the number
N of B particles in the nonequilibrium system is an increase
of the number of degrees of freedom, which leads to a larger
entropy production rate, as shown in Figs. 3 and 4. In Fig. 4,
the entropy production rate is rescaled by N . As predicted in
Eq. (10), all curves coincide for a1 = −a2, showing a linear
dependence of Ṡ in N . We find that Ṡ grows sublinearly in
N for any a1 �= −a2 and a1 �= a2D1/D2. This indicates that
chase-and-run dynamics produce the highest average entropy
Ṡ/N in the limit of large N . Moreover, Ṡ/N is bounded from
above by the average entropy in the two-particle case (N = 1)
for any a1, Eq. (7).
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FIG. 5. Effective interactions between particles of species B. (a) Phase diagram showing effective attraction (red) and repulsion (blue)
varying a1 and a2, as predicted by the amplitude of the two-point correlation function P1,N

0,2 (y, y′) of two B particles at y and y′, in the presence
of an A particle; insets show frequent configurations in each regime. (b) Rescaled P1,N

0,2 , with sinusoidal interaction potentials, and a1 = −0.2,
a2 = 0.15, D1 = 1, D2 = 0.1, u1 = u2 = 0, L = 2. Symbols indicate numerical estimates, and solid line, perturbative result [37].

Effective interactions. Although particles of species B do
not directly interact with each other according to Eq. (1), their
trajectories are correlated through the particle of species A,
as illustrated in Fig. 1. In Figs. 1(c) and 1(d), for instance,
B particles visibly display effective attraction. Marginaliz-
ing the three-point correlation function,

∫ L
0 dx P1,N

1,2 (x, y, y′) =
P1,N

0,2 (y, y′), reveals correlations between any two particles of
species B at positions y and y′, that we identify as effective
interactions, with a sign (attractive or repulsive) that depends
on the amplitudes a1 and a2, derived in the SM [37]. We found
that B particles display effective repulsion if a1 > −a2 > 0 or
−a1 > a2 > 0 [blue area in the phase diagram in Fig. 5(a)],
no correlation if a1 = −a2 or a2 = 0 (white lines), and effec-
tive attraction otherwise (red area). Based on this prediction,
which is of second order in the perturbation expansion, we
explored the two-point correlation function P1,N

0,2 for an ex-
ample of effective repulsion in the regime −a1 > a2 > 0 [see
Fig. 5(b)], which shows that long distances are more frequent
than short distances between any two B particles. The under-
lying microscopic mechanism is the following: the attraction
felt by particle A is stronger than the repulsion felt by B
particles, so that A captures one of the B particles, while the
rest escape.

Conclusions. We have studied the role of nonreciprocal
interactions in the environmental entropy change using a fully
microscopic theory. Our analytic results are an exact calcu-
lation of the entropy production rate of an interacting active
many-particle system. Given the intrinsic relation between

entropy production and heat dissipation, our analytic pre-
diction can be used to estimate the input energy required
to sustain a specific pair of interparticle interaction forces
that form and propel active colloids. Our model can be
extended to include details of the self-propulsion and inter-
action mechanisms of a Janus dimer or an active colloidal
molecule in a momentum-conserving solvent, by increas-
ing the number of degrees of freedom. In that case, we
expect the entropy production calculated from the richer
description to be bounded from below by the entropy pro-
duction calculated in this Letter. Our framework can be
extended to estimate the extractable work in other physical
systems, such as asymmetrically shaped objects immersed
in active baths that have been proposed in the context of
autonomous engines. While the asymmetric shape of the ob-
ject can be captured in a suitable reciprocal interaction pair
potential, the active motility of B particles can be imple-
mented as an extension of the field theory derived in this
Letter.
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