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Large-scale deep neural networks consume expensive training costs, but the training results in less-
interpretable weight matrices constructing the networks. Here, we propose a mode decomposition learning
that can interpret the weight matrices as a hierarchy of latent modes. These modes are akin to patterns in
physics studies of memory networks, but the least number of modes increases only logarithmically with the
network width and even becomes a constant when the width grows further. The mode decomposition learning
not only saves a significant large amount of training costs but also explains the network performance with the
leading modes, displaying a striking piecewise power-law behavior. The modes specify a progressively compact
latent space across the network hierarchy, making a more disentangled subspace compared to standard training.
Our mode decomposition learning is also studied in an analytic online learning setting, which reveals multiple
stages of learning dynamics with a continuous specialization of hidden nodes. Therefore the proposed mode
decomposition learning points to a cheap and interpretable route towards the magical deep learning.
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Introduction. Deep neural networks are dominant tools
with a broad range of applications, not only in image and
language processing but also scientific research [1,2]. These
networks are parameterized by a huge amount of trainable
weight matrices, thereby consuming expensive training costs.
However, these weight matrices are hard to interpret, and thus
mechanisms underlying the macroscopic performance of the
networks remain a big mystery in theoretical studies of neural
networks [3,4].

To save the computational cost, previous studies of deep
networks applied singular value decomposition to the weight
matrices [5–8]. This decomposition requires the orthogonality
condition for the singular vectors and positive singular values.
The training also involves a carefully-designed structure for
the trainable decomposition scheme [7,8]. These constraints
and designs make the training process complicated, and thus
a concise physics interpretation is still lacking. In addition,
previous studies of recurrent memory networks showed that
the network weight can be decomposed into separate random
orthogonal patterns with corresponding importance scores
[9,10]. Inspired by these studies, we conjecture that the learn-
ing in deep networks is shaped by a hierarchy of latent modes,
which are not necessarily orthogonal, and the weight matrix
can be expressed by these modes.

The mode decomposition learning (MDL) leads to a pro-
gressively compact latent mode space across the network
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hierarchy, and meanwhile, the subspaces corresponding to
different types of input are strongly disentangled, facilitating
discrimination. The least number of latent modes achieving
comparable performance with the costly standard methods
grows only logarithmically with the network width and could
even be a constant, thereby significantly reducing the training
cost. The mode spectrum exhibits an intriguing piecewise
power-law behavior. In particular, these properties do not de-
pend on details of the training setting. Therefore our proposed
MDL calls for a rethinking of conventional weight-based deep
learning through the lens of cheap and interpretable mode-
based learning.

Model. To show the effectiveness of the MDL scheme,
we train a deep network to implement a classification task
of handwritten digits [11]. The deep network has L layers
(L − 2 hidden layers) with Nl neurons in the lth layer. The
weight value of the connection from neuron i at the upstream
layer l to neuron j at the downstream layer l + 1 is specified
by wl

i j . The activation of the neuron j at the downstream

layer hl+1
j = f (zl+1

j ) = max(0, zl+1
j ), where the preactivation

zl+1
j = ∑

i w
l
i jh

l
i . For the output layer, the softmax func-

tion, hk = ezk /
∑

i ezi , is chosen to specify the probability
over all classes of the input images. The cross entropy C =
−∑

i ĥi ln hi is used as the cost function for the supervised
learning, and ĥi is the target label (one-hot form). After train-
ing (the cross entropy is repeatedly averaged over minibatches
of training examples), we evaluate the generalization perfor-
mance of the network on an unseen test dataset.

