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Higher-order topological phase transitions (HOTPTs) are associated with closing either the bulk energy gap
(type-I) or boundary energy gap (type-II) without changing symmetry, and conventionally, both transitions
are captured in real space and characterized separately. Here, we propose a momentum-space topological
characterization of HOTPTs which unifies both types of topological transitions and enables a precise detection
by quench dynamics. Our unified characterization is based on a correspondence between mass domain walls
on real-space boundaries and higher-order band-inversion surfaces (BISs) which are characteristic interfaces
in the momentum subspace. Topological transitions occur when momentum-space topological nodes, dubbed
higher-order topological charges, cross the higher-order BISs after proper projection. Particularly, the bulk
(boundary) gap closes when all (part of) topological charges cross the BISs, characterizing type-I (type-II)
HOTPTs. These distinct dynamical behaviors of higher-order topological charges can be feasibly measured from
quench dynamics driven with control in experiments. Our work opens an avenue to characterize and detect the
two types of HOTPTs within a unified framework and shall advance research in both theory and experiments.
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I. INTRODUCTION

Higher-order topological phases [1–6] have drawn
widespread attention in recent years. These topologically
nontrivial phases generalize the well-known bulk-boundary
correspondence, so that a d-dimensional (dD) nth-order
topological phase hosts gapless states in the (d − n)D
boundary, while its higher-dimensional boundaries are
gapped, rendering the key feature of rich topological states
[7–33]. More recently, higher-order topological states have
also been found in Floquet systems [34–36], non-Hermitian
systems [37–40], interacting systems [41,42], and fractal
systems [43,44].

Since the bulk, as well as partially the boundary, is gapped
for higher-order topological states, higher-order topological
phase transitions (HOTPTs) are associated with closing either
the bulk (type-I) or boundary (type-II) energy gap without
changing symmetry [45–56]. Currently, type-I and II HOTPTs
are characterized by topological invariants defined on the bulk
and Wannier bands [57], respectively. For instance, multipole
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moments [8] and bulk polarization [9] can only be applied to
identify the type-I HOTPTs, while the nested Wilson loop [3]
and Wannier band polarizations [52] are limited to the type-II
HOTPTs. Nevertheless, when topological transitions occur,
these invariants defined by the bulk and boundary properties
are not unified and cannot fully capture all transitions [58–60].
Hence, the independent characterization cannot essentially
describe HOTPTs and is not conducive to uncover higher-
order topological states.

Meanwhile, the current characterizations bring difficulties
for identifying both types of topological transitions in exper-
iments [61–63]. Very recently, experimental realizations of
higher-order topological states have been widely reported in
cleaning synthetic systems in a controllable fashion [64–72].
The bulk physics can be conveniently simulated in synthetic
systems like ultracold atoms [73–76], nitrogen-vacancy cen-
ters [77–79], and nuclear magnetic resonance [80,81], while
classical simulators (such as phononic crystals [64], photonic
crystals [65], and electric circuits [66]) provide ideal grounds
to play with higher-order boundary modes. However, while
having high controllability, it is still challenging to observe
the two types of HOTPTs in these synthetic systems due to
the lack of full manipulation and detection of both the bulk
and boundary physics.

Motivated by these considerations, in this letter, we pro-
pose a unified characterization for both fundamental types
of HOTPTs which goes beyond the traditional independent
characterization and enables a feasible detection of HOTPTs

2643-1564/2023/5(2)/L022032(8) L022032-1 Published by the American Physical Society

https://orcid.org/0000-0003-2083-3993
https://orcid.org/0000-0001-7335-1109
https://orcid.org/0000-0002-7071-5955
https://orcid.org/0000-0003-4964-1813
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.L022032&domain=pdf&date_stamp=2023-05-15
https://doi.org/10.1103/PhysRevResearch.5.L022032
https://creativecommons.org/licenses/by/4.0/


JIA, ZHOU, ZHANG, ZHANG, AND LIU PHYSICAL REVIEW RESEARCH 5, L022032 (2023)

via quench dynamics. We first show a generic duality that, for
a dD nth-order topological phase, the existence of (d − n)D
gapless boundary states uniquely corresponds to the emer-
gence of nth-order band-inversion surfaces (BISs) [82–91]
which are (d − n)D interfaces in the momentum space char-
acterizing where the energy bands cross and are inverted.
Based on this nontrivial duality, topological phase transitions
occur when higher-order topological charges cross higher-
order BISs after proper projection, with type-I (or type-II)
transitions being characterized by all (or part of) charges
that pass through the BISs, providing an elegant and unified
characterization of both types of HOTPTs. We finally show
that both topological charges and BISs can be well measured
in quantum quench experiments. Our work provides a way to
simulate higher-order topological phases and detect HOTPTs.

