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Extended regime of metastable metallic and insulating phases in a two-orbital electronic system
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We investigate the metal-to-insulator phase transition driven by the density-density electronic interaction in
the quarter-filled model on a cubic lattice with two orbitals split by a crystal field. We show that a systematic
consideration of the nonlocal collective electronic fluctuations strongly affects the picture of the phase transition
provided by the dynamical mean-field theory. Our calculations reveal the appearance of metallic and Mott
insulating states characterized by the same density but different values of the chemical potential, which is missing
in the local approximation to electronic correlations. We find that the region of concomitant metastability of these
two solutions is remarkably broad in terms of the interaction strength. It starts at a critical value of the interaction
slightly larger than the bandwidth and extends to more than twice the bandwidth, where the two solutions merge
into a Mott insulating phase. Our results illustrate that nonlocal correlations can have crucial consequences on
the electronic properties in the strongly correlated regime of the simplest multiorbital systems.
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There are two main mechanisms responsible for the for-
mation of an insulating phase in electronic materials: a gap at
the Fermi energy in the noninteracting band structure and the
many-body localization induced by strong electronic interac-
tions, as for instance the Mott scenario [1,2]. The interplay
between these different mechanisms can strongly affect the
degree of electronic correlations and therefore the phase di-
agram of the material [3]. Both these effects are especially
important when a subset of doubly or triply degenerate lo-
calized orbitals appears in the electronic spectrum at Fermi
energy. Usually, the charge distribution on neighboring atoms
lifts this degeneracy, which results in a local splitting of
the orbitals called crystal field splitting. Strong electronic
correlations may greatly renormalize the electronic spectral
distribution, thus affecting the orbital splitting [4–7]. The
crystal field splitting also has a strong influence on the Mott
transition in several materials, as it favors orbital polarization
and orbital selective phenomena [8–21].

The dynamical mean-field theory (DMFT) [22] is currently
the most widely used theoretical method for describing the
Mott transition in realistic materials [23,24]. For instance, this
method captures the coexistence of metallic and insulating
phases that accompanies the Mott transition in both single-
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band [25–31] and multiorbital [32–36] systems. However, in
some cases DMFT is insufficient, because this theory accounts
only for local correlation effects. Considering even short-
range correlations beyond DMFT significantly modifies the
coexistence region and drastically reduces the critical value of
the interaction [30]. Long-range correlations can have even
more dramatic consequences [37]. Therefore, an important
leap towards an accurate theoretical description of corre-
lated materials would be to understand the effect of nonlocal
collective electronic fluctuations on the spectral function.
Unfortunately, most of the available theoretical methods for
multiorbital systems are either limited to a weakly correlated
regime [38–44], or do not take into account all the desired
physical ingredients, such as long-range correlations [45–48]
or spatial magnetic fluctuations [49–58]. Attempts to go be-
yond these assumptions using diagrammatic methods lead
to expensive numerical calculations [59–66], while unbiased
quantum Monte Carlo methods are so far limited to specific
parameter regimes or symmetries due to the fermionic sign
problem [67–72].

In this Letter, we investigate the effect of nonlocal corre-
lations on the Mott transition in a two-orbital model with the
crystal field splitting and the density-density approximation
for the interaction. This model is relevant for investigating the
low-energy physics of some transition metal oxides [9] and of
fulleride molecular crystals [73–77]. More importantly, this
model is one of the simplest multiorbital systems that allows
for studying the influence of the orbital splitting on the Mott
transition. So far this simple model has not been studied be-
yond the local DMFT approximation [6] due to computational
difficulties associated with incorporating nonlocal correla-
tions in the multiorbital framework. We challenge this solution
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of the problem by utilizing a relatively inexpensive diagram-
matic extension of DMFT [78]—the dual triply irreducible
local expansion (D-TRILEX) method [79–82]. This approach
accounts for the effect of the nonlocal collective electronic
fluctuations on the spectral function in a self-consistent man-
ner [80,83,84]. We find that, despite the apparent simplicity,
the considered model displays a nontrivial behavior around
the Mott transition. In particular, considering the nonlocal
correlations beyond DMFT reveals a broad coexistence region
of metastable metallic and Mott insulating phases that extends
from approximately the bandwidth to more than twice the
bandwidth in the value of the interaction. Our results might
guide the understanding of the memristive effects experimen-
tally observed in VO2 thin-film samples [85,86].