Single weight values are not interpretable. According to
our hypothesis, latent patterns would emerge from train-
ing in each layer. We call these patterns hierarchical modes
for deep learning. Therefore the relationship between the
modes and weight values is expressed by the following mode
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FIG. 1. A simple illustration of the mode decomposition learn-
ing. (a) A deep neural network of three layers, including one hidden
layer with three hidden nodes, for a classification task of nonlinearly
separable data. The weight matrix wl

i j = ∑p
α=1 ξ̂ l

i,α�
l
αξ

l
j,α , where

p = 3. The distribution of input data is modeled as a Gaussian
mixture (see the main text) from which samples are assigned to labels
t = ±1 based on the corresponding mixture component. The training
performance is measured by the mean-squared-error loss function
�MSE(y, t ) = ‖y − t‖2/2. (b) The representation of hidden neurons h
plotted in the 3D space, displaying the geometric separation. (c) The

successive mappings from input sample x (gray) to (ξ̂
1
)Tx (dark red),

followed by �1(ξ̂
1
)Tx (green), and finally, ξ2�1(ξ̂

1
)Tx (blue).

decomposition:

wl = ξ̂
l
�l (ξl+1)T, (1)

where there are pl upstream modes ξ̂
l ∈ RNl×pl

and the same
number of downstream modes ξl+1 ∈ RNl+1×pl

. The impor-
tance of each pair of adjacent modes is specified by the
diagonal of the importance matrix �l ∈ Rpl ×pl

, which is a
diagonal matrix here. These modes may not be orthogonal
with each other, and the importance score can take a real
value. This setting allows for more degrees of freedom for
learning features of input-output mappings. We will detail
their geometric and physical interpretations below.

A geometric interpretation of Eq. (1) in a simple learning
task is shown in Fig. 1. We use a three-layer network with
three hidden neurons. The input data is sampled from a four-
component Gaussian mixture [12],

P (x, t ) = P(t )
∑
±

P±N
(
x|μt,±

x , �t,±
x

)
, (2)

where N (x|μt,±
x , �t,±

x ) denotes a Gaussian distribution with
mean μt,±

x and covariances �t,±
x , and P(t ) = P± = 1

2 . For
the label t = +1, μt=+1,±

x = ±(0.5, 0.5)T, while for t = −1,
μt=−1,±

x = ±(−0.5, 0.5)T. Covariances are isotropic through-
out with �t,±

x = 0.051. The input samples x ∈ R2 are first

projected to the input pattern space spanned by (ξ̂
1
)T
i (i =

1, 2, 3). Then all three directions of this projection get ex-

panded or contracted via �1(ξ̂
1
)Tx. Finally the geometrically

modified representation is remapped to the downstream rep-

resentation space of a higher dimensionality, as ξ2�1(ξ̂
1
)Tx

[Fig. 1(c)]. The nonlinearity of the transfer function is then ap-
plied to the last linear transformation, leading to the geometric
separation [Fig. 1(b)]. We conclude that the MDL provides
rich angles to look at the geometric transformation of the input
information along the hierarchy of deep networks.

Rather than the conventional weight values in standard
backpropagation (BP) algorithms [1], the trainable parameters
are latent patterns in the MDL. The training is imple-
mented by stochastic gradient descent in the mode space

θl = (ξ̂
l
,�l , ξl+1) [13],

�ξ l+1
jα ≡ −η

∂L
∂ξ l+1

jα

= −ηKl+1
j �l

α

∑
i

ξ̂ l
iαhl

i ,

��l
α ≡ −η

∂L
∂�l

α

= −η
∑

j

Kl+1
j ξ l+1

jα

∑
i

ξ̂ l
iαhl

i ,

�ξ̂ l
iα ≡ −η

∂L
∂ξ̂ l

iα

= −η�l
αhl

i

∑
j

Kl+1
j ξ l+1

jα , (3)

where L denotes the cost function (e.g., cross-entropy or
mean-squared error) over a minibatch of training data, η

denotes the learning rate, and Kl+1
j ≡ ∂L/∂zl+1

j denotes the
error term, which could backpropagate from the top layer
where KL

j = −ĥL
j (1 − hL

j ) for L = C (cross entropy). Based
on the chain rule, the error backpropagation equation can be
derived as Kl

i = ∑
j Kl+1

j

∑
α ξ l+1

iα �l
αξ̂ l

jα f ′(zl
i ) [13]. To en-

sure the preactivation is independent of the upstream-layer

width, we take the initialization scheme that [ξl+1�l (ξ̂
l
)T]i j ∼

O( 1√
Nl

) [9]. To avoid the ambiguity of choosing patterns (e.g.,
scaled by a factor), we impose an identical regularization
with strength 10−4 for all trainable parameters. However, our
result does not change qualitatively with the specific values of
regularization [13].