II. DUALITY BETWEEN MASS DOMAIN WALL AND BIS

We start with deriving a duality between the mass domain
wall (MDW) and BISs for a generic dD nth-order topological
insulator (TI) captured by the Hamiltonian:

Hk =
d∑

j=1

h j (k j )γ j +
n∑

l=1

hd+l (k1, · · · , kd−l+1)γd+l , (1)

where k = (k1, k2, · · · , kd ) is the dD momentum. The � ma-
trices obey the anticommutation relation of Clifford algebra
[92,93] and can be regarded as (pseudo)spin operators. Here,
we use the convention that h j�d denotes (pseudo)spin-orbit
coupling coefficients, while hd+l represents mass terms which
include the Zeeman terms. Without mass terms, the Hamilto-
nian Hk characterizes a massless Dirac semimetal. The mass
term for n = 1 opens a bulk gap and gives the first-order
topological model, such as the one-dimensional (1D) Su-
Schrieffer-Heeger (SSH) chain [94] and the two-dimensional
(2D) Haldane model [95]. For n > 1, the additional mass
terms further open gaps on the boundary and give rise to the
higher-order topological phases, including the second-order
TIs with order-two symmetry [16] and the third-order TIs with
inversion and reflection symmetries [87], where the crystalline
symmetries determine the configurations of (d − n)D gapless
boundary modes.

The boundary states of higher-order topological phases can
be characterized through the dimensional reduction approach.
Namely, the boundary states of an nth-order topological phase
are obtained as Jackiw-Rebbi modes [96] by introducing
Dirac MDWs into the (d − n + 1)D boundary states of a
(n − 1)th-order topological phase [see Figs. 1(a) and 1(b)].
Accordingly, the (d − n)D MDWs in real space can corre-
spond to the momentum-space (d − n)D closed surfaces with
vanishing mass terms of the Hamiltonian in Eq. (1), defining
the nth-order BISs Bn ≡ {k|hd+l = 0, l = 1, 2, . . . , n} [see
Fig. 1(c)]. This renders a MDW-BIS duality for the nth-order
topological phases. Below, we briefly illustrate this duality of
the Hamiltonian in Eq. (1). More details on the generic proofs
are provided in the Supplemental Material [97].

We start from the first-order TIs (n = 1). The correspond-
ing gapless surface states can be described as bound modes at
the (d − 1)D MDWs between the system and vacuum on real-
space boundary. On the other hand, these surface states are

FIG. 1. Schematic of mass domain wall (MDW)-band-inversion
surface (BIS) duality. (a) Construction of dD nth-order topological
insulators (TIs) from massless semimetals by adding additional mass
terms. (b) The corresponding (d − n)D MDWs in real space. (c) The
corresponding nth-order BISs Bn in the Brillouin zone (BZ).

uniquely determined by the bulk topology, which is known to
be further characterized by the (d − 1)D first-order BIS B1 in
momentum space with vanishing mass term hd+1(k) = 0 [82].
This renders the MDW-BIS duality for the first-order TIs.
Further, the second-order topological phase is obtained when
an additional mass term hd+2 is added to the Hamiltonian of
first-order TIs; see Eq. (1). The condition hd+2(k) = 0 gives
another first-order BIS, and its crossing with the BIS B1 re-
sults in a (d − 2)D second-order BIS B2. The existence of B2

immediately implies that the additional mass term hd+2 must
have sign changes after being projected onto the (d − 1)D
surface states of the first-order TIs [97]. Hence, the hd+2

term gaps out the (d − 1)D surface states almost everywhere
but leaves the MDWs on the (d − 2)D boundary, yielding
a second-order topological phase. Repeating the above pro-
cedures, we obtain all the higher-order topological phases,
rendering the generic duality between the nth-order BISs
and (d − n)D MDWs for the nth-order topological phases.
This nontrivial duality reveals a correspondence between the
momentum- space bulk physics and the real-space boundary
physics. Moreover, it is also faithful for the higher-order topo-
logical phases with a stacking 1D SSH chain, such as the 2D
and 3D BBH models [3,8] which can arrive at the Hamiltonian
in Eq. (1) by rescaling the � matrices [32].

