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Quantum nonlinear metasurfaces from dual arrays of ultracold atoms
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Optical interfaces with subwavelength patterns make it possible to manipulate light waves beyond the typical
capabilities of ordinary optical media. Subwavelength arrays of ultracold atoms enable such transformations at
very low photon losses. Here, we show how the coupling of light to more than a single atomic array can expand
these perspectives into the domain of quantum nonlinear optics. While a single array transmits and reflects light
in a highly coherent but largely linear fashion, the combination of two arrays is found to induce strong photon-
photon interactions that can convert an incoming classical beam into strongly correlated photonic states. Such
quantum metasurfaces open up new possibilities for coherently generating and manipulating nonclassical light,
and exploring quantum many-body phenomena in two-dimensional systems of strongly interacting photons.
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Advances in controlling cold atomic ensembles at the
single-particle level [1] have enabled the development of
novel light-matter interfaces. Recent investigations [2–23]
have explored various approaches toward strong and coher-
ent coupling to propagating photons, using nanoscale optical
waveguides, photonic crystals, or regularly arranged atoms in
free space. In particular, extended two-dimensional lattices of
atoms suggest themselves as optical metasurfaces that can be
designed and engineered on subwavelength scales at the level
of individual quantum emitters. Experiments have demon-
strated the strong coherent coupling to subradiant collective
excitations of atoms in optical lattices [20], which can enable
the near lossless interfacing with a single mode of freely prop-
agating light fields [15–18]. This makes it possible to explore
the functionalities of optical metasurfaces [24–28], which,
e.g., offers new possibilities for highly coherent wavefront
engineering [19]. While dense emitter arrangements with an
overall subwavelength dimension can exhibit high nonlinear-
ities akin to a single atom [29,30], the extended geometry of
two-dimensional surfaces renders such systems intrinsically
linear. In fact, the simultaneous photon interaction with a
large number of atoms, necessary to achieve strong collective
coupling, diminishes the otherwise strong optical nonlinearity
of each individual quantum emitter, thereby, restricting their
collective optical response to the domain of linear optics.

Here, we describe and analyze how strong optical non-
linearities can be obtained in metasurfaces composed of
subwavelength atomic lattices. Specifically, we will discuss
how combining two atomic arrays, which separately are only
weakly nonlinear, can greatly enhance their combined optical
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nonlinearity to a degree that acts on the level of individual
photons. The quantum optical nonlinearity in this system

FIG. 1. (a), (b) The transmission spectrum |T |2 of a dual array of
two-level emitters exhibits characteristic reflection and transmission
resonances as a function of the photon frequency detuning, �, and
the distance, L, between the two two-dimensional atomic lattices.
(b) For small L the system behaves as a single layer of superradiant
and subradiant atomic dimers that generate two respective reflection
resonances (two white dashed lines). (a) The large-L limit, on the
other hand, leads to a series of narrow transmission resonances of
the effective atomic resonator (white dashed line) [cf. Eq. (5)]. (c)
In the vicinity of such narrow transmission resonances, the optical
response becomes highly nonlinear and generates effective photon-
photon interactions that can transform an incident coherent beam
into highly nonclassical light, as demonstrated by the depicted two-
photon correlation function g(2)(t ) of the transmitted light (solid
line). In contrast, light reflected from a single identical array remains
largely uncorrelated (dashed line). The chosen lattice spacing is
a = 0.6λ. The transmission in (a), (b) is obtained for infinite arrays,
while the calculations in (c) are for finite arrays with 9 × 9 atoms
driven by a Gaussian laser with a waist of w = 1.5λ, � = 0.472γ ,
and L = 1.55λ.
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arises from narrow transmission resonances around which
photons are strongly confined between the two arrays, forming
a high finesse optical resonator. We show that such dual-array
settings can effectively transform an incident classical beam
into strongly correlated states of light, while the statistics of
incident photons is left virtually unchanged by each individual
array [cf. Fig. 1(c)]. The nonlinearity can be traced back to
the emergence of an effective photon-photon interaction in
the two-dimensional plane of the surface, which is shown to
generate in-plane collisions between individual photons. This
suggests a promising approach to employing atomic lattices
as quantum nonlinear metasurfaces for generating and ma-
nipulating nonclassical states of light, and exploring quantum
many-body physics with photons [31,32].