Method. The Hamiltonian of the considered two-orbital
model on a cubic lattice

H =
∑

j j′,l,σ

c†
jlσ

(
t l

j j′ + �l δ j j′
)
c j′lσ + U

2

∑

j,ll ′
n jl n jl ′

contains three contributions. We restrict the hopping to the
nearest-neighbor lattice sites and set it to t l

〈 j j′〉 = 1/6 for
each of the two orbitals l ∈ {1, 2}. Hereinafter, the energy
is expressed in units of the half bandwidth of the cubic dis-
persion W/2 = 6t = 1. The interaction U between electronic
densities njl = ∑

σ c†
jlσ c jlσ describes both the intra- and in-

terorbital Coulomb repulsion. Calculations are performed at
quarter filling, which corresponds to the average density of
〈n〉 = 1 electron per two orbitals. In order to induce an orbital
polarization δn = (〈n2〉 − 〈n1〉)/〈n〉, we take a relatively large
value for the crystal field splitting � = 2�1 = −2�2 = 0.3.
This case was studied in detail in Ref. [6] using DMFT. It
was demonstrated, that local electronic correlations enlarge
the orbital splitting, resulting in a high degree of orbital po-
larization. Consequently, the single electron mostly populates
the lower orbital (l = 2) that undergoes the Mott transition
at a critical value of the electronic interaction. A similar in-
terplay between the orbital polarization and Mott physics is
also found in actual materials such as V2O3 [9] and SrVO3

[87–89], where it is important for the Mott transition.
In order to investigate how nonlocal correlations affect

the DMFT scenario of the Mott transition, we employ the
D-TRILEX method [79,80,82], where collective electronic
fluctuations are treated diagrammatically beyond DMFT. This
method was derived as an approximation to the dual boson
theory [90–99], one of the most commonly used diagram-
matic extensions of DMFT (cf. Refs. [61,66,100–113]). The
D-TRILEX method stands out for its lowered complexity,
which allows one to address multiband problems [81,82,84]
(cf. Refs. [61,62]), and its capability of correctly reproducing
the results of more elaborate theories. The reduction of the
critical interaction for the Mott transition compared to DMFT
[79] is very similar to cluster DMFT [30]. Additionally, it
shows a precise agreement with exact benchmarks for some
single- and multiband systems [80,82].

If the system exhibits strong magnetic fluctuations, as fre-
quently happens at half filling, the Mott transition usually
lies inside the antiferromagnetic (AFM) phase. In this case,
addressing the Mott transition requires to perform calculations
in a symmetry broken phase, which is problematic. Going

FIG. 1. DOS for the upper (l = 1, blue line) and lower (l = 2,
red line) orbitals calculated for different interactions U = 1.8 (left
column), U = 2.0 (middle column), and U = 2.2 (right column).
Top row: DMFT solution at quarter filling that corresponds to
the chemical potential μd . Middle row: Quarter-filled metallic
D-TRILEX solution for the chemical potential μ. Bottom row:
A further D-TRILEX∗ calculation based on the DMFT solution.
Calculations for U = 1.8 and U = 2.0 are performed for μd . The
resulting 〈n〉 > 1 is specified in panels. At U = 2.2 the quarter-filled
D-TRILEX∗ solution appears at μ∗ � μd and corresponds to the
Mott insulating state.

away from half filling suppresses the magnetic fluctuations
and allows one to access the Mott transition from the para-
magnetic phase. According to our calculations, the highest
critical temperature for the Néel transition for the considered
quarter-filled model lies below T = 0.06. For this reason, we
set the inverse temperature to T −1 = 15, which ensures that
the system is located outside the AFM phase but close to its
boundary to observe strong magnetic fluctuations. We perform
DMFT calculations using the W2DYNAMICS package [114].
The D-TRILEX solution is based on the numerical implemen-
tation described in Ref. [82]. The local density of states (DOS)
is obtained from the corresponding local Green’s functions via
analytical continuation using the ana_cont package [115].

