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Barkhausen noise from formation of 360◦ domain walls in disordered permalloy thin films
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Barkhausen noise in disordered ferromagnets is typically understood to originate primarily from jerky field-
driven motion of domain walls. We study the magnetization reversal process in disordered permalloy thin films
using micromagnetic simulations and find that the magnetization reversal process consists of gradual formation
of immobile 360◦ domain walls via a sequence of localized magnetization rotation events. The density of
360◦ domain walls formed within the sample as well as the statistical properties of the Barkhausen jumps are
controlled by the disorder strength.
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I. INTRODUCTION

Permalloy (Ni80Fe20, Py) thin films are important fer-
romagnetic systems in spintronics and magnonics applica-
tions [1–5] due to their soft magnetic response and low
fabrication cost. Py thin films exhibit a hysteretic response
to external fields and display crackling noise [6–8] known
as Barkhausen noise (BN) [9]. The statistical properties of
BN are typically found to obey power law behavior [9–11].
Statistical physicists often model BN by employing either
so-called front propagation or nucleation models, such as the
random-field Ising model (RFIM) [6–8,12–18], with the BN
in the neighborhood of the coercive field (where the largest
BN amplitude is found) understood to originate from the jerky
field-driven motion of domain walls (DWs). However, given
the vanishing magnetocrystalline anisotropy of Py, Ising-type
models which inherently assume a strong uniaxial anisotropy
are not suitable to properly characterize its magnetization
reversal process.

In this work, we employ full micromagnetic simulations
of disordered Py thin films to properly capture the details of
the field-driven magnetization reversal process and the related
statistical properties, including the emergence of BN. Unlike
simple Ising-type models, micromagnetic simulations provide
a proper description of the full vectorial nature of the order
parameter (magnetization) and include all the relevant energy
terms (such as the demagnetizing energy). Contrary to the
paradigm of BN due to jerky motion of DWs, we find that
field-driven BN in Py thin films is due to the gradual formation
of largely immobile 360◦ DWs [19–31] via a sequence of
localized and intermittent magnetization rotation events. Once
formed, the 360◦ DWs get progressively narrower due to an
increasing driving field induced effective anisotropy, before
disappearing as the oppositely saturated state is reached. Both
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the emerging configuration of 360◦ DWs (e.g., their density)
and the statistics of BN are found to be dependent on disorder
strength, suggesting that the magnetization reversal process in
disordered Py thin films is governed by disorder-induced criti-
cality [10], but with an important difference compared to Ising
models: no infinite, spanning avalanche (i.e., an avalanche
spanning the finite system along at least one of its dimensions,
resulting in a jump of magnetization in an infinite system
below the critical disorder) is observed for weak, subcritical
disorder. The present work therefore focuses on investigat-
ing how the Barkhausen effect and the related jump size
distributions emerge from the previously unidentified mech-
anism of gradual formation of immobile 360◦ domain walls
in thin films with negligible magnetocrystalline anisotropy, as
opposed to the well-known mechanism related to the jerky
motion of domain walls.

II. COMPUTATIONAL METHODS

Our micromagnetic simulations are performed using the
GPU-accelerated simulation code MUMAX3 [32]. Typically,
micromagnetic simulations rely on the dynamical approach
where the magnetization dynamics is governed by the Landau-
Lifshitz-Gilbert equation, written as

∂ �M
∂t

= γ

1 + α2
[ �M × �Heff + α �M × ( �M × �Heff )], (1)

where �M = Msm̂ is the magnetization vector, Ms is the satu-
ration magnetization, m̂ = mxx̂ + myŷ + mzẑ is the unit vector
pointing along the magnetization, γ is the gyromagnetic ratio
of electron, α is the Gilbert damping constant, and �Heff is the
effective field. The total energy of the system (and hence �Heff )
consists of contributions from exchange, demagnetization,
and Zeeman terms as described in detail in the Supplemen-
tal Material [33]. Due to the vanishing magnetocrystalline
anisotropy of Py, the anisotropy energy is neglected here; that
is, the magnetocrystalline anisotropy constants are set to zero.

