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Solving the generalized eigenvalue problem is a useful method for finding energy eigenstates of large quantum
systems. It uses projection onto a set of basis states which are typically not orthogonal. One needs to invert a
matrix whose entries are inner products of the basis states, and the process is unfortunately susceptible to even
small errors. The problem is especially bad when matrix elements are evaluated using stochastic methods and
have significant error bars. In this work, we introduce the trimmed sampling algorithm in order to solve this
problem. Using the framework of Bayesian inference, we sample prior probability distributions determined by
uncertainty estimates of the various matrix elements and likelihood functions composed of physics-informed
constraints. The result is a probability distribution for the eigenvectors and observables which automatically
comes with a reliable estimate of the error and performs far better than standard regularization methods. The
method should have immediate use for a wide range of applications involving classical and quantum computing
calculations of large quantum systems.
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I. INTRODUCTION

One common approach to find extremal eigenvalues and
eigenvectors of large quantum systems is to project onto basis
states that have good overlap with the eigenvector of interest.
Since these states are often not orthogonal to each other,
this process results in a generalized eigenvalue problem of
the form H |ψ〉 = EN |ψ〉, where H is the projected Hamil-
tonian matrix, N is the norm matrix for the nonorthogonal
basis, E is the energy, and |ψ〉 is the column vector for
the projected eigenvector. If O is the projected matrix for
some other observable using the same basis, then we can
compute expectation values of that observable using 〈O〉 =
〈ψ |O|ψ〉 / 〈ψ |N |ψ〉.

The generator coordinate method is a well-known tech-
nique in nuclear physics, where the corresponding generalized
eigenvalue problem is called the Hill-Wheeler equation [1–4].
The generalized eigenvalue problem is used in several com-
putational approaches utilizing variational subspace methods
and nonorthogonal bases [5–7]. It serves as a cornerstone
of methods such as eigenvector continuation [8–13] and the
more general class of reduced basis methods [14–16]. It is
also useful for Monte Carlo simulations where trial states
are produced using Euclidean time projection starting from
several different initial and final states [17–21].

By using only a small subspace of states, the generalized
eigenvalue problem can make efficient use of computational
resources. However, one major weakness is the sensitivity
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to error. One needs to find eigenvectors and eigenvalues of
the matrix N−1H , and the condition number of the norm
matrix grows larger as the size of the subspace grows. Even
small errors due to the limits of machine precision can cause
problems. But the problem is even worse for stochastic meth-
ods. Monte Carlo simulations are among the most powerful
tools for solving quantum many-body systems. Unfortunately,
Monte Carlo calculations produce statistical errors when cal-
culating elements of the Hamiltonian and norm matrices, and
the resulting uncertainties for the generalized eigenvalue prob-
lem can be very large. The same challenges arise for quantum
computing where all measurements are stochastic in nature.
When using variational subspace methods in quantum com-
puting [22], one must consider both statistical errors as well
as systematic errors due to gate errors, measurement errors,
and decoherence [23–26].

There are well-established methods for dealing with ill-
posed inverse problems. Tikhonov regularization is one
popular approach [27], and the simplest form of Tikhonov
regularization is ridge regression or nugget regularization. In
this approach, a small positive multiple of the identity, εI , is
added to the norm matrix that needs to be inverted. However,
it is not straightforward to choose an appropriate value for
ε [28] or to estimate the systematic bias introduced by the
regularization.

In this work, we introduce the trimmed sampling algo-
rithm, which uses physics-based constraints and Bayesian
inference [29,30] to reduce errors of the generalized eigen-
value problem. Instead of simply regulating the norm matrix,
we sample probability distributions for the Hamiltonian and
norm matrix elements weighted by likelihood functions de-
rived from physics-informed constraints about positivity of
the norm matrix and convergence of extremal eigenvalues
with respect to subspace size. We determine the posterior
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distribution for the Hamiltonian and norm matrix elements
and sample eigenvectors and observables from that distri-
bution. To demonstrate the method, we apply the trimmed
sampling algorithm to two challenging benchmark cal-
culations. We analyze the performance and discuss new
applications that may be possible based upon this work and
its extensions.

II. METHODS

Let us label the basis states used to define the general-
ized eigenvalue problem as |v1〉 , |v2〉 , · · · |vn〉 , · · · . As noted
above, there is no assumption that the states are orthogonal or
normalized. Let us define En as the ground-state energy for the
generalized eigenvalue problem if we truncate after the first n
basis states,

H (n×n) |ψn〉 = EnN (n×n) |ψn〉 . (1)

If the matrix elements of H and N could be determined ex-
actly, then the variational principle tells us that the sequence
En must be monotonically decreasing and bounded below
by the true ground-state energy Eexact. We will assume that
the basis states |v1〉 , |v2〉 , · · · |vn〉 , · · · have been ordered so
that the energies En converge to Eexact as a smoothly varying
function of n for sufficiently large n.