Results. To illustrate the effect of nonlocal correlations
on the Mott transition, we compare the DOS predicted by
DMFT and D-TRILEX methods. The result of these calcu-
lations is shown in Fig. 1 for three different values of the
interaction U = 1.8, U = 2.0, and U = 2.2. First, let us focus
on the quarter-filled calculations presented in the two upper
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FIG. 2. Electronic density at Fermi energy A(E = 0) for the
lower orbital (l = 2) as a function of the interaction U . The result
is obtained from DMFT (blue dots), metallic D-TRILEX (red dots),
and insulating D-TRILEX∗ (red asterisks) solutions. The red shaded
area highlights the simultaneous existence of the metallic and the
Mott insulating solutions. The inset sketches the difference in the
DOS between the insulating (top) and metallic (bottom) D-TRILEX
solutions. In the insulating case, the Fermi energy lies between the
LHB and UHB that are split approximately by U . In the metallic
case, the difference in the chemical potential δμ = μ∗ − μ brings
the upper part of the LHB to the Fermi energy, which results in the
formation of the quasiparticle peak at E = 0. The splitting between
the quasiparticle peaks coincides with the value of the crystal field
splitting � �.

rows of this figure. We find that the results of the DMFT
and D-TRILEX methods are different already at U = 1.8. In
both cases, the DOS is metallic. The lower orbital (l = 2,
red line) displays a three-peak structure consisting of the
quasiparticle peak at Fermi energy E = 0 and two side peaks
that correspond to lower and upper Hubbard bands (LHB and
UHB). The upper orbital (l = 1, blue line) also exhibits the
quasiparticle peak in the DOS that appears close to the Fermi
energy at E � �. However, the three-peak structure predicted
by DMFT possesses a high degree of electron-hole symmetry.
Instead, the DOS of obtained for the same orbital (l = 1)
using the D-TRILEX approach resembles the DOS of a hole-
doped Mott insulator with the quasiparticle peak being shifted
closer to the LHB [22]. The quasiparticle peaks in the DOS of
DMFT vanish simultaneously between U = 1.8 and U = 2.0,
which signals the tendency towards a Mott insulating state in
a multiorbital system at finite temperature. A further increase
of the interaction decreases the electronic density at Fermi
energy A(E = 0). The latter reaches zero at U ∗

c � 2.2 (blue
line in Fig. 2), and the DMFT solution enters the Mott insulat-
ing phase. On the contrary, the D-TRILEX solution remains
metallic for the discussed values of the interaction (middle
row in Fig. 1). Thus, even at U ∗

c it reveals pronounced quasi-
particle peaks in the DOS for both orbitals. Figure 2 shows
that A(E = 0) in the metallic D-TRILEX solution also de-
creases upon increasing the interaction. However, this solution
turns into a Mott insulator only at a very strong critical in-
teraction Uc � 4.5, which is larger than twice the bandwidth.

FIG. 3. Chemical potential (left panel) and orbital polarization
(right panel) for the quarter-filled DMFT (blue dots), metallic
D-TRILEX (red dots), and insulating D-TRILEX (red asterisks)
solutions. The result is obtained for different values of the interac-
tion U . Chemical potentials for the insulating D-TRILEX (μ∗) and
DMFT (μd ) solutions nearly coincide. For 1.0 � U < 2.2 no quarter-
filled D-TRILEX solution exists near μd . The chemical potential μ

for the metallic D-TRILEX solution strongly deviates from μd at
U � 1.5.

This result seems surprising, since in the single-orbital case
the nonlocal correlations lead to a more insulating electronic
behavior [30], as correctly captured by the D-TRILEX method
[79].

To explain the observed effect, we note that quarter filling
in DMFT and D-TRILEX corresponds to different values of
the chemical potential. The left panel of Fig. 3 shows that at
U � 1.5 the chemical potential μ of D-TRILEX (red dots)
significantly deviates from μd of DMFT (blue dots), and this
difference increases with increasing the interaction. We point
out that D-TRILEX calculations are based on the DMFT
solution of the local impurity problem that plays a role of the
reference system [79,80]. We find that the quarter-filled metal-
lic D-TRILEX solution originates from the metallic reference
system that has smaller average density. Figure 4 shows that
due to 〈n〉 < 1 the reference system (dashed lines) remains
metallic even at U ∗

c . At the same time, the DOS predicted by

FIG. 4. DOS for the metallic D-TRILEX solution (solid lines)
and its DMFT reference system (dashed lines) obtained for the same
value of the chemical potential μ at the critical interaction U ∗

c . The
reference system is a doped Mott insulator with 〈n〉 = 0.96.
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D-TRILEX (solid lines) is not dramatically different from the
one of the reference system. This fact suggests that for a given
value of the chemical potential the effect of nonlocal collec-
tive electronic fluctuations in the metallic regime consists in
moving the spectral weight from above to below the Fermi
energy, which brings the filling of the system to 〈n〉 = 1.