Let us first consider a single two-dimensional square lattice
of atoms with a lattice spacing a, and which we assume to be
infinitely extended in the xy plane. We focus the discussion
on two-level systems that are resonantly driven by a coherent
cw-field with an electric field amplitude Ein and spatial mode
function f (R) [33]. At the small lattice spacings considered
here, exchange of photons across the array generates strong
atomic interactions that can be efficiently described within
input-output theory by integrating out the photonic degrees
of freedom and using a Born-Markov approximation [34,35].
This yields a master equation ∂t ρ̂ = −i[Ĥ, ρ̂] + L[ρ̂] (with
h̄ = 1) for the density matrix, ρ̂, of the atomic lattice, where
the Hamiltonian and Lindblad operator

Ĥ = −�
∑

n

σ̂ †
n σ̂n −

∑

n

(�nσ̂
†
n + �∗

nσ̂n)

−
∑

n �=m

Jnmσ̂ †
n σ̂m, (1a)

L[ρ̂] =
∑

n,m

	nm(2σ̂nρ̂σ̂ †
m − {σ̂ †

n σ̂m, ρ̂}), (1b)

describe the exchange of excitations and corresponding
collective decay processes due to the photon-mediated dipole-
dipole interactions between the atoms [36]. Here, σn =
|gn〉〈en| denotes the transition operator between the ground
state, |gn〉, and excited state, |en〉, of an atom at position Rn

in the lattice. The interaction coefficients Jnm and decay rates
	nm for two atoms at positions Rn and Rm are determined
by the Green’s function tensor of the free-space electromag-
netic field [36,37]. The atomic transition is driven by the
incident light with a frequency detuning � and a single-atom
Rabi frequency �n = dEin f (Rn), which is determined by the
driving-field amplitude and the transition dipole moment d
of the two-level emitters. From the solution for ρ̂, one can
reconstruct the electromagnetic field generated by the driven
atomic dipoles. Choosing f (Rn) as the detection mode for the
transmitted light, one obtains [36,37]

Ê = Ein + i
3πγ

k2ηd

∑

n

f ∗(rn)σ̂n (2)

for the electric-field amplitude, Ê , of the detected photons,
where k = 2π/λ is the wave number of the incident light,
λ denotes its wavelength, γ = 	nn is the decay rate of the
individual atoms, and η = ∫

d2r| f (R)|2 with r = (x, y).

For weak plane-wave driving with f ∼ eikz, Eqs. (1a),
(1b), and (2) yield simple expressions for the transmission
and reflection spectra [17]

t = 〈Ê〉
Ein

, r = t − 1 = − i	̃

� − �̃ + i	̃
(3)

that feature a Lorentzian resonance at the collective Lamb
shift �̃ = −∑

n �=0 Jn0 with a width 	̃ = 3πγ /k2a2. On
resonance, the single atomic layer thus reflects incoming
photons with unit efficiency and no losses from the incident
mode, |t |2 + |r|2 = 1.

Such high reflectivities are attainable already for remark-
ably small systems [15]. For example, a 9 × 9 atomic array
with a = 0.6λ can reflect into the incident mode of a fo-
cused Gaussian beam with a waist of w = 1.5λ with a large
reflection amplitude of |r| = 0.998. On the other hand, the
nonlinear response is very small as the beam still covers a
sizable number of atoms, which substantially diminishes sat-
uration effects. This is seen directly from the second order
correlation function g(2)(t ) of the reflected light, shown by
the dashed line in Fig. 1(b). Here, one finds only a marginal
suppression of simultaneous two-photon reflection, indicating
that the reflected light largely retains the classical coherent-
state nature of the incident beam (g(2) ∼ 1).

