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Quantitative phase imaging via the holomorphic property of complex optical fields
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An optical field is described by the amplitude and phase, and thus has a complex representation described
in the complex plane. However, because the only thing we can measure is the amplitude of the complex field
on the real axis when not introducing an additional imaging system, it is difficult to identify how the complex
field behaves throughout the complex plane. In this study, we interpret quantitative phase imaging methods
via the Hilbert transform in terms of analytic continuation, manifesting the behavior in the whole complex
plane. Using Rouché’s theorem, we prove the imaging conditions imposed by Kramers-Kronig holographic
imaging. The deviation from Kramers-Kronig holography conditions is examined using computational images
and experimental data. We believe that this study provides a clue for holographic imaging using the holomorphic
characteristics of a complex optical field.
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I. INTRODUCTION

Holography retrieves the amplitude and phase of a light
field, which has been recently exploited for various applica-
tions of quantitative phase imaging (QPI). The obtained field
is related to the material thickness and refractive index (RI),
allowing the imaging of highly transparent objects. Holo-
graphic measurements have been utilized in various fields
such as rheology [1], nanotechnology [2], biological science
[3–6], microfluidics [7–9], and metrology [10,11]. Unfortu-
nately, when an optical imaging sensor is used without a
special imaging system, it is only possible to directly measure
the intensity of the light fields in the IR, visible, UV, or shorter
wavelength regions due to the limited temporal bandwidth
of an electronic device. The problem of retrieving the phase
from the magnitude information is significantly difficult and
historical, known as the phase problem [12–14].

With the application of QPI in the biomedical field
[15–19], there have been remarkable developments in holo-
graphic imaging methods for the reconstruction of complex
fields. The retrieval of a complex field falls mainly into two
categories: recovering the analytic form of an optical field
[20–22] or approaching the correct solution by employing
an iterative algorithm [23–25]. There are two approaches for
obtaining an analytic solution in terms of methodology: using
a reference arm [26,27] or in the noninterferometric regime
[28,29]. The complete reconstruction of a complex field
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without an iterative method not only increases the efficiency
of imaging but also eliminates concerns about the possibility
of convergence to a correct solution [30]. However, finding
an analytical solution with only one intensity image without
the assistance of a reference field is challenging. For example,
the approach using the transport intensity equation [31,32]
provides an elegant way to reconstruct the phase of a complex
field by solving a partial differential equation, but requires at
least two intensity images and is not capable of imaging all
complex optical fields accurately.

Recently, a phase-retrieval algorithm using Kramers-
Kronig (KK) relations was proposed [33,34]. When a complex
field is analytic and square integrable in the upper half plane
(UHP) of the complex plane, the real and imaginary parts of
the field are related through the Hilbert transform of each
other, which is called the KK relation. Although attempts
to conduct phase retrieval using the properties of a complex
analytic field were made extensively in the 1970s and the
1980s [35–38], holographic imaging via the KK relations was
applied experimentally only recently [33,39–43].

This study investigates the analyticity of an optical field,
focusing on holographic imaging, and describes the sig-
nificance of analyticity in the one-dimensional (1D) phase
problem following a procedure similar to that in Ref. [22]. The
approach using a Hilbert transform is based on the 1D phase
problem because each line of the measured intensity distribu-
tion is considered to be the real axis in a complex plane; KK
holographic imaging reconstructs phase information through
integration on the real axis. Higher-dimensionality images
can also be analyzed in the 1D regime by considering each
line along a given direction independently. Approaches via
complex analysis for the two-dimensional phase problem are
possible but more complicated because it is necessary to
consider a hyperplane in which two complex planes are con-
jugated [44,45].
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We aim to provide a comprehensive description of holo-
graphic imaging exploiting analyticity. The principle of imag-
ing performed using the Hilbert transform is mathematically
interpreted using Hilbert microscopy [46] and KK holography
[33]. We prove the conditions that make KK holographic
imaging hold in terms of complex analysis. The situation in
which the conditions of KK holography are not satisfied is
also examined using simulation and experimental data.

II. THEORY AND RESULTS

A. Holomorphic complex optical field

For a complex function f (z), it is said to be analytic at
z = z0 if the function is complexly differentiable at all points
in the neighborhood of z = z0. To avoid confusion with the
literal meaning or different usages of the word analytic for real
functions, in this study, the analyticity of complex functions is
expressed as holomorphic; a complex function is holomorphic
in a domain or the whole complex plane if the function is
analytic at all points in the domain or the complex plane [47].