The problem is that we do not have exact calculations of
the H and N matrices. Instead we start with some estimates
for the Hamiltonian and norm matrices, which we call H̃
and Ñ , respectively. We are also given one-standard-deviation
error estimates for each element of the Hamiltonian and norm
matrices, which are denoted as �H̃ and �Ñ , respectively. In
this work, we consider the standard case where the Hamilto-
nian and norm matrices are manifestly Hermitian. But we also
discuss the generalization to the non-Hermitian case at the end
of our analysis.

We will compute a posterior probability distribution
P(H, N |R) for the elements of the Hamiltonian matrix H and
norm matrix N . Here, R indicates a set of physics-informed
conditions that we impose on the H and N matrices, and the
corresponding likelihood function is written as P(R|H, N ).
We also include a prior probability distribution, which we
write as P(H, N ). From Bayes’ theorem, the posterior distri-
bution is given by

P(H, N |R) = P(R|H, N )P(H, N )∫ ∏
i j[dHi jdNi j]P(R|H, N )P(H, N )

. (2)

For our prior distribution, we take a product of uncorrelated
Gaussian functions,

P(H, N ) =
∏

i j

e
− (Hi j−H̃i j )2

2(�H̃i j )2 e
− (Ni j−Ñi j )2

2(�Ñi j )2

2π�H̃i j�Ñi j
, (3)

though a more detailed model of the prior distribution with
asymmetric errors and correlations among matrix elements
can also be implemented.

Our likelihood function P(R|H, N ) is a product of two
factors,

P(R|H, N ) = α fpos(N ) fC (H, N ). (4)

The first factor, α, is a normalization constant that cancels in
Eq. (2). The second factor, fpos(N ), enforces the constraint
that the norm matrix must be positive definite. It equals 1 if
N is positive definite and equals 0 otherwise. The final factor
fC (H, N ) is a function of the submatrix energies En given in
Eq. (1). Let us define the convergence ratio Cn for n > 2 as

Cn = En − En−1

En−1 − En−2
. (5)

We have taken ratios of energy differences for consecutive
energies En. This can be generalized to ratios of energy dif-
ferences between nonconsecutive energies in cases where the
convergence pattern has some periodicity. Let Cmax be the
maximum of Cn over all n. We define C to be a conserva-
tive upper bound estimate for Cmax. We then take the second
likelihood factor, fC (H, N ), to have the form

fC (H, N ) = e−Cmax
C . (6)

The purpose of this likelihood function is to penalize the
likelihood of Hamiltonian and norm matrices whose conver-
gence rate for the ground-state energies is much slower than
expected and Cmax is significantly larger than C. Neither the
exact value for C nor the exact functional form for fC (H, N )
are essential features that need to be finely tuned. Similar
results can be obtained using a wide range of different choices,
and for some applications a different definition for fC (H, N )
may prove to be more effective.

In order to sample the posterior distribution in P(H, N |R)
in Eq. (2), we first produce random samples for the Hamilto-
nian and norm matrices using a heat bath algorithm given by
the prior probability distribution P(H, N ). We then reweight
the samples according to the likelihood function P(R|H, N ).
From this sampling of the posterior distribution, we can com-
pute weighted median values and estimated error bars for the
energies or any other observable. This important reweighting
scheme is commonly used in Markov chain Monte Carlo
algorithms [31]. It is also similar to the sampling/importance
resampling method described in Refs. [32,33], except that we
are not resampling data.

III. BOSE-HUBBARD MODEL

For the first benchmark test of the trimmed sampling
algorithm, we consider the Bose-Hubbard model in three
dimensions. This system describes a system of identical
bosons on a three-dimensional lattice, with a Hamiltonian
that contains a hopping term proportional to t , a contact
interaction proportional to U , and a chemical potential pro-
portional to μ. We will consider the system with four bosons
on a 4 × 4 × 4 lattice with μ = −6t . Further details of the
model can be found in the Supplemental Material [34].
Following the analysis in Ref. [8], we use eigenvector con-
tinuation (EC) to determine the ground-state energy for a
range of couplings, U/t . For our basis states, we use the
ground-state eigenvectors for five training values, U/t =
−2.5,−1.9,−1.8,−1.7,−1.6.