This situation changes dramatically as we add a second
atomic array. Figure 1(a) shows the transmission coefficient
|T |2 for a dual-array configuration of two parallel atomic
lattices as a function of the detuning � and the distance L
between the two arrays. The calculations reveal a series of nar-
row transmission resonances that extends towards large values
of L and a pair of sharp reflection resonances at small array
distances. Both regimes can be traced back to the photon-
mediated interactions between the two arrays.

For small distances L, atoms in different arrays interact via
a dipole-dipole coupling that scales as JL ≈ −3γ /2(kL)3 [37].
We can, thus, define symmetric and antisymmetric superposi-
tion states, |±〉n, of a single excitation that is symmetrically
(|+〉n) and antisymmetrically (|−〉n) shared between two ad-
jacent atoms at a given lattice site n. The atomic interaction
shifts their respective energies by ±JL. Therefore, the two
atomic dimer states become energetically isolated for small L
and separately generate reflection resonances at the collective
energies �̃± ∼ ±L−3, as indicated by the dashed lines in
Fig. 1(a) [37]. Their respective widths are given by 	̃± =
	̃[1 ± cos(kL)], such that one finds an ultranarrow reflection
resonance with 	̃− � 	̃, generated by an effective array of
subradiant atomic dimer states as L decreases.

For larger values of L, the evanescent-field coupling van-
ishes and the interaction between the arrays is predominantly
generated by propagating photons. The coupling strength
JL ≈ 3γ cos(kL)/kL, therefore, acquires an oscillating be-
havior from the propagation phase and leads to an energy
difference �̃+ − �̃− ∼ sin(kL) that varies periodically with
the array distance L. As both collective dimer states are ex-
cited by the parity-breaking incident field, their interference
leads to a series of narrow transmission resonances, akin to
electromagnetically induced transparency in three-level sys-
tems [37,38]. One can obtain a simple expression for the
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dual-array transmission amplitude [37]

T = t2

1 − r2e2ikL
(4)

in terms of the reflection and transmission amplitudes, r and
t , of the individual arrays. Substituting their explicit form,
Eq. (3), we obtain the following condition for perfect trans-
mission (|T | = 1),

� − �̃ = −	̃ tan(kL), (5)

that defines the series of transmission resonances. Along these
resonances, transmitted photons can acquire a substantial
group delay with a delay time [37]

τ = 2̃	

(� − �̃)2
, (6)

that diverges for resonant detunings � = �̃. The width of
the transmission resonances decreases as ∼1/τ around these
values and, therefore, vanishes at kL = nπ for integer n > 0.
In between the resonances (kL = (n + 1/2)π ), the system
features high reflection and behaves largely linear, which can
be used to store several delocalized excitations across distant
arrays at L 	 λ [39].

Equation (4) describes the transmission of a Fabry-Pérot
resonator composed of two identical mirrors with respective
reflection and transmission amplitudes r and t . Here, how-
ever, the single-particle saturation of each emitter within the
atomic mirrors together with the narrow subradiant trans-
mission resonances can enhance optical nonlinearities and
generate exceedingly strong photon-photon interactions.

We have studied the signatures of such photon-photon
interactions via quantum trajectory wave function simula-
tions [40] of the atomic master equation with Eqs. 1(a) and
1(b) for finite arrays. Working with finite arrays and focused
driving beams generally entails photon losses that tend to
broaden the otherwise ultranarrow transmission resonances.
These effects can be mitigated through a proper choice of the
atomic lattices, mathcing the wavefront profile of the incident
beam [37,39]. In fact, already rather small lattices of 9 × 9
atoms permit to generate narrow transmission resonances with
linewidths of ∼10−2γ and high peak transmission of |T | ∼
0.98.