An example of a simulated system is shown in Fig. 1(a).
We discretize the square thin film on a finite difference grid
with spacing of 4 nm in the x and y in-plane directions where
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FIG. 1. (a) Example of the spatial variation of Ms, sampled from
the normal distribution with mean 800 kA/m and standard deviation
of 30% of the mean value. (b) Example evolution of mx with qua-
sistatically decreasing Bext.

the linear system size is 4096 nm and consider a single 16 nm
long cell in the perpendicular z direction (the film thickness).
Periodic boundary conditions are employed in the in-plane
x and y directions. We use the common literature values for
the exchange stiffness A = 13 pJ/m and the average satu-
ration magnetization Ms = 800 kA/m. Structural disorder is
introduced via a spatially varying Ms by performing a two-
dimensional (2D) Voronoi tessellation on each sample with
the grain size of 30 nm (the disorder correlation length) and
assigning a random value of Ms in each grain from a normal
distribution with mean of 800 kA/m and standard deviations
(the disorder strengths) between 5% and 35% of the mean
value (negative Ms values are avoided by redrawing until a
positive value is obtained) [34,35]. This way, we establish a
random component in the energy landscape of the magneti-
zation state, characterized by the correlation length (Voronoi
grain size) and magnitude (disorder strength) of the disorder.
In a material, such disorder can be caused by inhomogeneous
distribution of elements in the sample, impurity material, de-
fects, and other lattice imperfections. Introducing the disorder
by parameter variation in the zero-anisotropy case can be
done through variation of either Ms or A or both. Here we
investigate the effect of the Ms variation only. According to
our test runs, simultaneous variation of exchange stiffness A
does not alter the magnetization dynamics qualitatively but the
dynamical process is dominated by the spatial Ms variation.

In each run, the magnitude Bext of the external field �Bext =
Bextx̂ is swept from 100 mT (at which point the system is
close to saturation with mx ≈ 1) to −100 mT. The run is
considered finished once mx falls below −0.98 or the external
field reaches −100 mT. This procedure thus produces half of
the hysteresis loop where mx reverses from a value close to
+1 to a value close to −1.

The simulation times of dynamic simulations are in prac-
tice limited to the microsecond range, hence seriously limiting
the range of accessible field frequencies. Therefore, we
mainly focus on quasistatic simulations, where the total en-
ergy of the system is consecutively minimized while altering
Bext between each minimization in small steps �Bext. To
validate the use of quasistatic simulations, we present in the
Supplemental Material [33] results for both dynamical and
quasistatic simulations, showing how the dynamic hysteresis
loops approach the hysteresis loop obtained from the qua-
sistatic simulations in the low frequency limit of the sinusoidal

driving field. In what follows, we thus consider quasistatic
simulations with |�Bext| = 4 T; see the Supplemental Ma-
terial [33] for the justification of the selected value. For
an example of the half loop produced by this protocol, see
Fig. 1(b). For each disorder strength, we collect statistics by
running 40 simulation runs with different disorder realiza-
tions.

III. RESULTS AND DISCUSSION

A. Hysteresis curves

Figure 2 shows all of the simulated hysteresis curves for
each disorder strength. The curves for 5 and 10% disorders
are quite smooth, i.e., Barkhausen jumps are largely absent.
The magnetization is being rotated in a smooth and contin-
uous fashion as the applied field is driven from 100 mT to
−100 mT, i.e., no infinite spanning avalanche takes place
unlike in RFIM for weak disorder. Note also that the mag-
netization does not saturate to −1 before Bext = −30 mT.
In contrast, the systems with the highest disorder strengths,
30% and 35%, exhibit bursty behavior with more frequent and
larger abrupt avalanches. The saturated state with mx = −1
is reached before Bext = −30 mT for most runs. The curves
with 20% disorder show features of both kinds: long smooth
sections interrupted by occasional abrupt jumps.

Following this observation, let us make a distinction
between the parts of the hysteresis curve where (1) the magne-
tization is rotated smoothly and continuously and (2) a large
part of the magnetization is changed abruptly (Barkhausen
jumps). We note that the tangential slopes of the smooth parts
in between avalanches seem to have a characteristic magni-
tude. Also, the curves with 10 and 20% disorder strengths
seem to be divided into two separate subgroups, as well as
the 30% curves into four subgroups (Fig. 2). In the following,
we will connect all of these features of the hysteresis curves
to the disorder strength, the respective Barkhausen jump size
distributions, and the magnetization reversal mechanisms, in-
cluding the appearance of the 360◦ DWs.

