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Anomalous universal adiabatic dynamics: The case of the Fredkin model
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When a system is driven across a second-order quantum phase transition, the number of defects which are
produced scales with the speed of the variation of the tuning parameter according to a universal law described
by the Kibble-Zurek mechanism. We study a possible breakdown of this prediction proving that the number of
defects can exhibit another universal scaling law which is still related only to the critical exponents z and ν, but
differs from the Kibble-Zurek result. Finally, we provide an example, the deformed Fredkin spin chain, where
this violation of the standard adiabatic dynamics can occur.
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I. INTRODUCTION

Near a quantum phase transition the behavior of some
physical quantities is generally described only in terms of
critical exponents [1]. In particular, by driving the system
across a second-order quantum phase transition by slowly
changing a parameter, the density of defects that come out
scales algebraically with the speed of the variation of the tun-
ing parameter [2–4]. In detail, the exponent of the scaling law
depends only on the critical exponents z and ν, as predicted
by the Kibble-Zurek mechanism [5,6]. This phenomenon has
been confirmed theoretically by using different approaches
and observed experimentally in different physical systems
(see, e.g., Refs. [7,8] and references therein).

Here, we prove that there are systems undergoing a univer-
sal dynamics different from the one described in Ref. [4]. In
detail, we show that the exponent of the density of defects de-
pends only on the critical exponents z and ν, but it is different
from that predicted by the Kibble-Zurek mechanism. At the
quantum phase transition, approaching the thermodynamic
limit, these systems might have a finite size scaling which
depends on the excited states. In this case and if this depen-
dence is smooth, we have still a universal adiabatic dynamics,
different from the Kibble-Zurek prescription. We show that
our theory applies to the deformed Fredkin spin chain [9]. The
Fredkin model, in principle, can be realized experimentally
by cold atoms in optical lattices, and a three-spin interaction
can be designed as in Ref. [10]. The system is driven through
a deformation parameter g across a quantum critical point
described by the Fredkin spin chain [11,12], which, however,
does not have a conformal invariance, being the dynamical
exponent z � 2.
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II. UNIVERSAL ADIABATIC DYNAMICS

In order to derive our main result, we consider a one-
dimensional many-body system of size N described by a
Hamiltonian H (λ) which shows a second-order quantum
phase transition at λ = 0, with critical exponents z and ν. If
the parameter λ changes linearly in time, like λ(t ) = t/τ , the
time-evolved state can be expressed as a linear combination
of the eigenstates |El (λ)〉 with eigenvalues El (λ) (in a nonde-

creasing order), as |ψ (t )〉=∑
l cl (t )e−i

∫ t
tin

El (λ(t ′ ))dt ′ |El (λ(t ))〉.
As shown in Ref. [4], if the initial state is the ground
state |E0(λ(tin))〉, the relative number of adiabatic excitations
nex = ∑

l>0 |cl (t )|2 can be expressed as

nex =
∑

l

∣∣∣∣
∫ ∞

−∞
dλ〈El (λ)|∂λ|E0(λ)〉eiτ

∫ λ

−∞ dλ′[El (λ′ )−E0(λ′ )]
∣∣∣∣
2

.

(1)

Let us introduce the momenta kl , such that both the scaling
relations

El (λ) − E0(λ) = λzν F̃
(
λzν/kz

l

)
, (2)

〈El (λ)|∂λ|E0(λ)〉 = λzν−1

kz
l

G̃

(
λzν

kz
l

)
(3)

hold, and if kl are homogeneously distributed around zero,
kl ∼ 0, with proper universal scaling functions F̃ and G̃, we
obtain the Kibble-Zurek scaling law, i.e., nex ∼ τ−γ0 as τ →
∞, with γ0 = ν/(zν + 1) [4]. If, instead, the distribution of kl

is ρ(k) ∼ kβ for k ∼ 0, it is easy to see that nex ∼ τ−(1+β )γ0 .
Let us now consider the case where Eq. (3) is modified.