Figure 1(c) shows the calculated second order correlation
function

g(2)(t ) = 〈Ê†(t ′)Ê†(t ′ + t )Ê (t ′ + t )Ê (t ′)〉
〈Ê†(t ′)Ê (t ′)〉2

(7)

of the transmitted light for an incident cw field with a Gaus-
sian transverse beam profile whose waist is centered right in
between the two arrays. We consider long times t ′ → ∞, such
that Eq. (7) yields the temporal photon-photon correlation
in the steady state. Its dependence on the time delay, t , be-
tween consecutively detected photons indicates the generation
of highly nonclassical light. Interestingly, one finds a rapid
initial drop of the two-photon correlation function to small
values g(2) ∼ 0, which extends over a broad range of delay
times between two transmitted photons. These characteristic
temporal correlations can be understood as follows. Let us
denote the steady state of the two arrays as |ψ〉. Detection of

(a)

(b)

(c)

|−〉

−

|+〉

+

FIG. 2. (a) The characteristic time dependence of the two-photon
correlation function, g(2)(t ), can be understood by the dynamics of
the shortlived (|+〉) and longlived (|−〉) single atomic excitation
that is symmetrically (|+〉) and antisymmetrically (|−〉) delocalized
between the two arrays. (b) Following the detection of a photon,
the subsequent population dynamics, |c+|2 (blue) and |c−|2 (red), of
these two states agrees with the characteristic time dependence of
g(2)(t ) shown in panel (c) (see text for more details). The parameters
are the same as in Fig. 1(c).

a transmitted photon in the steady state then projects this state
onto |ψ̄〉 = Ê |ψ〉/

√
〈ψ |Ê†Ê |ψ〉. The correlation function can

thus be obtained as

g(2)(t ) = 〈ψ̄ (t ′ + t )|Ê†Ê |ψ̄ (t ′ + t )〉
〈ψ (t ′)|Ê†Ê |ψ (t ′)〉 (8)

from the time evolved state |ψ̄ (t ′ + t )〉 following detection
of a photon at time t ′. For weak driving this state is pre-
dominantly determined by the collective ground state, |0〉,
and the single-excitation manifold. It can hence be expressed
as a superposition, |ψ̄〉 = c0|0〉 + c+|+〉 + c−|−〉, of the col-
lective superradiant (|+〉) and subradiant (|−〉) states of a
single atomic excitation that is shared (anti)symmetrically
across the two arrays, as discussed above. Indeed, the time
evolution of the populations |c±|2 resembles the temporal
photon correlations, see Fig. 2. The initial drop of g(2) thus
reflects the fast decay of the superradiant excitation on a short
timescale τ+, leaving the dual array depleted of excitations.
Its subsequent slow rise, on the other hand, can be traced back
to the repopulation of the long-lived subradiant cavity state,
|−〉, on a long timescale τ− given by the inverse width of
the transmission resonance, which corresponds to the photon
delay time, discussed above (cf. Fig. 3(e), see [37]).
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(a)

(b)

|T |2

(d)

(c)

(e)

FIG. 3. (a) Transmission of a 9 × 9 dual array with the same
parameters as in Fig. 1(a) along the transmission resonance marked
by the white dashed line Figs. 1(a) and 1(b) and panel (b). (c) Two-
photon correlation function, g(2)(t ), at the different indicated points
along this transmission resonance, as indicated by the color coding.
Panel (d) shows the minimum value g(2)

min = mint g(2)(t ). The color
bars in panel (e) show the long timescale on which the correlation
functions eventually approach unity, which matches the photon delay
time, or photon confinement time, τ . Its asymptotic value for infinite
arrays is given by Eq. (6), while the dashed line in panel (e) has been
obtained numerically for the 9 × 9 arrays.

