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Generalized hydrodynamics (GHD) is a recent theoretical approach that is becoming a go-to tool for charac-
terizing out-of-equilibrium phenomena in integrable and near-integrable quantum many-body systems. Here, we
benchmark its performance against an array of alternative theoretical methods, for an interacting one-dimensional
Bose gas described by the Lieb-Liniger model. In particular, we study various quantum shock wave scenarios,
along with a quantum Newton’s cradle setup, for various interaction strengths and initial temperatures. We
find that GHD generally performs very well at sufficiently high temperatures or strong interactions. For low
temperatures and weak interactions, we highlight situations where GHD, while not capturing interference
phenomena on short lengthscales, can describe a coarse-grained behavior based on convolution averaging that
mimics finite imaging resolution in ultracold atom experiments. In a quantum Newton’s cradle setup based on
a double-well to a single-well trap quench, we find that GHD with diffusive corrections demonstrates excellent
agreement with the predictions of a classical field approach.
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Introduction. The study of dynamics of integrable and
near-integrable quantum many-body systems has been a thriv-
ing area of research for more than a decade since the
landmark experiments on relaxation in the quantum New-
ton’s cradle setup [1] and in coherently split one-dimensional
(1D) Bose gases [2]. During this time, an in-depth under-
standing of the mechanisms of thermalization and emergent
out-of-equilibrium phenomena within these systems has been
developed [3–8]. A recent breakthrough in this area has been
the discovery of the theory of generalized hydrodynamics
(GHD) [9,10] (for recent reviews, see Refs. [11–13]). This
new theory is capable of simulating large-scale dynamics of
integrable and near-integrable systems across a range of par-
ticle numbers and interaction strengths significantly broader
than those accessible using previous approaches [14–16]. Be-
cause of its broad applicability, GHD is currently regarded as
well on its way to becoming “a standard tool in the description
of strongly interacting 1D quantum dynamics close to inte-
grable points” [16].

In the years since its discovery, GHD has been rapidly
developed to include diffusive terms [17–22], particle loss
[23], calculations of quantum and Euler-scale correlations
[24–29], and the incorporation of numerous beyond-Euler
scale effects [30–33] (see also Refs. [34–37] in a special
issue). Recently, GHD applied to a 1D Bose gas has been
experimentally verified in a variant of the quantum Newton’s
cradle setup in the weakly interacting regime [15] and in
a harmonic trap quench in the strongly interacting regime
[16]. In both cases, GHD provided an accurate coarse-grained
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model of the dynamics, exceeding conventional (classical)
hydrodynamics. In addition to comparisons with experiments,
GHD was benchmarked against other established theoretical
approaches—most prominently for the 1D Bose gas and the
XXZ spin chain [9,10,14,15,24,27,33,38–43]. As the purpose
of these initial benchmarks was to validate GHD, the typi-
cal dynamical scenarios considered were in regimes where
GHD was expected to be a valid theory. In all such cases
GHD demonstrated very good agreement with the alterna-
tive approaches. On the other hand, in scenarios involving,
for example, short wavelength density oscillations due to
interference phenomena (which are not captured by GHD),
it was conjectured that GHD would nevertheless adequately
describe spatial coarse-grained averages of the more accurate
theories [14,15,32]. More generally, it is of significant inter-
est to scrutinize the performance of GHD by extending its
benchmarks to a more challenging set of dynamical scenarios.
This is important for understanding exactly how GHD breaks
down when it is pushed towards and beyond the limits of its
applicability.

In this Letter, we systematically benchmark the perfor-
mance of GHD for the 1D Bose gas in several paradigmatic
out-of-equilibrium scenarios. In particular, we focus on the
regime of dispersive quantum shock waves emanating from
a localized density bump of the type explored recently in
Ref. [44]. We use an array of theoretical approaches, including
finite temperature c-field methods, the truncated Wigner ap-
proximation, and the numerically exact infinite matrix product
state (iMPS) method, spanning the entire range of interaction
strengths, from the nearly ideal Bose gas to the strongly in-
teracting Tonks-Girardeau (TG) regime. We also analyze the
dynamics of a localized density dip which sheds gray solitons,
hence benchmarking GHD in scenarios not previously consid-
ered. In doing so, we address the question of how well GHD
predictions agree with coarse-grained averaging of the results
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of the more accurate theoretical approaches. Additionally, we
explore the dynamics of a thermal quasicondensate in a quan-
tum Newton’s cradle setup [15,45,46] using Navier-Stokes
type diffusive GHD [17,20,47], and we address the question
of characteristic thermalization rates [19,45].