One can see from the Paley-Wiener theorem that most
complex optical functions in imaging systems are holomor-
phic. The Paley-Wiener theorem [48–51] states that if a
function F (u) is supported in [−C,C], its complex inverse
Fourier transform from R (set of real numbers) to C (set of
complex numbers)

f (z) =
∫ C

−C
F (u) eiuzdu (1)

is an entire function of exponential type C, which means that
it is holomorphic. The fact that such a function is holomorphic
can be understood from the Cauchy-Riemann equations in
Eq. (1) respects Ref. [47]:

∂Re[ f (z)]

∂x
= ∂Im[ f (z)]

∂y
. (2)

When an objective lens is used in an imaging system, the
Fourier spectrum is limited by the numerical aperture (NA)
of the lens, as shown in Figs. 1(a) and 1(b). According to
the Paley-Wiener theorem, these complex fields are said to
be bandlimited and become holomorphic functions. The most
complex optical fields in imaging systems have a holomorphic
nature. If the 1D regime is considered, the value of C is
2π (NA)/λ, where λ is the wavelength.

Equation (1) can be used to obtain a complex function f (z)
that matches the value of a real variable function f (x) on the
real axis:

f (x + iy0) =
∫ C

−C
F (u)eiuxe−uy0 du = F−1

1D [F (u)e−uy0 ], (3)

with F (u) = F1D[ f (x)], where F1D represents a 1D Fourier
transform. For example, sin z is the only function whose value
on the real axis is the same as sin x, reflecting the identity
theorem [52]. This redefinition of a function by extending a
domain, such as from f (x) to f (z) [Figs. 1(c) and 1(d)], is
called analytic continuation in mathematics [53–55].

B. Complex analysis as a tool for retrieving phase information

The KK relations associate the imaginary part with the real
part of a complex function f (z) that is holomorphic in the

FIG. 1. Holomorphic E-field analytic in the whole complex
plane. (a) Imaging system with a lens that limits the Fourier spectrum
of a sample as the NA. n is the RI of a surrounding medium. (b)
Amplitude (log scale) of the 1D Fourier transform of a sample field.
The Fourier spectrum is supported along with the indicated direction.
(c) Amplitude and phase of a sample field. Each line in the direction
of the indicated arrow represents the real axis in some complex plane,
respectively. (d) Amplitude (log scale) and phase of a complex field
expanded to the whole complex plane by analytic continuation. Red
dotted lines in (b) and (c) correspond to the function value on a real
axis f (x) expanded to the function value in the whole complex plane
f (z) in (d) and its 1D Fourier transform F (u).

UHP and vanishes at infinity in the UHP [56,57]:

Im[ f (x)] = − 1

π
p.v.

∫ ∞

−∞

Re[ f (x′)]
x′ − x

dx′

Re[ f (x)] = 1

π
p.v.

∫ ∞

−∞

Im[ f (x′)]
x′ − x

dx′ (4)

where p.v. is the Cauchy principal value. The KK relations
are often derived using contour integration [58], which is why
f (z) vanishes at infinity. The vanishing condition is equiv-
alently expressed using Titchmarsh’s theorem [48,59,60] as
the Fourier transform of a complex function that needs to
be supported on a positive frequency in [Cmin,Cmax], where
Cmax > Cmin > 0. This condition can be understood from the
fact that the negative spatial frequencies in Eq. (1) go to
infinity as Im(z) goes to infinity, thus not reflecting the van-
ishing condition. This holomorphic property is ensured by the
Paley-Wiener theorem. In conclusion, the KK relations can be
applied to any bandlimited signal with only positive spatial
frequencies.

An important application of the KK relations is the retrieval
of a complex field from its modulus because many rapidly
oscillating quantities in physics, such as light, can only be
measured by their modulus in the optical regime. In this case,
instead of applying the KK relations to the real part of a
complex signal, the real part of the logarithm of a signal can
be subject to the KK relations, as follows:

g(z) = log [1 + f (z)],

Re[g(z)] = log |1 + f (z)|, (5)

Im[g(z)] = arg (1 + f (z)),

where f (z) only has positive spatial frequencies. This com-
plex logarithm g(z) is holomorphic if f (z) is holomorphic and
1 + f (z) does not vanish in the UHP [61]. This proposition
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can be intuitively understood. log f at the zeros of f is not
only undefined but also nonanalytic; log f is also not square
integrable because log f diverges to infinity at the zeros of f .