Consequently, we expect stronger effects of photon-photon
interactions around more narrow transmission lines. This is
demonstrated in Fig. 3, where we show the two-photon corre-
lation function g(2) while scanning the frequency detuning, �,
and the array distance, L, along the transmission maximum
of one of the resonances, as illustrated in Fig. 3(b). Indeed,
we find that the minimum value, g(2)

min = mint g(2)(t ), of the
two-photon correlation function decreases as the resonance
becomes more narrow and the delay time increases. Owing
to the finite size of the array, the linear transmission de-
creases as we approach this regime by varying L [Fig. 3(a)].
The associated losses tend to broaden the transmission lines
and, as shown in Fig. 3(e), lead to a maximum delay time
of τ ∼ 1000/γ , instead of the otherwise diverging behavior
discussed above for infinite arrays and plane wave driving
[cf. Eq. (6)]. Larger arrays yield longer photon confinement
times, τ , for a given transmission maximum, which, there-
fore, enhances both the temporal extend and the strength of
photon-photon correlations. Remarkably, however, one can
reach large single-photon nonlinearities and highly nonclas-
sical light with g(2)

min ∼ 0 under conditions of high photon
transmission already for moderate system sizes, which are
achieved in ongoing optical lattice experiments [1,20].

We can gain further insights into the generated nonlinearity
by considering the two-photon momentum density

ρ̃(k1, k2, t ) = 〈Ẽ†(k1, t ′)Ẽ†(k2, t ′ + t )Ẽ (k2, t ′ + t )Ẽ (k1, t ′)〉
(9)

in the steady state (t ′ → ∞), where Ẽ (k⊥) is the transverse
Fourier transform of the electric field operator of the trans-

(a) (b)

(c) (d)

FIG. 4. (a) and (b) Momentum-space two-photon density
ρ̃(k1, k2, 0) for k1λ = (1.33, −1.84), (1.33, 0.95) respectively. The
large density near k1 + k2 � 0 shows the photons have scattered
off each other with conserved momentum. (c) and (d) ρ̃(k1, k2, t )
for k1,x = k2,x = 0 with a time t = 0 and t = 10/γ , respectively,
between the detection of the two photons. The time t = 10/γ

corresponds to g(2)(t ) ∼ 0. Again, the antidiagonal bar in panel (c) in-
dicates a momentum-conserving scattering among photons. After a
time t = 10/γ this correlation has vanished (see text for details).
The color scheme is chosen such that each panel simply shows
the qualitative structure. The system parameters are the same as in
Fig. 1(c).

mitted light [37]. Figure 4 shows the in-plane momentum
distribution of the two photons. In Figs. 4(a) and 4(b), we
have fixed the transverse momentum k1 of one photon at the
value indicated by the white star and show the equal-time
momentum distribution of the other (t = 0). The distribution
of k2 is sharply peaked around −k1 indicating that the optical
nonlinearity can indeed be understood in terms of effective
photon-photon collisions that preserve the total transverse
momentum k1 + k2 � 0 of the incident beam. Note that this
approximate conservation law already emerges for moderate
system sizes of 9 × 9 atoms. Figure 4(c) displays the equal-
time momentum correlations between the y components of
both photons for k1,x = k2,x = 0. The sharp maximum around
k2,y = −k1,y once more reflects the conservation of total mo-
mentum, while the variation along the antidiagonal results
from the momentum dependence of the scattering process,
i.e., the momentum dependence of the effective photon-
photon interaction. The signal in the corners are due to Bragg
scattering of the interacting photons.

Figure 4(d) shows the same momentum density as in
Fig. 4(c), but for a finite delay time t = 10/γ . In this case
we observe practically no correlations in the transverse mo-
menta and the signal corresponds to the transverse mode of
the incident beam. This behavior can be readily understood