III. TOPOLOGICAL CHARACTERIZATION OF HOTPTS

We now develop the unified characterization of HOTPTs
based on the above MDW-BIS duality. Here, a key idea
is that an nth-order topological system can be equivalently
transformed into the superposition of n effective first-order
topological subsystems by using the dimensional reduc-
tion. Specifically, the (d − i)D MDWs are introduced to the
(d − i + 1)D boundary states by adding an additional mass
term hd+i to the Hamiltonian with i = 1, 2, . . . , n, turning
the (i − 1)th-order topological phases into an ith-order topo-
logical phase. We treat the (d − i + 1)D gapless boundary
modes as a massless Dirac system, and then the MDWs of the
ith-order topological phases are indeed the boundary states of
an effective first-order (d − i + 1)D gapped topological phase
given by

Hk(i−1) =
∑

j∈D(i−1)

h j (k j )γ
(i−1)
j + hd+i[k(i−1)]γ (i−1)

d+i , (2)
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with D(i−1) being a subset of {1, 2, . . . , d} with
(d − i + 1) elements [97]. For these effective first-order
topological subsystems, the (d − i + 1)D momentum
subspace k(i−1) characterizes an effective (d − i + 1)D
Brillouin zone BZ(i−1) obtained by projecting Bi−1 onto the
subspace spanned by all k j , with the � matrices γ

(i−1)
j being

generally superpositions of the original ones [98].
With the above observation, the topological index Vn of the

nth-order topological phase in Eq. (1) is then determined by
all of the invariants wi of the effective first-order topological
Hamiltonian Hk(i−1) , given by

Vn = sgn(|w1w2 · · · wn−1|)wn. (3)

This can be easily understood in the process of constructing an
nth-order topological phase from the (n − 1)th-order TI with
the topological index Vn−1. The sign function sgn(|Vn−1|) =
1 (or 0) characterizes the presence (or absence) of the
(d − n + 1)D boundary states for the (n − 1)th-order topo-
logical phase. As indicated by Eq. (2), the topology of the
nth-order TI is inherited from these boundary modes [99,100]
and is characterized by the invariant wn, while the absence of
these boundary states always leads to a trivial nth-order phase.
Thus, the nth-order TI has the topological invariant Vn =
sgn(|Vn−1|)wn. Repeating the same analysis for all Vi�n−1

yields the topological index in Eq. (3).
The last step for the unified characterization is to repre-

sent wi in terms of topological charges, which are dual to
the BISs [101]. For the above effective first-order topolog-
ical Hamiltonian, an sth-order topological charge C (i−1)

s,q =
sgn{Jhso [k(i−1)

q ]} is a nodal point of (pseudo)spin-orbit cou-
pled field hso[k(i−1)] = (h1, h2, · · · , hd−i+2−s) at momenta
k(i−1)

q and quantified by Jacobian determinant Jhso [k(i−1)] ≡
det(∂hso, j′/∂k j′ ) [97,102]. Accordingly, the invariant wi

equals the total monopole charges enclosed by B(i−1)
proj,s ≡

{k(i−1)|hd−i+3−s = · · · = hd+i = 0}, dubbed as the projective
sth-order BISs. We then obtain

wi =
∑

q∈B̄(i−1)
proj,s

C (i−1)
s,q , (4)

where B̄(i−1)
proj,s is the momentum region enclosed by B(i−1)

proj,s with
hd−i+3−s < 0. Unlike the higher-order BISs in the original
bulk system, these projective higher-order BISs are defined
in the effective BZ(i−1) since B(i−1)

proj,s is the projection of the

ith-order BIS Bi onto BZ(i−1). Equations (3) and (4) give the
characterization for a broad class of higher-order topological
phases with various lattice symmetries and described by the
Hamiltonian in Eq. (1). We show later that, while the charac-
terization is built on the topological indices wi of the effective
first-order topological system, it can be precisely measured in
experiment by quench dynamics. We are now ready to write
the unified characterization of the HOTPTs which must be
associated with the change of wi for one or multiple effective
first-order topological subsystems in Eq. (2). Equivalently, in
a HOTPT, the topological charges C (i−1)

s,q must cross either the

projective BIS B(i−1)
proj,s or the border of BZ(i−1) [see Fig. 2(a)].