Whether 1 + f (z) vanishes in the UHP can be checked
from its value on the real axis using | f (x)| < 1, x ∈ R, and
the fact that f (z) is holomorphic and vanishes at infinity.
Rouché’s theorem [52,60] bestows a mathematical rationale
for the behavior of zeros of a complex function: for two
complex functions f1(z) and f2(z) holomorphic inside some
region D with closed contour ∂D, if | f1(z)| > | f2(z)| on ∂D,
then f1 and f1 + f2 have the same number of zeros inside D,
where each zero is counted as many times as its multiplicity.
If f1 = 1, f2 = f (z), and D are set to a large domain in the
UHP including the real axis, Rouché’s theorem ensures that
1 + f (z) has no zeros in the UHP because f (z) vanishes at in-
finity in the UHP. Hence, g(z) = log[1 + f (z)] is holomorphic
in the UHP if | f (x)| < 1 and x ∈ R.

Finally, g(z) also vanishes at infinity because the Taylor
series of g(z) is expressed as a series with no zero-order
coefficient, and the powers of f (z) vanish at infinity in the
UHP,

g(z) = log [1 + f (z)] =
∞∑

n=0

(−1)n

n + 1
[ f (z)]n+1. (6)

Note that from the holomorphic property of g(z), the Taylor
series of g(z) converges to g(z) in the UHP.

In summary, the KK relations can be used on the logarithm
of a complex function if the function is supported on a closed
set of positive frequencies in Fourier space and is of a norm
smaller than 1. If a complex field has no zero in the UHP, its
logarithm can be reconstructed accurately via a Hilbert trans-
form [37]. The presented proof borrows tools from complex
analysis to derive the conditions of KK holographic imaging.
In the process of retrieving a complex field through the KK
relations, it can be seen that the growth condition is more de-
cisive than the analytic condition. Furthermore, zeros may be
removed to take advantage of phase retrieval using a Hilbert
transform. Rouché’s theorem can be used to eliminate zeros
in the UHP.

We can further consider a more general situation, in which
a complex function has zeros in the UHP. If f (z) has negative
spatial frequencies, or | f (x)| < 1 is not satisfied for all x,
1 + f (z) may have zeros in the UHP so that the KK rela-
tions do not hold. In these cases, a holomorphic function of
exponential type can be represented by its zeros [38,49]. In
particular, such a function is expressed by the Hilbert trans-
form of the logarithm of the magnitude and the location of the
complex zeros in the UHP [62–64]. When the function satis-
fies some growth and boundedness conditions, the following
equation holds:

f (x) = m| f (x)| B(x) exp (iH[log | f (x)|]), (7)

where

B(x) ≡
∏

j

z j − x

z∗
j − x

, (8)

called the Blaschke product [62], m is a constant of modulus
1, {z j} denotes the sequence of zeros, and ∗ and H stand for
the complex conjugate and a Hilbert transform, respectively.

Function values other than the real axis are expanded using
analytic continuation. This equation extends the potential of
phase retrieval via a Hilbert transform by considering the case
when the conditions of KK holographic imaging do not hold.
For example, in Ref. [65], the authors reconstruct the phase
information of the field induced by a point dipole inside a
cavity using modified KK relations with the calculation of the
Blaschke product.

It should be emphasized that we can only measure the
magnitude of a complex field on the real axis, that is, | f (x)|.
The sequence of the complex conjugate of zeros, {z∗

j }, also
yields the same magnitude but different complex values of
f (x) according to Eq. (7). This ambiguity of zeros is the
fundamental origin of the inability to uniquely determine a
solution to the 1D phase problem, known as zero flipping [45].

C. Interpretation of QPI methods using holomorphic properties

We examined two imaging methods, Hilbert microscopy
and KK holography, described in terms of holomorphicity and
analytic continuation. Consider a sample beam S(x) scattered
from an object and a reference beam R(x) = eikx tilted with
respect to the detector plane, representing an off-axis configu-
ration, as shown in Fig. 2(a). Hilbert microscopy [46] utilizes
an off-axis configuration. The interference pattern I at the
detector is formulated as

I = |R + S|2 = |R|2 + |S|2 + 2Re(R∗S). (9)

In Ref. [46], it is assumed that a sample is a phase object
with a uniform amplitude to make the |S|2 a constant. Remov-
ing the constant components |R|2 and |S|2 leaves Re(R∗S),
where the Fourier transform of R∗S has only positive fre-
quency components under the condition

|k| � 2π (NA)/λ. (10)

Titchmarsh’s theorem ensures that the Hilbert transform of
Re(R∗S) provides Im(R∗S) and that the sample field S can
be reconstructed from Re(R∗S). The field-retrieval process is
shown in Fig. 2(c).