We remark that for each hidden layer there exist two

types of pattern (ξl �= ξ̂
l
). Equation (3) is used to learn these

patterns. We call this case 1L2P. If we assume ξl = ξ̂
l
, the

training can be further simplified as in [13], and we call this
case 1L1P. The nature of this mode-based computation can be
understood as an expanded linear-nonlinear layered computa-
tion, as f (zl+1

j ) = f (
∑

α cα jκα ), where the linear field κα =∑
i ξ̂

l
iαhl

i and the equivalent weight cα j = ξ l+1
jα �l

α . Therefore
the number of modes acts as the linear-layer width. We leave
a systematic exploration of this linear-nonlinear structure by
statistical mechanics in forthcoming works.

Online learning dynamics in a shallow network. The MDL
can be analytically understood in an online learning setting,
where we consider a one-hidden-layer architecture. The on-
line learning can be considered as a special case of the above
minibatch learning (i.e., the batch size is set to 1, and the
sample is visited by the learning only once). The training
dataset consists of n pairs {xν, yν}n

ν=1. Each training exam-
ple is independently sampled from a probability distribution
P (x, y) = P (y|x)P (x), where P (x) is a standard Gaussian
distribution, and the scalar label yν is generated by the neural
network of k hidden neurons, (i.e., teacher, indicated by the
symbol ∗ below). Given an input xν ∈ Rd , the corresponding
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label is created by

yν = 1

k

k∑
r=1

σ

(
[ξ∗�∗(ξ̂∗)T]rxν

√
d

)
= 1

k

k∑
r=1

σ (λ∗ν
r ), (4)

where [ξ∗�∗(ξ̂
∗
)T]r denotes the rth row of the matrix

ξ∗�∗(ξ̂
∗
)T, and λ∗ν

r = [ξ∗�∗(ξ̂∗)T]rxν/
√

d represents the rth
element of the teacher local field vector λ∗ν ∈ Rk . The teacher
network is quenched as [ξ∗�∗(ξ̂∗)T]i j ∼ O(1). Here we focus
on the nonlinear transfer function σ (x) = erf (x/

√
2). In ad-

dition, we train the other shallow network, called the student
network, by minimizing the loss function L(y, f̂ (x,)) over
the training data (labels are given by the teacher network),
where  denotes the trainable parameters. The student’s pre-
diction for a fresh sample x is given by

f̂ (x, ξ̂,�, ξ) = 1

m

m∑
r=1

σ

(
[ξ�(ξ̂)T]rx√

d

)
= 1

m

m∑
r=1

σ (λr ),

(5)
where λr denotes the rth component of the student local
field λ = ξ�(ξ̂)
x, and the student has m hidden neurons.
The student is supplied with data samples in sequence (one
sample each time step). We next use ν to indicate the time step
as well.

The mean-squared error can be evaluated as

�MSE(�) = 1
2Eλ,λ∗∼N (λ,λ∗|0,�)[( f̂ (λ) − f (λ∗))2], (6)

where f (·) indicates the teacher’s output, and we have re-
placed the expectation Ex,y∼P (x,y)[·] by Eλ,λ∗∼N (λ,λ∗|0,�)[·],
because of the central-limit theorem and the i.i.d. setting
we consider [14–16]. The covariance of the local field �ν ∈
R(k+m)×(k+m) can be specified as follows,

�ν ≡
[

Qν Mν

(Mν )T P

]
, (7)

where Qν≡Ex,y∼P (x,y)[λ
ν (λν )T], Mν≡Ex,y∼P (x,y)[λ

ν (λ∗ν )T],
and Pν ≡ Ex,y∼P (x,y)[λ

∗ν (λ∗ν )T]. By definition, P is fixed,
while Qν and Mν evolve according to the gradient updates
following a set of deterministic ordinary differential equa-
tions (ODEs) as the input dimension d → ∞ [13]. These
matrices are exactly the order parameters in physics. For
simplicity, we consider ξ = ξ∗ and � = �∗, i.e., only the
upstream patterns are learned.