To confirm this statement, we perform D-TRILEX calcula-
tions for the chemical potential μd of the quarter-filled DMFT
solution. The corresponding result is shown in the bottom row
of Fig. 1 and is referred to as the D-TRILEX∗ calculation
in order not to confuse it with the metallic solution. We ob-
serve that the obtained DOS is again practically identical to
the one of DMFT (bottom versus top row in Fig. 1). How-
ever, the D-TRILEX∗ calculations performed in the regime
1.0 � U < 2.2, where the DMFT solution is metallic, cor-
respond to 〈n〉 > 1. Moreover, no quarter-filled D-TRILEX∗
solution is found near μd in this regime of interactions. This
fact supports our previous finding that in the metallic regime
nonlocal correlations increase the average density of the con-
sidered system.

This physical picture changes when the DMFT solution
becomes Mott insulating. We find that the corresponding
D-TRILEX∗ solution undergoes the Mott transition at the
same critical interaction U ∗

c as in DMFT (bottom right panel
of Fig. 1). Moreover, at U � U ∗

c the average density for the
D-TRILEX∗ solution becomes 〈n〉 = 1 for μ∗ � μd (bottom
left panel of Fig. 1). The right panel of Fig. 3 shows that
the insulating DMFT and D-TRILEX∗ solutions are almost
fully polarized and have approximately the same value of δn,
which results in electron-hole symmetric DOS for the lower
orbital (top and bottom left panels of Fig. 3). Consequently,
the upper orbital becomes nearly unoccupied and thus cannot
strongly interact with the lower one. Therefore, no transfer of
the spectral weight between the orbitals by means of the non-
local fluctuations occurs in the insulating regime. Remarkably,
the metallic D-TRILEX solution has a lower δn compared to
DMFT.

At U � U ∗
c the D-TRILEX∗ solution remains quarter filled

and Mott insulating, which is confirmed by the zero electronic
density at Fermi energy (red asterisks in Fig. 2). Therefore,
both the DMFT and the D-TRILEX methods predict the Mott
transition for the considered system at the same value of the
critical interaction U ∗

c . However, including nonlocal collective
electronic fluctuations beyond DMFT allows one to addition-
ally capture the metallic solution that coexists with the Mott
insulating one up to the second critical interaction Uc. For
U > Uc any value of the chemical potential inside the Mott
gap gives the same average density, and the two solutions
corresponding to μ and μ∗ can be considered equivalent. A
more detailed discussion of the hysteresis curve appearing in
Fig. 3 can be found in the Supplemental Material (SM) [116].

Coexisting solutions with the same average density but
different values of the chemical potential have also been found
in the DMFT solution of the Hubbard-Kanamori model for
small doping around half filling [117–121], and for different
parameters using a strong-coupling expansion [119]. Since the
quarter-filled model considered in our work displays a strong
orbital polarization, it can be expected that taking into account
the Hund’s rule coupling J , which is present in the Kanamori
parametrization of the electronic interaction [24,122], should
not qualitatively change the observed results. To confirm this
point, we perform calculations for the case of J = U/6 and
find that the metastability discussed above survives also in this
case, as shown in SM [116].

Conclusions. We investigated the effect of nonlocal col-
lective electronic fluctuations on the Mott transition in a
two-orbital quarter-filled model with a density-density inter-
action by comparing the results of the D-TRILEX and DMFT
methods. At the considered temperature, the DMFT solution
of the problem remains metallic below the critical interac-
tion U ∗

c = 2.2, and at this value of the interaction undergoes
the Mott transition. We find that the inclusion of nonlocal
correlations by means of the D-TRILEX approach stabilizes
the metallic phase up to the very large critical interaction
Uc = 4.5. The D-TRILEX method also captures the appear-
ance of Mott insulating phase at U ∗

c as a second metastable
solution. This leads to a remarkably broad coexistence region
between the metallic and the Mott insulating phases that exist
at the same filling, but with different values of the chemical
potential between the U ∗

c and the Uc critical interactions. Our
results show that for a simple two-orbital model, DMFT can-
not correctly interpolate between the moderately and strongly
interacting regimes, in analogy with the single-orbital case.
This fact brings further evidence that nonlocal correlations
may lead to nontrivial effects due to the presence of additional
channels for collective electronic fluctuations also in multior-
bital systems.
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