Namely, a topological transition of nth-order phase

Vn
type-II(m>1)−−−−−−→
type-I(m=1)

Vm−1 −→ Vp (5)

FIG. 2. Schematic of higher-order topological phase transitions
(HOTPTs). (a) Behavior of topological charges in the phase tran-
sitions. Here, the charges cross either the projective band-inversion
surfaces (BISs) [black (i) and green (iii) dots] or the border [red
stars (ii)] of BZ(n−1) (gray regions). The boundary gaps for i <

n − 1 are assumed to be open. (b) In (ii) or (iii), driving an (n −
1)th-order topological phase, while (i) together with (iii) gives an
(n − 2)th-order topological phase. The nth-order topological phase
shall remain unchanged when only (i) occurs.

occurs for i taking values from m to n, yielding at the criti-
cal point (d − m + 1)D gapless boundaries characterized by
Vm−1 [see Fig. 2(b)]. For m = 1, all topological charges cross
the projective BISs, and the bulk gap closes at the critical
point, manifesting a type-I transition. For m > 1, only part of
the topological charges crosses the projective BISs (or the bor-
der of effective BZ). Accordingly, the energy gap closes only
for the (d − m + 1)D boundaries parallel (or perpendicular)
to the lower-dimensional BZ(m−1), giving a type-II transi-
tion. This characterization also further precisely classifies the
type-II transition into different m orders [97]. Moreover, it
characterizes the HOTPT between an initial n-order phase and
a final pth-order phase with p � n, given that wi�p is nonzero
according to Eq. (3).

IV. DYNAMICAL DETECTION AND APPLICATION

We show now that the unified characterization can facilitate
the precise detection of the HOTPTs and propose the applica-
tions based on quantum quenches. Our scheme is based on se-
quentially quenching of all the (pseudo)spin axes γα=1,2,...,d+n,
while only measuring a single (pseudo)spin component γd+1

in each quench. For this, we suddenly tune the Hamilto-
nian Hk + δmαγα from deep trivial regime |δmα| � |hα| to
topological regime δmα = 0. The time-averaged (pseudo)spin
polarization γd+1 after quench is given by 〈γd+1(k)〉α ≡
limT →∞ 1

T

∫ T
0 Tr[ρα exp(iHkt )γα exp(−iHkt )]dt , where ρα is

density matrix for the initial state. The projective BISs
are determined as B(i−1)

proj,s = {k(i−1)|〈γd+1〉d−i+3−s = · · · =
〈γd+1〉d+i = 0}. The higher-order topological charge C (i−1)

s,q is
further detected by the dynamical field:

g j′ = − lim
k(i−1)→k(i−1)

q

sgn
(
hβ

)

Nk(i−1)

〈γd+1〉 j′ 〈γd+1〉β
〈γd+1〉d+i

, (6)

for s = 1 with β = d + i and s > 1 with β = d − i + 2 − s
since it can be shown that gj′ = hso, j′ near the node point
k(i−1)

q . Here, Nk(i−1) is a normalization factor. This dynami-
cal detection scheme is highly feasible in experiment, as we
demonstrate below.
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FIG. 3. Numerical results of three-dimensional (3D) second-order topological insulator (TI). (a) and (b) Time-averaged spin texture of
〈γ4(k)〉5 at kz = 0 by quenching each h axis from δm1,2,3,4,5 = 30t0 to 0, where (m4, m5) = (1.2t0, t0 ) is for (a) and (2.1t0, 0.6t0 ) for (b). The
vanishing polarization gives B(1)

proj,1 and B(0)
proj,2 in (a), while there is no B(1)

proj,1 in (b) since the red dashed ring is not in BZ(1) (gray regions).
The insets give B1 (a blue spherical) and B2 (two red rings) in original momentum space. (c) and (d) Configurations of the charges and
band-inversion surfaces (BISs) for (a) and (b), where the insets are spectra with ky and kz open boundary conditions. (e) Phase diagram with
the parameter points A–F (red stars). (f) The two lowest two-dimensional (2D) surface energies. (g) Configurations of the charges and BISs
for A–F .