B. Barkhausen jump size distributions

Figure 3 shows the Barkhausen jump size distributions—
that is, the distributions of the absolute changes s ≡ |�mx| of
mx during each field step in the quasistatic simulations. Based
on the renormalization group theory and previous studies of
Barkhausen noise statistics [9], we expect that the tails of size
distributions P(s) follow truncated power laws with a critical
exponent τ ,

P(s) = s−τ g(s/s0), (2)

where g(x) is a cutoff scaling function and s0 a cutoff scale
parameter. The tails of the distributions in Fig. 3 do behave
according to Eq. (2) with a disorder-dependent s0 (see be-
low for more details), but a bump exists in each distribution
below the power-law part, introducing a characteristic length
scale to the statistics. Increasing the disorder strength leads
to translation of the bump to smaller jump sizes and possibly
to broadening of the bump. We attribute the positions of the
bumps to the largest magnitudes for the tangential slopes
in the hysteresis curves where the magnetization reversal is
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FIG. 2. Hysteresis curves for mx (Bext ) of all simulations. The external field Bext is decreased from 100 mT to −100 mT. The disorder
strength is indicated in the upper left corner of each panel.

smooth. Avalanches exceeding the characteristic size of the
bumps, obeying Eq. (2), are taken to be the actual Barkhausen
jumps.

The disorder strength of 35% seems to be close to the
critical disorder strength since the tail of P(s) exhibits a
clear power law behavior. Even though the expected shape
of Eq. (2) includes the cutoff function g(x), we employed
a plain power law fit with g = 1 in the absence of properly
resolved cutoffs due to limited statistics. Fitting a power law
to the tail of P(s) for 35% disorder results in τ = 1.75 ± 0.02.
As illustrated in the inset of Fig. 3, the distributions for the
other disorder strengths fall off from the power law trend in
the order given by the disorder strength, i.e., s0 in Eq. (2) is
disorder dependent. This trend is expected when approaching
the critical disorder strength, and so we conclude that the

FIG. 3. Distributions (shifted vertically for clarity) of the
Barkhausen jump sizes s = |�mx| for different disorder strengths.
The exponent τ = 1.75 ± 0.02 is determined by fitting a power law
to the tail of the 35% distribution. The inset includes the same data
stacked on top of each other to highlight the dependence of s0 on the
disorder strength.

critical disorder strength here is likely to be close to 35%. In
the literature, the reported values for the critical exponent τ

for Py thin films are diverse: 1.65 [6], 1.33 [8], 1.45 [16], and
1.6 [36]. Our estimate is close to those reported in Refs. [6]
and [36].

Another interesting feature in the distributions is the almost
perfect power law behavior for jump sizes smaller than that
of the bumps of the 5–20% disorder distributions; this seems
to be absent in the stronger disorder statistics. These very
small magnetization changes correspond to tangential slopes
of mx(Bext ) smaller in magnitude than the ones of the bump
and originate from the parts of the hysteresis curves where the
magnetization is close to saturation. It is worth noting that the
bump positions depend also somewhat on the field step used
in the simulations; see the Supplemental Material [33].

C. Magnetization reversal processes

To understand the origin of the observed subgroups in
the hysteresis curves we proceed to study the disorder-
dependent magnetization reversal mechanisms. For 5% dis-
order [Fig. 4(a)], we observe that, interestingly, a structure of
two 360◦ DWs is formed at the late stages of the reversal pro-
cess. This formation process proceeds via a gradual rotation
of the magnetization in opposite directions within two “do-
mains,” such that the eventual 360◦ DWs are formed via 90◦
DWs at Bext = −1.59 mT and 180◦ DWs at Bext = 3.21 mT.
Due to topological protection [24], the 360◦ DWs remain in
the system until the end of the simulation, resulting in the
absence of full negative saturation of mx for the Bext values
considered. Upon making Bext more negative, mx is slowly
approaching −1 since the widths w of the DWs decrease with
increase of the Bext (see Fig. 5 and the related discussion be-
low). Each of the runs with 5% disorder exhibits the formation
of two 360◦ DWs and the hysteresis curves of the different
realizations overlap almost perfectly (Fig. 2).