Expansion from a localized density bump. We begin our
analysis by considering dispersive quantum shock waves of
the type studied recently in Ref. [44]. More specifically,
we first focus on the weakly interacting regime of the 1D
Bose gas of N particles described by the Lieb-Liniger model
[48,49], and we consider the dynamics of the oscillatory
shock wave train generated through a trap quench from an
initially localized perturbation on top of a flat background to
free propagation in a uniform box of length L with periodic
boundary conditions [50,51]. The weakly interacting regime
is characterized by the Lieb-Liniger dimensionless interaction
parameter γbg = mg/h̄2ρbg � 1 [48,52], defined with respect
to the background particle number density ρbg, where g > 0 is
the strength of repulsive contact interaction and m is the mass
of the particles.

In our first example, we consider the case of a large total
number of particles, N =2000, and γbg =0.01, so that the gas
is in the Thomas-Fermi regime where the interaction energy
per particle dominates the kinetic energy. We assume that
the gas is initialized in the zero-temperature (T =0) ground
state of a dimple trap that results in the density profile of
Eq. (A1) given in Appendix A. At time τ =0, the dimple trap
is suddenly switched off, and we follow the evolution of the
system in a uniform 1D trap. In Figs. 1(a) and 1(b), we show
snapshots of the density profiles at different times and com-
pare the GHD results with those obtained using the mean field
Gross-Pitaevskii equation (GPE) and the truncated Wigner
approximation (TWA) which incorporates the effect of quan-
tum fluctuations ignored in the GPE [53]. The snapshot at
τ = 0.000 14, which corresponds to the onset of a shock
formation due to a large density gradient, shows excellent
agreement between GHD and the more accurate microscopic
approaches. Such an agreement at early times is remarkable
given that GHD, which is derived here at Euler scale [54],
becomes formally exact only in the limit of infinitely large
lengthscales and timescales [11,14,27].

Past this time, the GPE and TWA show the formation of
an oscillatory shock wave train, which has been identified
in Ref. [44] as a result of self-interference of the expand-
ing density bump with its own background. The interference
contrast in this regime is generally large, even though the
quantum fluctuations present in the TWA approach cause a
visible reduction in contrast compared with the mean-field
GPE result. The GHD prediction, on the other hand, com-
pletely fails to capture the oscillations, as these occur on a
microscopic lengthscale. The characteristic period of oscilla-
tions here (which we note are chirped) is given approximately
by the healing length lh = h̄/

√
mgρbg (lh/L = 0.0057), which

is smaller than the width σ (σ/L = 0.02) of the initial bump
and hence represents the shortest lengthscale of the problem in
the bulk of the shock wave train. Thus, even though the local
density approximation (required for GHD to be applicable
to an inhomogeneous system in the first place) is valid for
the initial Thomas-Fermi density profile, the failure of GHD
at later times is expected since it is not supposed to capture

FIG. 1. Dimensionless density profiles ρ = ρL of quantum
shock waves in the 1D Bose gas, as a function of the dimensionless
coordinate ξ ≡ x/L at different times τ ≡ h̄t/mL2. In panel (a) we
show the initial (τ = 0) and time-evolved (τ = 0.000 14) profiles
of a weakly interacting gas at zero temperature, for γbg = 0.01 and
N = 2000 (with Nbg � 1761 being the number of particles in the
background). Due to the symmetry about the origin, we only show
the densities for ξ > 0. In panel (b), the time-evolved profile is shown
at τ = 0.0007. Panel (c) demonstrates the results of finite resolution
averaging of both GPE and TWA data from panel (b) and compares
them with the same GHD result. Panel (d) shows the same system as
in panel (b), but at finite temperatures, simulated using the stochastic-
projected GPE (SPGPE) [44]; the dimensionless temperature T here
is defined according to T = T/Td , where Td = h̄2ρ2

bg/2mkB [52].
Panel (e) compares GHD predictions with exact diagonalization (ED)
results in the TG regime (γbg → ∞) for N = 1000 (Nbg � 884), at
τ = 0.000 04. In all examples, the initial profiles are characterized
by the amplitude height β = 1 and the dimensionless width of the
bump σ = 0.02; see Appendix A for details.

phenomena on microscopic lengthscales, which emerge here
dynamically.