Our aim is to understand how the number of excitations nex

scales with τ in this case. Due to Eq. (2), we have that

nex =
∑

l

∣∣∣∣
∫

dλ〈El |∂λ|E0〉eiτ
∫ λ dλλzν F̃ (λzν/kz

l )
∣∣∣∣
2

. (4)

Let us suppose that the main contribution to the integral
comes only from small kl , as is usually the case, and assume
that |〈El |∂λ|E0〉| has a global maximum at λc(N ) ∼ N−1/ν ,
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which scales as k−al
l for kl ∼ 0. For N → ∞, we expect that

〈El |∂λ|E0〉 is well approximated by a Gaussian in a neigh-
borhood of λc(N ), i.e., 〈El |∂λ|E0〉 ∼ k−al

l e−[λ−λc (N )]2/(2σ 2
λ ). We

make the following finite size scaling ansatz [13]:

〈El |∂λ|E0〉 = Nal gl (N1/ν[λ − λc(N )]). (5)

If this formula holds, then we get σλ ∼ k1/ν

l . For instance, if
the scaling law in Eq. (3) is fulfilled we get a homogeneous
critical exponent al , which is equal to al = 1/ν. For F̃ (x) ∼
1/x, considering the integral (up to a global phase)∫

dλk−al
l e−[λ−λc (N )]2/(2σ 2

λ )+iτkz
l λ ∼ k1/ν−al

l e−cτ 2k2z+2/ν

l /2, (6)

from Eq. (4), we get

nex ∼
∑

l

Alk
2/ν−2al

l e−cτ 2k2z+2/ν

l . (7)

Defining a(kl ) = al , we get, in the thermodynamic limit,

nex ∼
∫

ρ(k)k2/ν−2a(k)e−cτ 2k2z+2/ν

dk. (8)

We note that c defines the time scale, and we can consider
c = 1, without loss of generality, in order to calculate the limit
τ → ∞. We consider a(k) smooth such that a(k) ∼ a(0) + uk
as k ∼ 0, and we assume that the scaling formula of Eq. (3)
holds for the first excited state l = 1, so that a(0) = 1/ν. If
u = 0, the integral of Eq. (8) can be easily calculated, and, for
β = 0, we recover the Kibble-Zurek scaling law nex ∼ τ−γ0 .
Let us consider the case u �= 0. By performing the substitution
k = (η/τ )γ0 , and extending the integral over η from zero to
infinity, for β = 0 and c = 1, from Eq. (8) we get

nex ∼
∫ ∞

0
dη(η/τ )γ0η−1e f (η), (9)

where f (η) = −2uγ0(η/τ )γ0 ln(η/τ ) − η2. In order to calcu-
late the asymptotic formula for τ → ∞, we use the Laplace
method. For u > 0, the function f (η) has a global maximum
at η0 = x0τ , where

x0 =
(

uγ 2
0

(2 − γ0)τ 2
W

(
(2 − γ0)e1−2/γ0τ 2/

(
γ 2

0 u
)))1/(2−γ0 )

,

(10)

where W (x) is the Lambert W function defined such that
W (x)eW (x) = x. Then, we get

nex ∼ 1√− f ′′(η0)
(η0/τ )γ0η−1

0 e f (η0 ), (11)

where f (η0) = 2uxγ0
0 + (2/γ0 − 1)τ 2x2

0, and f ′′(η0) =
−2uγ 2

0 τ−2xγ0−2
0 + 2(γ0 − 2). For extremely slow driving,

τ → ∞, we get nex ∼ τ−γ (ln τ )(γ−1)/2, where

γ = − lim
τ→∞

τ∂τ nex

nex
= γ0

2 − γ0
, (12)

which is again a universal critical exponent depending only
on z and ν. However, as shown in Fig. 1, nex changes very
slowly with τ , and the asymptotic value is reached at very
large times τ , where, apart from slowly varying logarithmic
corrections, nex ∼ τ−γ , with γ given by Eq. (12), explic-
itly γ = ν/(2 − ν + 2νz). In the transient regime, nex locally