Results. MDL can reach a similar test accuracy with that of
BP performed in the weight space when p is sufficiently large
[Fig. 2(a)]. The computational cost of the BP scales with N2

l .
In contrast, MDL works in the mode space, requiring a train-
ing cost of only the order of pNl . Note that p is much smaller
than Nl (or limNl →∞ pl/Nl = 0), and our MDL does not need
any additional training constraints (compared to other matrix
factorization algorithms [13]). Remarkably, when p = 30 the
performance of MDL almost matches that of BP [Fig. 2(b)],
but it only utilizes 40% of the full sets of parameters that
are consumed by the BP. In fact, each hidden layer can have
two different types of latent pattern (1L2P) due to the mode

decomposition. But if we assume that ξl = ξ̂
l
, i.e., each layer

shares a single type of pattern (1L1P), we can further reduce
the computational cost by an amount of

∑
l plNl , without

sacrificing the test accuracy [Fig. 2(b)]. Varying the network

(a) (b)

(c) (d)

(e) (f)

training data test data

FIG. 2. Test performance and mode hierarchy of MDL in deep
neural networks. Error rate is defined as the fraction of misclassified
examples. (a) Training trajectories of a four-layer network, indicated
by 784-100-100-10, where each number indicates the correspond-
ing layer width. The number of modes pl = p for layer l , where
l = 1, . . . , L. p = 20, or p = 30. Networks are trained on the full
MNIST dataset (6×104 images) and tested on an unseen dataset
containing 104 images. The fluctuation is computed over five in-
dependent runs. (b) Testing accuracy vs p (the number of modes
is the same for all layers). The same architecture as (a) is used.
The error bar characterizes the fluctuation across five independently
trained networks, and each marker denotes the average result. The
least number of modes is indicated by the dash-dot line. (c) The
performance changes with the network width. The inset shows the
least number of modes vs the layer width N (in the logarithmic scale).
The network architecture is given by 784-N−N-10. The dash-dot line
in the inset separates the piecewise logarithmic increase (∝ ln N)
regions. The result is obtained from five independent runs. (d) The
averaged Euclidean distance (dispersion) from the pattern-cloud cen-
ter ( 1

p

∑
α ξl

α ) as a function of layer index. The network architecture
is specified by 784-100-100-100-10 (p = 30). (e)–(f) Subspace over-
lap (principal angle) vs layer. The overlap is averaged with five
independent runs, and seven-layer networks with hidden-layer width
100 are trained (p = 30).

width, we reveal a logarithmic increase of the least number of
modes [Fig. 2(c)], which is a novel property of deep learning
in the mode space, in stark contrast to a linear number of
memory patterns in previous studies [9]. When the network
width further grows, the least number can even become a con-
stant. We argue that this manifests three separated phases of
poor-good-saturated performance with increasing layer width
(see Fig. S9 in [13]).

To see how the latent patterns are transformed in geometry
along the network hierarchy, we first calculate the center of
the pattern space; then the Euclidean distance from this center
to each pattern is analyzed. We find that the pattern space
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(a) (b)

FIG. 3. The robustness properties of well-trained four-layer
MDL models with the architecture 784-100-100-10. The case of
1L1P is considered with p = 70 in the hidden layers. (a) Effects
of removing modes through two protocols: removing modes with
weak measure τ first (solid line) and removing modes randomly
(dashed line). The fluctuation is computed over ten independent
runs. (b) The rescaled �2 norms γ ‖ξ‖2, γ ‖ξ̂‖2 and the absolute
values of � vs their rank (in descending order) in the hidden layers,
where γ = ∑

α |�α|/
∑

α (‖ξα‖2 + ‖ξ̂α‖2). The inset shows a log-log
plot of the τ measure, displaying a piecewise power-law behavior.
The error bar is computed over five independent runs. The marked
percentage indicates the generalization accuracy after removing the
corresponding side of modes.

becomes progressively compact when going to deep layers
[Fig. 2(d)]. To further characterize the geometric details, we
define the subspace spanned by the principal eigenvectors of
the layer neural responses to one type of inputs. Then the
subspace overlap is calculated as the cosine of the principal
angle between two subspaces corresponding to two types of
inputs [13,17]. We find that the hidden-layer representation
becomes more disentangled with layer in comparison with
BP [Figs. 2(e) and 2(f)]. MDL shows great computational
benefits of representation disentanglement, thereby facilitat-
ing discrimination. A slight increase of the overlap is observed
for deeper layers, which is caused by the saturation of the test
performance (see more analyses in [13]).