Despite this failure, GHD clearly captures the average
density of the oscillations for the fully formed shock wave
train, similar to that shown in Ref. [13]. This is consistent
with the analysis of Bettelheim [55], who showed that the
Whitham approach, which allows one to write equations for
averaged quantities in the oscillatory shock wave train, is
equivalent to GHD in the semiclassical limit (c=mg/h̄2 →0)
of the Lieb-Liniger model [56,57]. This is also consistent
with the expectation that GHD in an interfering region would
correspond to a coarse-grained average density [14,15]. To
quantitatively assess this expectation, we perform a type of
convolution averaging that mimics the finite resolution of
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FIG. 2. Quantum shock waves at zero temperature for N = 50 particles (Nbg � 44.03), over the entire range of interaction strengths. In all
examples, the initial density profiles (not shown) closely match Eq. (A1) in Appendix A, with β = 1 and σ = 0.02. In all panels, we show the
GHD (dashed lines) and iMPS (solid lines) results for the evolved density profiles at two time instances. In panel (a) there is no phase coherence
beyond the mean interparticle separation (1/ρbgL � 0.0227), whereas in panel (e) the shortest lengthscale that determines the characteristic
period of oscillations is given by the width of the initial Gaussian bump σ (σ/L = 0.02), which is much smaller than the healing length lh

(lh/L = 0.227).

in situ imaging systems used in quantum gas experiments (see
Appendix B). As the imaging resolution is usually unable to
resolve wavelengths on the order of the healing length (typi-
cally in the submicron range), one expects that such averaging
will smear out the interference fringes seen in the GPE and
TWA data—just as GHD implicitly does. In Fig. 1(c) we show
the results of convolution-averaged density profiles performed
on the GPE and TWA data of Fig. 1(b) and compare them
with the same GHD curve. The level of agreement between
all three curves is now remarkable—a result which was not
a priori obvious for both GPE and TWA under this model
of coarse-graining. This highlights the quantitative success
of GHD in describing the dynamics on a large scale despite
interference or short-wavelength phenomena being present.

In our second set of examples, shown in Fig. 1(d), we
consider the same shock wave scenario, except now for
a phase-fluctuating quasicondensate at finite temperatures.
Here, the effect of thermal fluctuations is expected to lead to
a smearing of the interference contrast due to a reduced ther-
mal phase coherence length in the system, lT = h̄2ρbg/mkBT
[58–60]. A well-established theoretical approach to model
this is a c-field stochastic-projected GPE (SPGPE) approach
[61,62] (see also Refs. [45,63–65]), and we indeed observe
such smearing in Fig. 1(d) [66], in addition to seeing the
expected very good agreement of GHD with these c-field
results.

Our third example is shown in Fig. 1(e) and lies in the
TG regime of infinitely strong interactions, γbg → ∞. It fur-
ther illustrates the same observation—that the performance of
GHD improves with the loss of phase coherence in the system,
wherein interference phenomena are suppressed. Here, we
compare the predictions of GHD for the shock wave scenario
at T = 0 with the results of exact diagonalization. In the TG
regime, the system does not possess phase coherence beyond
the mean interparticle separation 1/ρbg, hence the absence
of interference fringes in the evolution of a density bump
whose initial width is larger than 1/ρbg [44]. Accordingly,
we see very good agreement of GHD with exact diagonaliza-
tion, ignoring the small-amplitude density ripples that can be
seen in the exact result. Such density ripples (which we note
havean origin different than that of Friedel oscillations) have
been predicted to occur in the ideal Fermi gas by Bettelheim
and Glazman [67] (see also Ref. [68]). By the Fermi-Bose
mapping [69,70], these same ripples should emerge in the TG
gas, which we confirm here through exact diagonalization.

However, their description lies beyond the scope of GHD as a
large-scale theory [71].