FIG. 1. Plot of nex (up to an overall prefactor) given by Eq. (11),
as a function of τ , for different values of u, from 1 (red line) to 10
(purple line), increasing by one at a time. For not very large τ (in
the transient regime) the exponent γ (τ ) depends on u and increases
as u increases, while for large τ it becomes universal. We used the
values z = 2.69 and ν = 2/3, valid for the Fredkin model in the zero
magnetization sector.

scales approximately as nex ∼ τ−γ (τ ), where γ (τ ) = − τ∂τ nex
nex

,
which depends also on u. Finally, we also consider β �= 0. In
this case, calculating the limit of Eq. (12), we get γ = γ0+2β

2−γ0
.

In conclusion, we get a breakdown of the Kibble-Zurek
mechanism due to the fact that the overlaps 〈El |∂λ|E0〉 do
not all scale with the same critical exponent. From a heuristic
point of view, we have that the typical size of the defects scales
as � ∼ λ−νe , where νe is an effective critical exponent which
depends on the critical exponents a(k), then by separating the
dynamics in impulsive and adiabatic as in the Kibble-Zurek
mechanism, we get nex ∼ τ−νe/(zν+1). In particular, in the limit
τ → ∞ we expect νe = ν/(2 − γ0).

It is worth observing that the scaling formula applies to
expectation values 〈O〉 of observables which are diagonal in
the energy basis at the final time. To prove it, we note that
at the final time we have 〈O〉 = ∑

l Ol |cl |2, where Ol are the
diagonal elements of the observable, providing that O0 = 0.
In the thermodynamic limit we get an integral over k, and if
the main contribution comes from k ∼ 0, and O(kl ) = Ol is
a smooth function, we can approximated O(k) with O(0) in
the integral, so that we expect 〈O〉 ∼ nex, namely, 〈O〉 and nex

have the same scaling behavior in τ .

III. THE MODEL

As a physical example, we consider a chain of N =
2n spins 1/2, described by the Hamiltonian H (g) = H∂ +∑N−2

j=1 Hj (g), where H∂ = |↓1〉〈↓1| + |↑N 〉〈↑N | and

Hj (g) = |↑ j〉〈↑ j | ⊗ |s j+1, j+2(g)〉〈s j+1, j+2(g)|
+ |s j, j+1(g)〉〈s j, j+1(g)| ⊗ |↓ j+2〉〈↓ j+2|, (13)

with |si, j (g)〉 = (|↑i↓ j〉 − g|↓i↑ j〉)/
√

1 + g2, where |↑ j〉 and
|↓ j〉 are eigenstates of σ z

j with eigenvalues 1 and −1, where
σα

j with α = x, y, z are the Pauli matrices. As shown in
Ref. [9], the unique ground state |E0(g)〉 is frustration free
and it is a weighted superposition of so-called Dyck paths.
We note that for g = 0 the ground state is |↑↓〉⊗n; con-
versely, in the limit g → ∞, the ground level is degenerate
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FIG. 2. Plot of the Pearson correlation coefficient, corresponding
to the first excited energy level in the subspace Sz = 0, between
ln �n(z) and ln n for n ∈ [5, 8], by changing z by steps of 0.01. It
is minimum for z = 2.68.