L012047-4



QUANTUM NONLINEAR METASURFACES FROM DUAL … PHYSICAL REVIEW RESEARCH 5, L012047 (2023)

from the conditioned dynamics of the collective single ex-
citation, discussed above (cf. Fig. 2). At small delay times,
the two-photon signal naturally stems from the superradiant
excitation following detection of the first photon. While the
narrow linear transmission line arises from longlived subradi-
ant excitations, the superradiant mode can only be populated
by the interaction between multiple excitations. One there-
fore finds strong momentum correlations in the transverse
two-photon signal, as shown in Figs. 4(a)–4(c) for a van-
ishing delay time t = 0. For longer delay times beyond the
superradiant lifetime, the superradiant state is depleted and
the second photon predominantly stems from the subradiant
mode that is repopulated by the continuous optical driving
of the arrays. The two detected photons, thus, originate from
cascaded excitation and emission processes such that we find
negligible transverse-momentum correlations, albeit strong
temporal correlations, between the two photons. Despite the
local nature of the underlying nonlinearity of each individual
atom, this mechanism makes it possible to generate strongly
correlated photons without significant transverse mode mix-
ing in the plane of the atomic arrays.

Subwavelength lattices of ultracold atoms provide a
promising platform for the coherent manipulation of optical
fields, and in this work we have described how these perspec-
tives can be extended into the domain of quantum nonlinear
optics by using two atomic arrays. While large optical non-
linearities can also be generated in atomic ensembles via
strong interactions between high-lying atomic Rydberg states
[41–47], the present setting yields an alternative mechanism
beyond the physics of excitation-blockaded superatoms. This
is made possible by ultranarrow transmission resonances that
emerge from interference between collective superradiant and
subradiant states of the dual array, bearing analogies to elec-

tromagnetically induced transparency [38] and the physics of
Fano resonators [48]. We have demonstrated that the single-
photon saturation of each individual atom can generate a
strong and finite-ranged effective interaction between pho-
tons. Such emerging photon-photon interactions suggest a
number of questions for future work. We have identified a
regime in which strong temporal photon correlations emerge
under conditions of very low transverse-mode mixing, thus
generating large nonlinearities for freely propagating single
photonic modes at greatly suppressed losses. This motivates
future explorations of applications as nonlinear quantum opti-
cal elements to generating and processing photonic quantum
states [49–51], or to study the physics of propagating mul-
tiphoton quantum states [52–56] through a many of such
nonlinear elements.

In this work, we have mainly focused on analyzing tem-
poral correlations of photons in single transverse modes,
drawing analogies to waveguide QED settings [23]. In ad-
dition, however, the multimode physics of large planar
arrays should yield an interesting framework for exploring
the many-body physics of multiple photons in the two-
dimensional plane of the dual-array resonator, and motivates
future work on the potential formation and nonlinear dynam-
ics of effective cavity polaritons [31]. Hereby, our results
indicate that this should make it possible to reach the
quantum regime of strong interactions between individual
polaritons.
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Liu, V. Vuletić, and M. D. Lukin, Nanophotonic quantum
phase switch with a single atom, Nature (London) 508, 241
(2014).

[6] A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O.
Painter, and H. J. Kimble, Superradiance for Atoms Trapped
along a Photonic Crystal Waveguide, Phys. Rev. Lett. 115,
063601 (2015).

[7] J. S. Douglas, H. Habibian, C.-L. Hung, A. V. Gorshkov, H. J.
Kimble, and D. E. Chang, Quantum many-body models with
cold atoms coupled to photonic crystals, Nat. Photonics 9, 326
(2015).

[8] R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P.
Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, Chirality
of nanophotonic waveguide with embedded quantum emitter for
unidirectional spin transfer, Nat. Commun. 7, 11183 (2016).

[9] G. Calajó, F. Ciccarello, D. Chang, and P. Rabl, Atom-field
dressed states in slow-light waveguide QED, Phys. Rev. A 93,
033833 (2016).

[10] H. Zoubi and K. Hammerer, Quantum Nonlinear Optics in
Optomechanical Nanoscale Waveguides, Phys. Rev. Lett. 119,
123602 (2017).

[11] A. Rosario Hamann, C. Müller, M. Jerger, M. Zanner, J.
Combes, M. Pletyukhov, M. Weides, T. M. Stace, and A. Fe-
dorov, Nonreciprocity Realized with Quantum Nonlinearity,
Phys. Rev. Lett. 121, 123601 (2018).