In order to introduce noise into the EC calculations, we
round each entry of the H and N matrices at the sixth decimal
place and use these rounded values for our estimates H̃ and

L022001-2



TRIMMED SAMPLING ALGORITHM FOR THE NOISY … PHYSICAL REVIEW RESEARCH 5, L022001 (2023)

FIG. 1. Ground-state energy of the Bose-Hubbard model as a function of coupling strength U/t . The “exact” ground-state energies are
plotted as solid lines. The “noiseless EC” data are presented with dashed lines. The “noisy EC” results corresponding to matrix elements H̃
and Ñ are plotted with open circles. The results using “ridge regression” are shown with times symbols. The “raw data” obtained by sampling
the prior probability distribution are displayed with open triangles and error bars. The “trimmed sampling” results are plotted as filled circles
with error bars.

Ñ . Since the rounding error is performed at the sixth digit, we
use the error estimates �H̃i j = �Ñi j = 1√

12
× 10−6. While a

uniform error distribution more accurately captures the nature
of this error, for this example we assume Gaussian noise to
demonstrate that it is not necessary to know the exact form of
the errors. For our nth-order EC calculation, we use the first n
basis states and apply trimmed sampling.

The results for the ground-state energies E0/t versus
coupling U/t are presented in Fig. 1 for orders n = 4, 5.
The “exact” ground-state energies are shown with solid lines.
The “noiseless EC” results are plotted with dashed lines. The
“noisy EC” results corresponding to the matrix elements H̃
and Ñ are displayed with open circles. The results obtained
using “ridge regression” are plotted with times symbols. We
have optimized the parameter ε used in ridge regression by
hand to produce results that are as close as possible to the
noiseless EC results. All other calculations using ridge re-
gression will therefore not be better than the idealized ridge
regression results that we present. The “raw data” obtained by
sampling the prior probability distribution P(H, N ) associated
with H̃ and Ñ and uncertainties �H̃ and �Ñ are displayed
with open triangles and error bars.

The “trimmed sampling” results are obtained by sampling
the posterior probability distribution P(H, N |R) and plotted
as filled circles with error bars. For all of our plots showing
error bars, the plot symbol is located at the weighted me-
dian value, while the lower and upper limits correspond to
the 16th and 84th percentiles, respectively. We find that this
representation of the error bars is useful since the distributions
have much heavier tails than Gaussian distributions. For all
of the trimmed sampling results present here, we have pro-
duced 500 samples with nonzero posterior probability, and the
small matrix calculations can be performed easily on a single
processor.

We use the value C = 2.5 for fC (H, N ) in Eq. (6). The
trimmed sampling algorithm is clearly doing a good job
of controlling errors due to noise. The trimmed sampling
algorithm is performing significantly better than the stan-
dard regularization provided by ridge regression. There is
some systematic underestimation of the error near the avoided

level crossing at U/t = −3.8. Overall, however, the trimmed
sampling error bar gives a reasonable estimate of the actual
deviation from the actual noiseless EC results. As discussed
in the Supplemental Material [34], the trimmed sampling error
bars correspond to the distribution of values obtained for the
observable of interest while sampling the posterior probability
distribution. While this is not an unbiased estimate, it does
serve as an approximate estimate of the actual error in the
sense that the exact result is a point in the posterior distri-
bution with non-negligible weight.

IV. HEISENBERG MODEL

For the second benchmark test, we consider a one-
dimensional quantum Heisenberg chain. The Hamiltonian for
this system is

HJ = −J
N∑

j=1

[
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1 + σ z

j σ
z
j+1

]
. (7)

Here, σ x, σ y, σ z are the Pauli matrices, N is the number of
sites, and J is the coupling. We consider the case with N = 10
sites and calculate the lowest four energy eigenvalues of the
subspace with

∑
j σ

z
j = 0. For more details of the model, see

Ref. [35].
For the generalized eigenvalue problem, we construct our

basis states using Euclidean time projection, starting from the
initial state |v0〉 = |0101010101〉. We are using the standard
qubit notation where |0〉 is the +1 eigenstate of σz and |1〉 is
the −1 eigenstate of σz. We operate on |v0〉 with the Euclidean
time projection operator, e−Ht . This is equivalent to how pro-
jection Monte Carlo simulations are performed [36,37]. We
consider values of J ranging from 0.5 to 1.5. For each value of
J , we take the Euclidean time values tn = 0.1n and define each
basis vector as |vn〉 = e−Htn |v0〉 for n = 0, 1, 2, 3, 4, 5. After
projecting onto these six vectors, we calculate the correspond-
ing Hamiltonian and norm matrices and solve the generalized
eigenvalue problem.

