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Berezinskii-Kosterlitz-Thouless transitions in an easy-plane ferromagnetic superfluid
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A two-dimensional spin-1 Bose gas exhibits two Berezinskii-Kosterlitz-Thouless (BKT) transitions in the
easy-plane ferromagnetic phase. The higher-temperature transition is associated with superfluidity of the mass
current determined predominantly by a single spin component. The lower-temperature transition is associated
with superfluidity of the axial spin current, quasi-long-range order of the transverse spin density, and binding
of polar-core spin vortices (PCVs). Above the spin BKT temperature, the component circulations that make
up each PCV spatially separate, suggesting possible deconfinement analogous to quark deconfinement in high-
energy physics. Intercomponent interactions give rise to superfluid drag between the spin components, which we
calculate analytically at zero temperature. We present the mass and spin superfluid phase diagram as a function
of quadratic Zeeman energy q. At q = 0 the system is in an isotropic spin phase with SO(3) symmetry. Here
the fluid response exhibits a system size dependence, suggesting the absence of a BKT transition. Despite this,
for finite systems the decay of spin correlations changes from exponential to algebraic as the temperature is
decreased.
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Spinor Bose gases boast a plethora of spin phases,
providing an ideal system for studying equilibrium and
nonequilibrium properties of phase transitions [1,2]. At zero
temperature a ferromagnetic spin-1 condensate with quadratic
Zeeman energy 0 < q < q0 is in the easy-plane phase, with q0

being a quantum critical point [3,4]. This phase exhibits two
broken continuous symmetries: a U(1) symmetry associated
with global phase coherence and an SO(2) symmetry associ-
ated with transverse spin coherence [5]. Quenching the system
from the polar (q > q0) to the easy-plane phase has revealed
rich nonequilibrium dynamics as the system orders to the new
ground state [6–17].

An even richer phase structure is possible at finite
temperature due to the multitude of possible defects and su-
perfluid currents [18–26]. In two dimensions (2D), it is well
known that true long-range order is prohibited [27,28] and
that the onset of superfluidity is instead associated with a
Berezinskii-Kosterlitz-Thouless (BKT) transition [29–31]. In
an easy-plane ferromagnetic spin-1 Bose gas, the two contin-
uous symmetries give rise to two distinct BKT temperatures
[25]. Beyond the existence of these transitions, however, little
is known about the finite-temperature phases of this system.
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At q = 0, the order parameter manifold changes from U(1) ×
SO(2) to SO(3) [32]. In general, the nature of superfluidity in
SO(3) systems is not well understood [25,33–37].

In this Research Letter we explore the finite-temperature
behavior of a 2D spin-1 ferromagnetic Bose gas in the
easy-plane phase. Results are obtained via sampling of the
dynamical evolution of the system (cf. Ref. [25], which em-
ploys a Monte Carlo Wolff algorithm). We observe that the
system first transitions to a mass superfluid state and then,
at a lower temperature, transitions to a spin superfluid state,
in agreement with Ref. [25]. The mass transition is predom-
inantly determined by the superfluidity of the m = 0 spin
component (with m ∈ {−1, 0, 1} being the spin-1 magnetic
sublevels). The spin transition is driven by the binding and
unbinding of polar-core spin vortices (PCVs), which consist
of spatially confined equal and opposite circulations in the
m = ±1 components. Above the spin BKT temperature, the
m = ±1 component circulations spatially separate, suggest-
ing possible deconfinement analogous to a color plasma. We
identify superfluid drag between spin components, arising
from spin interactions [38–40], which we calculate analyti-
cally at zero temperature. We determine the (T, q) superfluid
phase diagram for 0 < q < q0. At q = 0, the fluid response
exhibits a system size dependence, suggesting the absence of
a BKT transition [25]. Despite this, for finite-sized systems
the decay of correlations of total spin still change from ex-
ponential to algebraic as the temperature is decreased. The
decay exponent is close to 1/2 at the crossover, twice that of
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U(1) systems. The recent observation of thermalization of a
quasi-1D easy-plane spin-1 Bose gas [41] demonstrates that
our results could be observed in current experiments.