Compared to other matrix factorization methods, MDL has
no additional constraints for the modes and importance scores,
therefore being flexible for feature extraction. We find that the

interlayer patterns (e.g., ξ̂
l

vs ξl+1) are more orthogonal than
the intralayer (patterns belonging to each layer) ones. The
geometric transformation carried out by these latent pattern
matrices is not strictly a rotation for which the �2 norm is
preserved. This flexibility is likely the key to make our method
better than other matrix factorization methods in both training
cost and learning performance (see details in [13]).

We next ask whether some modes are more important
than the others. Therefore we rank the modes according
to the measure τα = γ ‖ξα‖2 + γ ‖ξ̂α‖2 + |�α|, where γ =∑

α |�α|/∑
α (‖ξα‖2 + ‖ξ̂α‖2) to make comparable the mag-

nitudes of the pattern and importance (�) score. Removing
modes with weak values of τ first yields much higher accuracy
than the random removal protocol [Fig. 3(a)], suggesting the
existence of leading modes. Moreover, deeper layers are more
robust. Figure 3(b) shows the measure as a function of rank
in descending order, which can be approximately captured
by piecewise power-law behavior (a transition point at the
rank 10). Ranking with only the importance scores yields
similar behavior [13]. A small exponent is observed for the
leading measures, while the remaining measures bear a large

(a) (b)

FIG. 4. Mean-squared error dynamics in terms of t = ν

d , where
ν denotes the online sample index, and d is the input dimension.
The teacher and student networks share the same number of hidden
neurons (m = k = 8). Markers represent results of the simulation,
while the solid lines denote the theoretical predictions from solv-
ing the mean-field ODEs. The number of modes p∗ = p = α ln d
(α denotes the mode load here). (a) Fixed α = 1. (b) Fixed d = 100.
The color deepens as α or d increases. The insets display the evolving
M matrix for d = 30 and α = 1.0, respectively.

exponent, thereby revealing the coding hierarchy of latent
modes in the deep networks. This intriguing behavior does
not change with the regularization strength or the hidden-layer
width [13].

Finally, the online mean-squared error dynamics of our
model can be predicted perfectly in a teacher-student setting.
The number of modes strongly affects the shape of the learn-
ing dynamics, and a large mode load can make the plateaus
disappear (Fig. 4). Moreover, during learning, the alignment
between receptive fields of the student’s hidden nodes and
the teacher’s modes continuously emerges, which is called the
specialization transition [16,18].

Conclusion. In this Letter we propose a mode decompo-
sition learning that works in the mode space rather than the
conventional weight space. This learning scheme has three-
fold technical and conceptual advances. First, the learning can
achieve the comparable performance with standard methods,
with a significant reduction of training costs. We also find that
the least number of modes grows only logarithmically with
the network width and becomes even independent of larger
width, which is in stark contrast to a linear number of patterns
in recurrent memory networks. Second, the learning leads to
progressively compact pattern spaces, which promotes highly
disentangled hierarchical representations. The upstream pat-
tern maps the activity into a low-dimensional space, and then
the resulting embedding is further expanded or contracted.
After that, the modified embedding is remapped into the
high-dimensional activity space. This sequence of geometric
transformation can be understood as a linear-nonlinear hidden
structure. Third, all modes are not equally important to the
generalization ability of the network, showing an intriguing
piecewise power-law behavior. Finally, the mode learning dy-
namics can be predicted by the mean-field ODEs, revealing
the mode specialization transition. Therefore the MDL in-
spires a rethinking of conventional deep learning, offering a
faster, more interpretable training framework. Future works
along this direction will be inspired. For example, the im-
pact of other structured dataset, transformer, or convolutional
network structures, mode dynamics in overparameterized or
recurrent networks, and the origin of adversarial vulnera-
bility of deep networks in terms of geometry of the mode
space.
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