and the ground states are of the kind ⊗i(|↑〉⊗n↑
i ⊗ |↓〉⊗n↓

i ),
with n↑

i � 2 and n↓
i � 2, so that

∑
i n↑

i = ∑
i n↓

i = n, i.e.,
we get magnetic domains not smaller than two sites. For the
special value g = 1 we get the Fredkin spin chain [11,12]. In
this case, the ground state is a homogeneous superposition
of Dyck paths which displays an entanglement entropy that
grows logarithmically with the size of the block. It is shown
that for the Fredkin chain, i.e., for g = 1, the gap closes in
the thermodynamic limit as E1 ∼ N−z, and there are different
dynamical critical exponents z depending on the subspace de-
fined by a given value of the magnetization Sz = ∑N

j=1 σ z
j (see

Ref. [14]). For instance, in the sector with total spin Sz = 0, by
performing a Density Matrix Renormalization Group analysis
for large sizes, one gets z ≈ 2.69 [11,14]. Let us derive z
by means of an alternative approach which allow us to get
a good result already for not too large system sizes. Let us
consider the ratio E1(n)/E1(n + 1). For large n we expect that
E1(n)/E1(n + 1) ∼ (1 + 1/n)z. To estimate the value of z,
we consider the difference �n(z) = |E1(n)/E1(n + 1) − (1 +
1/n)z|. The correct value of z is the one for which �n(z) → 0
as n → ∞. We assume that �n(z) ∼ n−α for the true value
of z. Actually, we have numerical evidences that this is the
case in the neighbourhood of z = 2.69. By calculating the
Pearson correlation coefficient between ln �n(z) and ln n for
n ∈ [5, 8], we find that it reaches the value −1 for z ≈ 2.68
(see Fig. 2). With this approach, therefore, we obtain a value
of z very close to the known result, z = 2.69, already consid-
ering small systems sizes. For g ∼ 1, in the thermodynamic
limit, the gap closes as E1 ∼ |g − 1|zν , so that for g = gc = 1
we have a second-order quantum phase transition. Thus, we
perform the finite size scaling ansatz [13]

E1(N, g) = N−z(N ) f (N
1
ν [g − gc(N )]) (14)

where z(∞) = z and gc(∞) = gc = 1. The pseudo-critical
value gc(N ), which is expected to be gc(N ) ∼ gc + bN−1/ν

for large N , can be calculated as the fixed point of the scale
transformation [13,15]

NzE1(N, g) = N ′zE1(N ′, g′). (15)

Thus, by considering N ′ = N − 2, gc(N ) is such that
NzE1(N, gc(N )) = (N − 2)zE1(N − 2, gc(N )), i.e., corres-
ponds to the value g where the curves NzE1(N, g) and (N −

FIG. 3. In the top panel, finite size scaling plot of nzE1 versus
g for different sizes N = 2n, for z = 2.69. We note that there is a
crossing point at gc(N ), smaller than gc = 1. In the bottom panel,
finite size scaling plot of nzE1 versus n1/ν[g − gc(N )], for z = 2.69
and ν = 2/3. The values nzE1 are normalized such that nzE1 = 1 for
g = gc(N ). We note that all the points collapse into the same curve.

2)zE1(N − 2, g) (as functions of g) cross. The value of the
exponent ν is such that the points NzE1(N, g) versus N

1
ν [g −

gc(N )] collapse into a single curve f (v) as N goes to infinity.
In particular, if the ansatz in Eq. (14) is true, for finite N the
points collapse to a curve proportional to f (v). By performing
this analysis, we get that the gap closes with z ≈ 2.69 and
ν = 2/3 (see Fig. 3). After having determined the critical
exponents, we proceed by considering a time evolution gen-
erated by changing the parameter g linearly in time, as g(t ) =
gfint/τ , in the time interval t ∈ [0, τ ]. The initial state is the
ground state |E0(0)〉 = |↑↓〉⊗n. The time evolution occurs in
the invariant subspace of the Dyck words, having a dimension
CN = (2n

n

)
/(n + 1) and characterized by a magnetization Sz

equal to zero. Since for very large gfin in the ground state
there are not magnetic domains smaller than two sites, we
consider as defects the domains of only one site. For very
large g we get Hj (g) ∼ w j = |↑↓↑〉〈↑↓↑| + |↓↑↓〉〈↓↑↓|, so,
the average number of these defects tends to be equal to the
average value 〈ψ (τ )|H (gfin)|ψ (τ )〉, i.e., the irreversible work
produced. Based on the observation clarified previously, since
the irreversible work scales in the same way as the density
of defects, we can consider w = ∑