However, unlike the assumption of Ref. [46], even if a
sample field has a uniform amplitude, the amplitude of its
bandpass-filtered form is not perfectly uniform due to the lim-
ited NA of the optical system; thus, F[|S|2] is not completely
eliminated by the spatial filtering. Only if |R| � |S|, |S|2 can
be fully ignored.

The field retrieval of Hilbert microscopy results from the
holomorphic properties of a sample field. In contrast, KK
holography uses the holomorphic property of the logarithm of
the sample field rather than the sample field itself to improve
imaging quality. KK holographic imaging corresponds to the
1D phase problem of retrieving the phase of R(x) + S(x) from
the amplitude, |R(x) + S(x)|.

The holographic imaging method using the KK relations
confers the Hilbert transform relation to the real and imagi-
nary parts of the logarithm function of R + S with |R| = 1,

log (R + S) = log |R + S| + i arg (R + S)

= log |R + S| + iH[log |R + S|], (11)

when two assumptions are satisfied: (i) |R| > |S| for all x and
(ii) |k| � 2π (NA)/λ. These conditions were derived in terms
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FIG. 2. (a) Schematic diagram of off-axis holography, a setup for
Hilbert microscopy. A sample beam is generated by a sample and an
illumination, and the interference pattern with a reference beam is
acquired from a detector. (b) Schematic diagram of KK holography.
The unscattered light from a sample serves as a reference beam.
Because R + S is the same as a sample beam itself, no interference
fringe appears on the detector. (c) Field-retrieval procedure in Hilbert
microscopy. Spatial filtering of the DC component of an intensity
distribution provides the Fourier transform of 2Re(R∗S). The Hilbert
transform reconstructs R∗S. (d) Process of the field retrieval in KK
holography. The Fourier transform of R + S is translated so that the
Fourier spectrum does not have negative-frequency components. The
intensity |R + S|2 is obtained from a detector. The Hilbert transform
of log |R + S| renders the phase of R + S when satisfying the two
conditions; the sample field is reconstructed. FT and IFT are the
Fourier transform and the inverse Fourier transform, respectively.
Images in Fourier space are represented by a log scale.

of complex analysis described in the previous section. Com-
pared with the condition of Hilbert microscopy |R| � |S|, the
condition |R| > |S| is a relaxed requirement.

In the non-interferometric KK holographic imaging [33],
the unscattered light takes the role of a reference beam R
[Fig. 2(b)]. The samples that can be imaged are limited to
weak-scattering objects due to the condition |R| > |S|, and
the incident angle of the illumination should match the NA of
the objective lens, satisfying the condition |k| � 2π (NA)/λ.
Figure 2(d) shows the process of field reconstruction with
a Hilbert transform. The intensity distribution of an optical
field, whose negative frequencies are suppressed, is measured
in a detector.

Intriguingly, Hilbert microscopy and KK holography re-
quire similar imaging conditions. Hilbert microscopy can also
be considered in the noninterferometric regime [Fig. 2(b)].
Using the same illumination scheme as in noninterferometric
KK holography, the same imaging conditions can be reached
when using Hilbert microscopy with |R| � |S|. When |R|
is larger than |S|, the solution given by Hilbert microscopy
approaches the field retrieved by KK holography. We

FIG. 3. Comparison of the retrieved phases in KK holography
and Hilbert microscopy. (a)–(d) While changing |R| with respect to
|S|, the solutions for the two methods are observed: |R| > |S| (a),
|R| > 1.2|S| (b), |R| > 1.5|S| (c), and |R| > 2|S| (d). As |R| becomes
larger, the solution of Hilbert microscopy converges to the ground
truth and the complex field reconstructed in KK holography. The
number below the image is the correlation of the retrieved field with
the ground truth.

simulated Hilbert microscopy and KK holography in this situ-
ation [Fig. 2(b)] while satisfying the condition of Eq. (10) and
by varying the amplitude of the unscattered light, as shown
in Fig. 3. If |R| > |S|, the reconstructed field from KK holog-
raphy equals the ground truth. Although Hilbert microscopy
requires the condition of |R| � |S|, it shows a high correlation
with the solution of KK holography even when |R| is not sig-
nificantly larger than |S|. When |R| > 2|S| is used [Fig. 3(d)],
it can be confirmed that the two solutions are almost identical
(correlation of 0.9999). Note that |R| > a|S| implies that |R|
equals the supremum of a|S|, where a is a constant.