For 10 and 20% disorder, the two subgroups of the hystere-
sis curves in Fig. 2 correspond to two and four 360◦ DWs per
simulation box, respectively, and some of the 360◦ DW struc-
tures disappear before the applied field reaches −25 mT; this
is seen as mx reaching −1 in Fig. 2. The reversal mechanism in
an example run where four 360◦ DWs are formed is presented
in Fig. 4(b). The mechanism for the formation of the DWs
is similar to that of the 5% disorder in Fig. 4(a), but there
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FIG. 4. Examples of the magnetization reversal mechanism with (a) 5%, (b) 20%, (c) 30%, and (d) 35% disorder strengths. The arrows
denote the local magnetization direction in every 64th grid point. The background color indicates the direction of the local magnetization �m as
given by the color bar; θ denotes the angle between the x axis and �m in radians. The Bext values corresponding to each snapshot are indicated
in the top left corners.

is more spatial variation in the local magnetization and the
DWs appear more rough. As expected, even more roughness
is present in the example cases with 30 and 35% disorders
shown in Figs. 4(c) and 4(d), where the final magnetiza-
tion structures are more complicated and features resembling
360◦ DWs can be recognized only in parts of the system.
The magnetization configurations shown in both Figs. 4(c)
and 4(d) are fully reversed towards the field direction at the
next field step. A closer look at the 30% disorder strength hys-
teresis curves in Fig. 2 reveals that there are distinct subgroups
of curves that correspond to a varying number of DWs (up to
6 or 8) in the system. Four example runs with 30% disorder
are highlighted in the Supplemental Material [33], further

illustrating the different magnetization reversal mechanisms
involving formation of different numbers of DWs. With the
highest disorder strengths of 30 and 35%, the unambiguous
360◦ DWs are reached only in the late stage of the runs if
at all. Animations of the magnetization reversal processes for
different disorder strengths are provided as Supplemental Ma-
terial [33]. We ruled out the possibility of 360◦ DWs forming
due to periodic boundary conditions by a similar calculation
with open boundaries as presented in the Supplemental Mate-
rial [33].

Thus stronger disorder induces the formation of a higher
density of 360◦ DWs that also appear less stable—presumably
disorder lowers the energy barrier to remove a 360◦ DW,
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FIG. 5. 360◦ DW width w as a function of |Bext| in selected runs
with varying disorder strength where two 360◦ DWs are formed. w

evolves approximately as |Bext|−1/2 (dashed line). The inset shows an
example configuration where w is evaluated at Bext = −5.6 mT for
5% disorder. w is taken to be the distance between the two points at
which the magnetization profile mx (x), averaged over y, crosses zero.

thus rendering the topological protection less effective. For
example, in the case of 30% disorder, all the hysteresis curves
collapse to −1 before Bext has reached −25 mT. Before
collapsing, the DW width w behaves like w ∼ |Bext|−1/2, as
demonstrated in Fig. 5. The inverse square root relation be-
tween w and the uniaxial anisotropy constant is a well-known
result [37] for stationary 180◦ DWs and our numerical exam-
ination verifies that Bext affects the immobile 360◦ DWs in
a similar way as the uniaxial magnetocrystalline anisotropy

affects 180◦ DWs. The disorder strength does not seem to
affect the w(|Bext|) relation.

IV. CONCLUSIONS

To conclude, our full micromagnetic simulations suggest
that Barkhausen noise in Py thin films obeys neither pre-
dictions of nucleation nor front propagation models, but is
instead a consequence of gradual formation of immobile 360◦
DWs via a sequence of abrupt magnetization rotation events.
The criticality exhibited by the system appears to be disorder
induced such that the cutoff avalanche size is disorder depen-
dent. However, the “infinite avalanche” typically observed in
Ising-type models for weak disorder is absent here. Instead,
we observe smooth hysteresis curves for weak disorder, with
progressively larger Barkhausen jumps as disorder is made
stronger so that the critical disorder strength is approached
from below. Disorder also controls the morphology of the
ensuing 360◦ DWs such that for weak disorder almost straight
DWs spanning the system are formed. Upon increasing the
disorder strength, the DWs become increasingly rough and
finally form an irregular DW structure without clear, spanning
360◦ DWs at the critical disorder strength. The property of
the Py samples not having any magnetocrystalline anisotropy
results in the magnetization reversal process happening in a
sequence of gradual and localized rotations of the magnetiza-
tion, highlighting the importance of using full micromagnetic
simulations to properly capture the details of the magne-
tization reversal process [38] and calling for experimental
verification of our results, e.g., using magneto-optical imag-
ing [39,40].
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