j〈ψ (τ )|w j |ψ (τ )〉/N to
determine the scaling of defects, which is easier to calculate,
resorting to the matrix product state and second-order Trotter
decomposition [16] (see Fig. 4). If the conventional theory of
the Kibble-Zurek mechanism could be applied, we would ex-
pect w ∼ τ−γ0 , with γ0 = ν/(zν + 1) < 1, if z > 1. However,
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FIG. 4. Plot of w as a function of τ for a Fredkin chain with
N = 200 subjected to an adiabatic quench from gin = 0 to gfin = 5.
We used matrix product states truncated at the value Dmax = 10. The
time evolution is calculated by performing a second-order Trotter
decomposition with time step 0.1. The dashed line is a function
proportional to τ−γ , where γ ≈ 0.132, calculated by fitting the last
two data points. This numerical result is in agreement with the the-
oretical prediction for ν = 2/3 and z = 2.69, which gives γ0 ≈ 0.24
and γ = γ0/(2 − γ0 ) ≈ 0.136.

as shown in Fig. 4, we find that, for not very large τ , in the
transient regime, w scales with a nonuniversal exponent γ

larger than one. Conversely, w ∼ τ−γ scales with an exponent
γ (apart from a slow varying logarithmic function) which
approaches the universal value γ = γ0/(2 − γ0) for large τ ,
as shown in Fig. 4. This anomalous dynamical behavior for
the deformed Fredkin model can be explained by requiring
that the overlaps 〈El |∂λ|E0〉 scale with level-dependent critical
exponents a(kl ) ∼ 1/ν + ukl , as shown in Fig. 5.

IV. CONCLUSIONS

The characterization of quantum phase transitions is of par-
ticular importance in condensed matter physics. In particular,
the Kibble-Zurek mechanism has been thoroughly investi-
gated over the years. Here, we considered the possibility that
one of the two scaling formulas required to get the universal
dynamics of the Kibble-Zurek mechanism can be generalized,
so that we can have a violation of this mechanism. Never-
theless, we have shown that in this case we can also get a
universal dynamics, although different from the Kibble-Zurek
one. We provided an example where this anomalous universal
behavior can occur. We showed that the Fredkin spin chain
has the required features. By performing an explicit numerical
calculation for the irreversible work, related to the density of

FIG. 5. Plots of the finite size scaling for the first two overlaps
〈El |∂λ|E0〉. The dashed lines correspond to n = 6, the solid ones to
n = 7, the blue ones to l = 1 (first excited level in the zero-spin sec-
tor), and the red ones to l = 2 (second excited level in the zero-spin
sector). The value of λc(N ) is calculated as the maximum point of
the correspondent overlap. We used a1 = 1.65 ≈ 1/ν and a2 = 2.18,
such that the data points for both n = 6 and n = 7 collapse in good
approximation in the same curves.

defects, we have found a scaling law in perfect agreement with
what was expected by our theory, namely, a universal adia-
batic dynamics different from the Kibble-Zurek prediction.

Recently, several exceptions to the Kibble-Zurek mecha-
nism have been found, e.g., in the presence of long-range in-
teractions [17,18] or across a localization-delocalization tran-
sition [19], and, in general, an explanation of an anti-Kibble-
Zurek behavior [20] and a different scaling in fast quenches
[21] have also been investigated. The origin of the Kibble-
Zurek violation, reported in our work, relies on the properties
of the spectrum; however, how to detect this peculiar behavior
from the Hamiltonian is still an open question. We hope that
our work can give a further boost to current research in this
direction, and can be useful for a deeper understanding of
a class of still unexplored critical systems, inspiring further
investigations and applications in the fields of quantum phase
transitions and out-of-equilibrium phenomena.
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