The final set of examples for the evolution of a density
bump is shown in Fig. 2. Here, we consider a range of interac-
tion strengths, starting from very strong and going back [from
Figs. 2(a) to 2(e)] to weak interactions, all at zero temperature
and N = 50. We compare the GHD results with iMPS simula-
tions, which are numerically exact at all interaction strengths
[44]. At this relatively low particle number, the strongly in-
teracting regime displays Friedel oscillations which appear in
the iMPS result and are, as expected, absent from the predic-
tion of GHD. However, there is generally good agreement
between GHD and iMPS at large scale. As the interaction
strength is reduced, and hence the phase coherence of the
gas increases, the Friedel oscillations disappear and interfer-
ence fringes return, which now have period ∼σ (with σ < lh)
since the gas is no longer in the Thomas-Fermi regime. The
worst performance of GHD is observed for γbg = 0.01, which
lies in the nearly ideal (noninteracting) Bose gas regime for
N = 50. In this regime, the local density approximation, in-
trinsic to GHD [14–16,52], is no longer valid even for the
initial density profile, and we see that Euler-scale GHD breaks
down both spatially and temporally, explaining the failure of
GHD to agree with iMPS results even in the coarse-grained
sense.

In addition to considering the dynamics of a localized
density bump, we have also analyzed the evolution of an initial
density dip in a uniform background. This scenario is known
to shed a train of gray solitons in the mean-field GPE treat-
ment [50,51,72], and the results of the comparison of GHD
simulations with those of GPE and TWA are presented in Ap-
pendix C. The overall conclusions regarding the performance
of GHD in this scenario are similar to those for a density
bump, including good agreement of GHD with coarse-grained
averages of GPA and TWA results in the soliton train region.

Quantum Newton’s cradle in a thermal quasicondensate.
Our final scenario for benchmarking GHD is in a variant of the
quantum Newton’s cradle setup for a weakly interacting 1D
Bose gas in the quasicondensate regime. Namely, we analyze
the release from a symmetric double-well trap to a single-well
harmonic trap of frequency ω, similar to the type utilized in
Ref. [15]. Here, we use the SPGPE to simulate collisional
dynamics and eventual thermalization, as in Ref. [45], and
for the sake of one-to-one comparison, we also simulate the
same system using the Navier-Stokes type of diffusive GHD
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FIG. 3. Evolution and thermalization of the density distribution
ρ(x, t ) in a quantum Newton’s cradle setup initialized from a double-
well to a single-well trap quench, simulated using Navier-Stokes
GHD [panels (a) and (b)] and SPGPE [panels (c) and (d)]. The initial
cloud of N = 3340 atoms at temperature T̃ = 205 (in harmonic
oscillator units) is prepared in a thermal equilibrium state of a sym-
metric double-well trap potential (see Appendix D for details). Panel
(b) demonstrates the relaxed density profile of the Navier-Stokes
GHD evolution at t = 100/(ω/2π ) (black solid line), alongside a
best-fit thermal equilibrium profile from Yang-Yang thermodynamics
at T̃ � 213 (cyan dotted line), and an additional GHD density profile
at earlier time t = 6.79/(ω/2π ) (red dashed line). Panel (d) is the
same as panel (b), but for the SPGPE, with the relaxed density profile
at t � 100/(ω/2π ), a Yang-Yang thermodyanmic density profile of
T̃ � 216, and an additional density profile at t = 6.81/(ω/2π ).

[17,47], solved using a second-order backwards-implicit
algorithm [18,39,73].

Comparison of the results using the two methods are shown
in Fig. 3, where we illustrate the evolution of the density
distribution [panel (a) for diffusive GHD, and panel (c) for
SPGPE] over the initial few oscillations, as well as after a suf-
ficiently long time, when the system has already thermalized.
In Ref. [74] we give further details of how the final relaxed
states were assessed within GHD and the SPGPE, whereas
here, in Figs. 3(b) and 3(d), we simply show the respec-
tive relaxed density profiles, along with their corresponding
thermal equilibrium profiles from Yang-Yang thermodynam-
ics [52,74–78], as well as density profiles at earlier times
illustrating their contrast to the relaxed state. The overall con-
clusion here is that GHD demonstrates excellent agreement
with SPGPE in both short- and long-term dynamics, as well
as in the characteristic thermalization rate [79].

We have also simulated the quantum Newton’s cradle ex-
periment in the original Bragg pulse scenario [1], except in a
weakly interacting quasicondensate regime. In this scenario,
we observe different thermalization rates in GHD and SPGPE
simulations, and we discuss these results and the reasons
behind the discrepancy in the Supplementary Material [74].