D. Deviation from the conditions of KK holography

If the two conditions invoked in the previous section
are satisfied, KK holography provides a correct solution
[Fig. 4(a)]. Here, we compare the effects of either of the two
conditions being violated. Figs. 4(b)–4(e) show the results
obtained by changing the amplitude of the unscattered field,
while the condition k � −C holds, where C is 2π (NA)/λ,
corresponding to 50 pixels. It can be seen that as the intensity
of the unscattered field decreases, the phase variation of the
complex field increases. Figure 4(b) exhibits a high fidelity
because |R| is the same as the maximum of |R| > |S|/2 so
that the number of pixels satisfying |R| > |S| is still large. In
the situation in Fig. 4(d), the retrieved phase is significantly
different from the ground truth. In particular, it can be seen
that the deviation is larger in the part where the phase changes
rapidly.

On the other hand, while the condition |R| > |S| is main-
tained, the fidelity is examined by changing the deviation
from the condition k � −C [Figs. 4(f)–4(i)]. k = −C is a
situation in which the condition is most tightly satisfied, and
the retrieved phase is observed while moving the illumination
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FIG. 4. (a) Reconstructed phase image when the two conditions
of KK holography hold. (b)–(i) Reconstructed phase image in the
presence of violation for the two conditions with changing the am-
plitude of the unscattered light (b)–(e) and the number of deviated
pixels from k = −C (f)–(i), where C is 2π (NA)/λ. The number
below the retrieved phase image means the fidelity of the complex
field reconstructed by KK holography.

from a few pixels in Fourier space. One pixel is the inverse
of the image size in real space. As expected, it can be seen
that the fidelity decreases as the condition is violated. In
the case of ground truth, as the number of deviated pixels
increases, it approaches the field from normal illumination, so
the phase change according to the position becomes less rapid.
In contrast, the solution derived by KK holography exhibits a
more asymmetric distribution of the phase in the left and right
directions, representing an increase in reconstruction error.

We experimentally investigated the effect of deviation
from imaging conditions on KK holographic imaging. To
clearly inspect the difference in the imaging results of a bead,
complex fields obtained from four oblique incident angles
were synthesized in Fourier space using a synthetic aperture
method [66] to obtain a single-phase image [Fig. 5(a)]. Unless
synthetic aperture microscopy is employed, it is difficult to
recognize the complete shape of a bead because the spatial
frequency distribution of the bead is asymmetrical. We imaged
10-μm-diameter polystyrene beads (RI of 1.5983 at 532 nm,
Sigma-Aldrich, 72986-5ML-F) immersed in oil media with
different RIs using a conventional off-axis holography setup
[67]. Varying the RI of the immersion enables adjustment of
the amount of scattering from the sample so that the condi-
tions of KK holography become violated for a low RI of the
immersion.

As the RI difference between the bead and medium in-
creases, the phase delay increases, and the intensity of the
unscattered light decreases. Figure 5(b) shows the imaging
results according to the intensity of the unscattered light.
The ground truth was generated using off-axis holography,
which accurately reconstructs a light phase. When the RI
of the medium is 1.5868, and the phase delay of a bead is

FIG. 5. (a) Reconstruction of a bead image using synthetic aper-
ture microscopy. (Left) Amplitude images of a bead acquired at
four oblique incident angles. (Middle) Fourier transform of the four
complex fields synthesized in Fourier space. (Right) Amplitude and
phase images of a bead obtained by the inverse Fourier transform.
(b) Reconstructed phase of beads in media with different RIs using
off-axis holography and KK holography. (c) Line profile of the re-
trieved phase of beads in off-axis holography (blue line) and KK
holography (orange line). The dashed line indicates the location
where the line profile is obtained. The RI of the medium was obtained
at a wavelength of 532 nm.

less than 1.4 rad, KK holography retrieves a phase image
similar to the ground truth. In this case, we checked that the
intensity of the unscattered light is greater than the intensity
of the scattered light, except at a few positions. However, the
larger the phase delay of the bead, the greater the difference
between the ground truth and the bead image reconstructed
by KK holography. This deviation can be viewed quantita-
tively in Fig. 5(c). For the immersion medium with a medium
RI of 1.5660, there was already a noticeable deviation from
the ground truth. When the phase delay increases, the phase
sharply decreases at the center of the bead imaged with KK
holography, which resembles a hole. The error is larger at the
center of the bead because the phase delay increases closer
to the center; thus, the violation of the assumption |R| > |S|
becomes severe.