We exemplify the application of the unified characteriza-
tion with a 3D second-order TI, constructed by adding a mass
term into the 3D chiral TI [79,80], with the bulk Hamiltonian
Hk = ∑5

α=1 hαγα = h1σxτ0 + h2σyτ0 + h3σzτx + h4σzτz +
h5σzτy, where h1,2,3 = tso sin kx,y,z, h4 = m4 − t0(cos kx +
cos ky + cos kz ), and h5 = m5 − t0(cos kx + cos ky). Here, σ
and τ are both Pauli matrices and k1,2,3 = kx,y,z. From the
time-averaged spin texture shown in Fig. 3(a), we observe a
ring-shaped projective BIS B(1)

proj,1, manifesting the existence
of the BIS B2 in original momentum space and identifying
the emergence of hinge states according to the MDW-BIS
duality. Moreover, one negative (positive) topological charge
C (1)

2,1 [C (0)
3,1] is observed in the region B̄(1)

proj,2 [B̄(0)
proj,3] [see

Fig. 3(c)], giving the topological invariant V2 = −1. Then
the twofold degenerate zero energy states are localized at the
hinges of the top and bottom surfaces along the z direction and
protected by the Cz

4-rotation symmetry and the antireflection
symmetry R̄†

jHk jR̄ j = −H−k j along the j = x, y, z axis.
However, when B2 disappears [see Fig. 3(b)], there is no
B(1)

proj,1 or topological charge C (1)
2,q in BZ(1) [see Fig. 3(d)].

Hence, we have w2 = 0, and no zero energy state exists in the
hinges.

Based on the MDW-BIS duality, the existence of B2 gives
the second-order topological phase diagram 0 < |m5| < 2t0
and |m4 − m5| < t0, as shown in Fig. 3(e). One can see
that the bulk energy bands become gapless at (m4, m5) =
±(3t0, 2t0),±(t0, 2t0),±(t0, 0) (green squares), while the sur-
face energy gap is only closed at m5 = 0,±2t0 (solid lines)
and m4 = m5 ± t0 (dot-dashed lines), which are confined to
the real-space interfaces along and perpendicular to the z
direction, respectively [97]. We shall choose two different
parameter paths to observe the phase transitions. In path
A-B-C-D [see Fig. 3(e)], there is one negative topological
charge crossing the border (purple dashed curves) of BZ(1)

[see Fig. 3(g)], and the surface energy gap closes in both xz
and yz planes for B [see Fig. 3(f)]. This renders a type-II tran-
sition with V2 = 0 → V1 = −1 → V2 = −1 from A to C. As
m4 is further increased, all topological charges simultaneously
move to the projective BISs for D, then the bulk energy gap
closes, rendering a type-I transition. In another path C-E -F
[see Fig. 3(e)], the surface energy gap closes in the xy plane
for E . There is one negative topological charge crossing
the projective BISs and changed into a positive topologi-
cal charge. The higher-order topological transition occurs as
V2 = −1 → V1 = −2 → V2 = 1. The unified characteriza-
tion has explicit advantages that the topological phase tran-
sitions of different types can be resolved in quench dynamics.

V. DISCUSSION AND CONCLUSIONS

The unified characterization also shows that type-II tran-
sitions are further classified into different m orders which
can be precisely determined by quench detection. In the Sup-
plemental Material [97], we have presented more relevant
examples for the 2D second-order and 3D third-order TIs,
which further showcase the broad applicability of the unified
characterization. Moreover, our unified theory may be applied
to study Floquet higher-order phases and phase transitions,
such as clarifying which type of phase transitions dominate
the emergence of Floquet corner modes [103]. This shall
further promote the study of topological phase transitions in
Floquet higher-order systems.

In summary, we have shown a unified characterization in
momentum space for HOTPTs and further proposed the de-
tection by quench dynamics. The unified characterization is
built on the MDW-BIS duality which relates the higher-order
boundary modes in real space and the higher-order BISs with
topological charges in the momentum space. The topolog-
ical phase transitions of two types and various orders are
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generically identified by the higher-order topological charges
crossing over the BISs after proper projection, which can
be precisely detected by quench dynamics. In this letter, we
establish a unified and fundamental characterization of the
higher-order topological phases and phase transitions, which
shall advance further broad studies in theory and experiments.
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