Summary. We have benchmarked GHD in a variety of
out-of-equilibrium scenarios in a 1D Bose gas against al-
ternative theoretical approaches which are not limited to
long-wavelength excitations. In particular, we have focused on
systems supporting dispersive quantum shock waves and soli-
ton trains, demonstrating that GHD generally agrees with the

predictions of these approaches at sufficiently high tempera-
tures and strong interactions. Here, the good agreement stems
from a reduced phase coherence length of the gas, which
in turn leads to a suppression of interference phenomena
and therefore an absence of high-contrast short-wavelength
interference fringes in the density. At low temperatures and
weak interactions, where interference phenomena are more
pronounced, the predictions of GHD only agree with a coarse-
grained convolution averaging approximation. The effect of
such averaging is similar to having finite imaging resolution
in quantum gas experiments and explains why GHD may
perform well when compared to experiments, whilst departing
from the predictions of theoretical approaches that are valid
at short wavelengths. We have also benchmarked Navier-
Stokes GHD within a quantum Newton’s cradle setup for a
double-well to a single-well trap quench of a weakly interact-
ing quasicondensate, observing excellent agreement with the
SPGPE in both the transient dynamics and the final relaxed
state, as well as in the characteristic relaxation timescale.
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APPENDIX A: PARAMETRIZATION
OF THE DENSITY BUMP

The initial density profile in Fig. 1(a), in dimensionless
units, is set to

ρ(ξ, τ = 0) = ρbg

(
1 + βe−ξ 2/2σ 2)2

, (A1)

where the dimensionless coordinate, time, and density are
introduced, respectively, according to ξ ≡ x/L, τ ≡ h̄t/mL2,
and ρ(ξ, τ ) ≡ ρ(x, t )L, with ρbg = ρbgL = Nbg being the
dimensionless background density equivalent to the to-
tal number of particles in the background, Nbg = N/{1 +√

πβσ

L [β erf ( L
2σ

) + 2
√

2 erf( L
2
√

2σ
)]} from the normalization.

In addition, the width and the amplitude of the bump above
the background are characterized by the dimensionless param-
eters σ̄ ≡ σ/L and β > 0, respectively.

The associated trapping potential that is required for the
preparation of such a density profile as an initial ground or
thermal equilibrium state of the 1D Bose gas in different
regimes is discussed in Ref. [44]. Within the mean-field ap-
proximation, described by the Gross-Pitaevskii equation, the
density profile of Eq. (A1) corresponds to the mean-field
amplitude being initialized as a simple Gaussian bump super-
imposed on a constant background, 
(ξ, τ = 0) = 
bg(1 +
βe−ξ 2/2σ 2

), with ρbg = |
bg|2.

APPENDIX B: FINITE RESOLUTION AVERAGING

The finite resolution averaging procedure implemented in
Fig. 1(c) emulates the finite spatial resolution of experimental
absorption imaging systems. Following Ref. [80], we denote
the impulse response function of the imaging system by A(x),
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which we here assume to be a normalized Gaussian. The
impulse response for a pixel of width � centered at xp is then

F (x) =
∫ xp+�/2

xp−�/2
dx′A(x′ − x). (B1)

The measured atom number in the given pixel is then given by

Nm = N
∫ +∞

−∞
dxF (x)ρ(x), (B2)

where N provides the correct normalization for the total par-
ticle number in the limit of zero pixel width.

In our particular example of such averaging, the density
profile ρ(x) (at any given time step, with the time argument
t being omitted here for notational simplicity) is convoluted
with a Gaussian resolution function of width w = 1 µm
and then averaged over a finite pixel size � = 4.5 µm, as
in Ref. [80]. These absolute values translate to dimension-
less values of w/L = 0.01 and �/L = 0.045, assuming L ∼
100 µm, with results being generally insensitive to the ex-
act values of these parameters around these typical values.
For comparison, the healing length in this example is equal
to lh/L = 0.0057. Considering 87Rb atoms, which have a
scattering length of a � 5.3 nm, in a system of size L =
100 µm, this corresponds to an absolute healing length of
lh = 0.57 µm. These choices of dimensionless parameters,
and γbg = 0.01, can be realized at a background density
of ρbg � 1.8 × 107 m−1, with an interaction parameter g �
2h̄ω⊥a � 1.4 × 10−38 J m [81], where ω⊥/2π � 1.9 kHz is
the frequency of the transverse harmonic trapping potential.