It is possible to think quantitatively about the range of a
phase delay where the fidelity of KK holography is main-
tained. For a phase object and normal illumination under the
assumption of elastic scattering, the range of the phase delay
in which |R| > |S| holds is up to π /3. This range can be
calculated by setting the unscattered and scattered fields to
1 and eiθ − 1, respectively, where θ is the phase delay (the
total field is eiθ ) as follows: 1 > |eiθ − 1|. This phase delay
corresponds to the situation with a medium RI of 1.5868. Even
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beyond π /3, KK holography seems to give somewhat correct
phase values, observing the bead in a medium RI of 1.5763.
This is because the limited phase delay π /3 is calculated by
considering normal illumination. However, in KK holography,
the imaging configuration addresses oblique illumination. As-
sume that the unscattered fields from normal and oblique
illuminations are the same, which holds for thin objects. The
Fourier coefficient of the scattered field gets smaller the fur-
ther away from the DC term for most of the samples we are
interested in, and the scattered field is cropped by the limited
NA of the optical system. This is why it is expected that the
amplitude of the scattered field from oblique illumination is
generally smaller than that from normal illumination. Thus,
the phase-delay range in which |R| > |S| holds is wider for
oblique illumination than for normal illumination; it can be
larger than π /3. As a result, KK holographic imaging provides
a value similar to the ground truth for a phase delay of 2π /3,
corresponding to the situation with a medium RI of 1.5763.

III. DISCUSSION

KK holographic imaging was described by the relationship
between a holomorphic field and its zeros. It is important to
know the position of the zeros because one can fully determine
a holomorphic complex field using its zeros and the Hadamard
factorization theorem [49,68].

Interestingly, the problem of eliminating zeros is also asso-
ciated with minimum phase systems in the field of signals and
systems [69,70]. A minimum phase system has the minimum
group delay for a given signal magnitude [71]. The group
delay is represented by the phase response of a system for
frequency. In minimum phase systems, the characteristics of
stability and causality can be utilized [72]. Also, because min-
imum phase systems provide a direct relationship between the
magnitude and phase as a Hilbert transform, a received signal
can be reconstructed from a detector insensitive to phase [70].

One important problem to be addressed in imaging systems
is how the signal-to-noise ratio (SNR) affects imaging capa-
bility [73,74]. The accuracy in KK holographic imaging can
be evaluated using the boundedness of the Hilbert transform
because the KK relations correspond to the directional Hilbert
transform. In Ref. [33], it is shown that the root-mean-square
(rms) of the phase error is less than or equal to the rms of

log(1 + N/I0)/2, where N is added noise, and I0 is a noise-
free intensity image. A more profound discussion of noise
characteristics when using a Hilbert transform can be found
in Ref. [75]. In addition, for most samples for which the KK
holography conditions hold, the magnitude of the Fourier co-
efficient decreases as spatial frequency increases, so the SNR
is also reduced with increasing spatial frequency, resulting in
a diminution of image resolution [73]. We anticipate that the
SNR for transmitting high spatial frequency can be raised by
optimizing the pupil function in the Fourier plane [74].

Although this study focuses on using the relation of a
Hilbert transform by eliminating zeros, it is also possible to
infer the shape of a complex field by directly finding zeros
[76,77]. Moreover, because the configuration in which the
conditions of KK holographic imaging are violated is the
same as the situation in which zeros exist in the UHP, the
deviation can be interpreted with the derived complex zeros
[38]. However, in the 1D phase problem, it is necessary to
create additional conditions for the zeros because there is
ambiguity in zeros when only a single-magnitude distribution
of a complex field is given.

Due to its quantitative and label-free imaging capability,
QPI has been utilized in various fields, with emphasis on
the interpretation of QPI data using machine-learning ap-
proaches [78–83]. However, the complication in constructing
interferometric microscopy has hindered wider applications.
We envision the present method—QPI via the holomorphic
property of complex optical fields—would serve as an im-
portant basis for a comprehensive understanding of phase
retrieval problems in holographic imaging as well as expand
the applicability of QPI.

The implementation code and data used in this work are
available in Ref. [84].
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