[12] S.-P. Yu, J. A. Muniz, C.-L. Hung, and H. J. Kimble,
Two-dimensional photonic crystals for engineering atom–light
interactions, Proc. Natl. Acad. Sci. USA 116, 12743 (2019).

[13] Y. Ke, A. V. Poshakinskiy, C. Lee, Y. S. Kivshar, and A. N.
Poddubny, Inelastic Scattering of Photon Pairs in Qubit Arrays
with Subradiant States, Phys. Rev. Lett. 123, 253601 (2019).

[14] R. Jones, G. Buonaiuto, B. Lang, I. Lesanovsky, and B. Ol-
mos, Collectively Enhanced Chiral Photon Emission from an
Atomic Array near a Nanofiber, Phys. Rev. Lett. 124, 093601
(2020).

L012047-5

https://doi.org/10.1126/science.aal3837
https://doi.org/10.1103/PhysRevLett.110.113601
https://doi.org/10.1126/science.1237125
https://doi.org/10.1126/science.1257671
https://doi.org/10.1038/nature13188
https://doi.org/10.1103/PhysRevLett.115.063601
https://doi.org/10.1038/nphoton.2015.57
https://doi.org/10.1038/ncomms11183
https://doi.org/10.1103/PhysRevA.93.033833
https://doi.org/10.1103/PhysRevLett.119.123602
https://doi.org/10.1103/PhysRevLett.121.123601
https://doi.org/10.1073/pnas.1822110116
https://doi.org/10.1103/PhysRevLett.123.253601
https://doi.org/10.1103/PhysRevLett.124.093601


PEDERSEN, ZHANG, AND POHL PHYSICAL REVIEW RESEARCH 5, L012047 (2023)

[15] R. J. Bettles, S. A. Gardiner, and C. S. Adams, Enhanced Opti-
cal Cross Section via Collective Coupling of Atomic Dipoles in
a 2D Array, Phys. Rev. Lett. 116, 103602 (2016).

[16] G. Facchinetti, S. D. Jenkins, and J. Ruostekoski, Storing Light
with Subradiant Correlations in Arrays of Atoms, Phys. Rev.
Lett. 117, 243601 (2016).

[17] E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin, Coop-
erative Resonances in Light Scattering from Two-Dimensional
Atomic Arrays, Phys. Rev. Lett. 118, 113601 (2017).

[18] A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J.
Kimble, and D. E. Chang, Exponential Improvement in Photon
Storage Fidelities Using Subradiance and “Selective Radiance”
in Atomic Arrays, Phys. Rev. X 7, 031024 (2017).

[19] K. E. Ballantine and J. Ruostekoski, Optical Magnetism and
Huygens’ Surfaces in Arrays of Atoms Induced by Cooperative
Responses, Phys. Rev. Lett. 125, 143604 (2020).

[20] J. Rui, D. Wei, A. Rubio-Abadal, S. Hollerith, J. Zeiher, D. M.
Stamper-Kurn, C. Gross, and I. Bloch, A subradiant optical mir-
ror formed by a single structured atomic layer, Nature (London)
583, 369 (2020).

[21] A. V. Poshakinskiy, J. Zhong, and A. N. Poddubny, Quantum
Chaos Driven by Long-Range Waveguide-Mediated Interac-
tions, Phys. Rev. Lett. 126, 203602 (2021).

[22] T. L. Patti, D. S. Wild, E. Shahmoon, M. D. Lukin, and S. F.
Yelin, Controlling Interactions between Quantum Emitters Us-
ing Atom Arrays, Phys. Rev. Lett. 126, 223602 (2021).

[23] A. S. Sheremet, M. I. Petrov, I. V. Iorsh, A. V. Poshakin-
skiy, and A. N. Poddubny, Waveguide quantum electrody-
namics: Collective radiance and photon-photon correlations,
arXiv:2103.06824 [quant-ph] (2021).