APPENDIX C: DYNAMICS OF A LOCALIZED
DENSITY DIP

In this Appendix, we present the results of the evolution of
a localized density depression, after quenching (at time τ = 0)
the initial trap potential with a localized barrier to uniform.
We assume that the initial density profile is given by the same
Eq. (A1), except with β being negative and satisfying −1 <

β < 0.
In Figs. 4(a) and 4(b), we consider the weakly interact-

ing regime (with γbg = 0.01) and show the results of the
GPE, TWA, and GHD simulations, for a gas with N = 1688
atoms and the same Nbg � 1761 as in Fig. 1(a). In this sce-
nario, the steep gradient of the shock front forms as the
background fluid flows inward and tries to fill the density
depression. As a result, one first observes the emergence of
large-amplitude structures, forming multiple density troughs,
which then evolve into a train of gray solitons propagating
away from the origin [50,51,57,72,82,83]. The differences
between the TWA and pure mean-field GPE results, seen in
Fig. 4(b), are consistent with previous observations [84–86]
that quantum fluctuations lower the mean soliton speed and
fill in the soliton core. The GHD result, on the other hand, fails
to capture the solitonic structures, whose characteristic width
(on the order of the microscopic healing length) lies beyond
the intended range of applicability of GHD.

FIG. 4. Evolution of a density dip in a 1D Bose gas. Panel
(a) shows the initial (τ = 0) and time-evolved (τ = 0.0005) density
profiles from GPE, TWA, and GHD simulations, for γbg = 0.01 and
N = 1688 (Nbg � 1761). Panel (b) shows a time-evolved density
profile at a later time (τ = 0.002), where we can see a fully formed
train of three gray solitons in the mean-field GPE (solid yellow)
curve. Panels (c) and (d) compare the same GHD results (notice the
different scale of the vertical axis) at τ = 0.0005 and τ = 0.002 with
the outcomes of finite resolution averaging of both GPE and TWA
curves. In panel (e), we show a time-evolved snapshot of the density
profile in the TG regime (γbg → ∞) for N = 844 (Nbg � 880.5), and
we compare the GHD result with that of exact diagonalization (ED).
Panel (f) is in the nearly ideal Bose gas regime, with γbg = 0.01
and N = 42 (Nbg � 44). In all examples, the initial density profile
is given by Eq. (A1) with β = −0.5 and σ = 0.02.

However, GHD still manages to adequately capture the
coarse-grained description of the density across the soliton
train, which is rather remarkable. This is seen in Figs. 4(c) and
4(d), where we demonstrate the outcomes of finite resolution
averaging applied to the GPE and TWA results of Figs. 4(a)
and 4(b), respectively. Similarly to Fig. 1(c), here we used
the same normalized Gaussian resolution function of width
1 µm and adopted 87Rb atoms as an example species for the
relevant parameter values (see Appendix B). For Fig. 4(c) we
used the same pixel size (� = 4.5 µm) as before, whereas for
Fig. 4(d), due to the presence of fully formed gray solitons
whose width is on the order of (2 − 4)lh, we used a twice
larger pixel size (� = 9.0 µm). A larger pixel size here results
in �/lh � 16 � 1, which is required in order to comply with
the large-scale framework of GHD.

The last two examples, shown in Figs. 4(c) and 4(d), corre-
spond, respectively, to the strongly interacting TG and nearly
ideal Bose gas regimes. The overall behavior and conclusions
about the performance of GHD in these examples are the same
as in the equivalent scenario of the density bump discussed
earlier in Figs. 1(e) and 2(a).
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APPENDIX D: PARAMETRIZATION OF THE
DOUBLE-WELL TRAP

The initial (prequench) double-well trap potential is set
to Ṽ (̃x) � 2.16 × 10−3x̃4–5.27 × 10−1x̃2 in dimensionless
form, where x̃ = x/lho, Ṽ = V/h̄ω, and lho = √

h̄/mω, where

ω is the postquench single-well harmonic trap frequency. The
initial dimensional temperature of the cloud, in harmonic
oscillator units, is set to T̃ = T/(h̄ω/kB) � 205. In this con-
figuration, the initial density profile for a total of N = 3340
atoms is double peaked, with the dimensionless interaction
strength at either of the peaks given by γmax � 0.0138.
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