In order to introduce noise into the calculation, we apply
random Gaussian noise with standard deviation σ = 0.01 to
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FIG. 2. Ground-state and first excited state energies of the one-dimensional Heisenberg chain as a function of coupling strength J .
The “exact” energies are plotted as solid lines. The “noiseless time projection” data are dashed lines. The “noisy time projection” results
corresponding to the matrix elements H̃ and Ñ are plotted with open circles. The data obtained using “ridge regression” are shown with times
symbols. The “raw data” obtained by sampling the prior probability distribution are drawn with open triangles and error bars. The “trimmed
sampling” results are plotted as filled circles with error bars.

each element of the Hamiltonian and norm matrices. These
resulting matrices with noise define our estimates H̃ and Ñ ,
and we take the uncertainty estimates to be �H̃i j = �Ñi j =
0.01. For each value of J , the observables we compute are the
lowest four energy eigenvalues. Since J is just an overall scale
for the Hamiltonian, the exact energies will just scale linearly
with J . However, the Euclidean time projection calculations
will be different for each J due to the fixed projection times
tn used. The random noise will also be different for different
values of J .

The results are presented in Fig. 2. The “exact” energies
calculated using exact diagonalization are plotted with solid
lines. The “noiseless time projection” results are shown with
dashed lines. The “noisy time projection” results correspond-
ing to matrix elements H̃ and Ñ are plotted with open circles.
The results obtained using “ridge regression” are displayed
with times symbols. We have again optimized the parameter
ε used in ridge regression to produce the best possible per-
formance, though the overall improvement is not significant.
The “raw data” obtained by sampling the prior probability dis-
tribution P(H, N ) associated with mean values H̃ and Ñ and

uncertainties �H̃ and �Ñ are presented with open triangles
and error bars.

The “trimmed sampling” results are obtained by sampling
the posterior probability distribution P(H, N |R) and plotted
as filled circles with error bars. These results use the value
C = 2.5 for fC (H, N ) in Eq. (6). The trimmed sampling al-
gorithm is again doing a good job of controlling errors due
to noise, and the trimmed sampling error bars give a reason-
able estimate of the actual deviation from the noiseless time
projection results. In contrast, ridge regression is not giving
consistently reliable results for this benchmark test.

In addition to calculating energies for the Heisenberg
model, we can also compute spin observables. In Fig. 3, we
show results for the ground-state expectation value of the
product of nearest-neighbor spins 〈σ z

1σ z
2 〉 in the left panel

and the product of next-to-nearest-neighbor spins 〈σ z
1σ z

3 〉 in
the right panel. The trimmed sampling algorithm is again
performing significantly better than ridge regression. The
trimmed sampling error bars also provide a reasonable
estimate of the actual deviation from the noiseless time
projection results.

FIG. 3. Spin pair expectation values for the ground state of the Heisenberg model as a function of J . 〈σ z
1σ

z
2 〉 is shown in the left panel, and

〈σ z
1 σ z

3 〉 is presented in the right panel. The plot symbols are the same as in Fig. 2.
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V. DISCUSSION AND OUTLOOK

The generalized eigenvalue problem is a useful method
to find the extremal eigenvalues and eigenvectors of large
quantum systems. However, the approach is highly suscep-
tible to noise. We have presented the trimmed sampling
algorithm, which uses the framework of Bayes inference to
incorporate information about the prior probability distribu-
tion for the Hamiltonian and norm matrix elements together
with physics-informed likelihood constraints. The result is a
posterior probability distribution that can easily be sampled.
For the benchmark examples presented here, we find that
trimmed sampling performs significantly better than standard
regularization methods such as ridge regression. We have
demonstrated significant error reductions for energy calcu-
lations as well as other observables. In the Supplemental
Material [34], we present several other benchmark calcula-
tions that further demonstrate the performance of the trimmed
sampling algorithm.

The trimmed sampling algorithm can be used for any
generalized eigenvalue problem obtained using classical com-
puting or quantum computing. This encompasses a very wide
class of problems ranging from quantum many-body systems

to partial differential equations to quantum field theories. All
that is needed are some good estimates for the Hamiltonian
and norm matrix elements and their corresponding uncer-
tainties. In order to gain the full advantage of the trimmed
sampling algorithm, it is important that matrix calculations are
performed using machine precision that is finer than the uncer-
tainties of the Hamiltonian and norm matrix elements. Studies
of the trimmed sampling algorithm for the non-Hermitian
Hamiltonian and norm matrices are currently under investi-
gation. In that case, one cannot simply impose positivity of
the norm matrix in the likelihood function. However, one can
instead impose more stringent conditions on the convergence
of the energies En for the submatrix calculations.
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