[24] A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Planar pho-
tonics with metasurfaces, Science 339, 1232009 (2013).

[25] N. Yu and F. Capasso, Flat optics with designer metasurfaces,
Nat. Mater. 13, 139 (2014).

[26] H.-T. Chen, A. J. Taylor, and N. Yu, A review of metasur-
faces: Physics and applications, Rep. Prog. Phys. 79, 076401
(2016).

[27] V.-C. Su, C. H. Chu, G. Sun, and D. P. Tsai, Advances in
optical metasurfaces: fabrication and applications, Opt. Express
26, 13148 (2018).

[28] C.-W. Qiu, T. Zhang, G. Hu, and Y. Kivshar, Quo vadis, meta-
surfaces?, Nano Letters, Nano Lett. 21, 5461 (2021).

[29] A. Cidrim, T. S. do Espirito Santo, J. Schachenmayer, R. Kaiser,
and R. Bachelard, Photon Blockade with Ground-State Neutral
Atoms, Phys. Rev. Lett. 125, 073601 (2020).

[30] L. A. Williamson, M. O. Borgh, and J. Ruostekoski, Super-
atom Picture of Collective Nonclassical Light Emission and
Dipole Blockade in Atom Arrays, Phys. Rev. Lett. 125, 073602
(2020).

[31] I. Carusotto and C. Ciuti, Quantum fluids of light, Rev. Mod.
Phys. 85, 299 (2013).

[32] C. Noh and D. G. Angelakis, Quantum simulations and many-
body physics with light, Rep. Prog. Phys. 80, 016401 (2017).

[33] This can be realized [20] by applying a sufficiently strong
magnetic field to ensure that only one atomic transition is near-
resonant with the incident driving field of a given polarization,
and excitation exchange on other dipole transitions is energeti-
cally suppressed.

[34] R. H. Lehmberg, Radiation from an N -Atom System. I. General
Formalism, Phys. Rev. A 2, 883 (1970).

[35] M. Gross and S. Haroche, Superradiance: An essay on the
theory of collective spontaneous emission, Phys. Rep. 93, 301
(1982).

[36] A. Asenjo-Garcia, J. D. Hood, D. E. Chang, and H. J. Kimble,
Atom-light interactions in quasi-one-dimensional nanostruc-
tures: A Green’s-function perspective, Phys. Rev. A 95, 033818
(2017).

[37] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.5.L012047 for details on the linear
response of the dual array, the effects of interactions between
two arrays, group delay of transmitted photons, finite size ef-
fects, the numerical analysis of subradiant and superradiant
states in finite dual arrays, and determining the E -field operator
of a certain detection mode and the Fourier transform of the
E -field.

[38] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electro-
magnetically induced transparency: Optics in coherent media,
Rev. Mod. Phys. 77, 633 (2005).

[39] P.-O. Guimond, A. Grankin, D. V. Vasilyev, B. Vermersch, and
P. Zoller, Subradiant Bell States in Distant Atomic Arrays,
Phys. Rev. Lett. 122, 093601 (2019).

[40] K. Mølmer, Y. Castin, and J. Dalibard, Monte Carlo wave-
function method in quantum optics, J. Opt. Soc. Am. B 10, 524
(1993).

[41] M. Moreno-Cardoner, D. Goncalves, and D. E. Chang, Quan-
tum nonlinear optics based on two-dimensional Rydberg atom
arrays, Phys. Rev. Lett. 127, 263602 (2021).

[42] L. Zhang, V. Walther, K. Mølmer, and T. Pohl, Photon-photon
interactions in Rydberg-atom arrays, Quantum 6, 674 (2022).

[43] Y. Solomons and E. Shahmoon, Multi-channel waveguide QED
with atomic arrays in free space, arXiv:2111.11515 [quant-ph].

[44] T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V.
Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, Quantum non-
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