Formalism. We use a simple-growth stochastic Gross-
Pitaevskii model that couples a three-component spinor field
� = (ψ1, ψ0, ψ−1)T to a grand canonical reservoir at chemi-
cal potential μ and temperature T [42–46],

ih̄d� = (1 − iγ )(L{�} − μ� )dt + ih̄dW. (1)

The nonlinear operator L{�} reads

L{�}=
[
− h̄2∇2

2M
1 + q f 2

z + gnn1 + gs

∑
α

Fα fα

]
� (2)

and describes time evolution arising from the kinetic en-
ergy, quadratic Zeeman shift, density-dependent interactions
(coupling constant gn > 0), and spin-dependent interactions
(coupling constant gs < 0). Here, n = �†1� and Fα =
�† fα� are the density and spin density, respectively, with 1
being the identity matrix in spin space and fα being the spin-1
matrices (α ∈ {x, y, z}). The dimensionless rate γ determines
how strongly the system couples to the reservoir, and dW =
(dw1, dw0, dw−1) are Gaussian distributed complex noise
terms with correlations 〈dw∗

m(r)dwm′ (r′)〉 = 2γ kBT δ(r −
r′)δm,m′dt/h̄. Stationary solutions to Eq. (1) sample the grand
canonical ensemble and are independent of γ [43]. In a uni-
form system, q0 = 2|gs|n ≈ 2|gs|μ/gn.

We simulate a condensate with weak spin interactions
|gs| = 0.1gn on an N × N grid with periodic boundary condi-
tions. We use a plane-wave basis cutoff at the thermal energy
kBT [47,48]. With an adjustment to account for our use of a
square grid, this gives a grid spacing �x =

√
2π h̄2/MkBT .

We take μ ≈ 5q0 as a convenient energy scale with associ-
ated length unit xμ = h̄/

√
Mμ. We express the temperature

in terms of the dimensionless quantity T = MgnkBT/h̄2μ,
which captures the dependence of thermodynamic properties
on both temperature and chemical potential [47,48]. Equilib-
rium states are obtained by evolving Eq. (1) until t ≈ 105h̄/μ.
We then evolve the equilibrium state, sampling at intervals of
10h̄/μ, to build up an ensemble of ∼104 states from which
thermal averages are calculated. The system size and hence
thermalization time diverge as T decreases; therefore we re-
strict our analysis to T � 0.05.

Spin and mass BKT transitions. The two continuous sym-
metries in the easy-plane phase give rise to two superfluid
currents at low temperatures [25]. The first is a mass super-
fluid current arising from the global phase coherence. The
second is an Fz spin superfluid current arising from coherence
of the transverse spin F⊥ = (Fx, Fy) [49]. The mass superfluid
density can be determined from the response of the system
to slowly moving boundary walls, via the current-current re-
sponse tensor,

χ (k) = M

kBT

∫
d2re−ik·r〈J(0)J(r)〉. (3)

Here, J = (h̄/M ) Im(
∑

m ψ†
m∇ψm) is the total mass current,

and angle brackets denote a thermal average. In the long-
wavelength limit, the longitudinal component χL(k) of the
tensor χ (k) is affected by the total fluid response, while
the transverse component χT (k) of χ (k) is only affected by

FIG. 1. (a) Mass (black circles) and Fz spin (red circles)
superfluid densities, determined from Eq. (3), as a function of dimen-
sionless temperature T . With decreasing T the system first exhibits
mass superfluidity and subsequently Fz spin superfluidity. The super-
fluid densities obtained from fitted ηn,s, via ρn,s = MkBT/2π h̄2ηn,s,
coincide with those determined from Eq. (3) (matching black and
red squares). We identify the precise BKT temperatures Tn,s to be the
temperatures where ηn,s = 1/4. Diamonds are ρ0,0 (see text). Inset:
correlations of ψ0 decay algebraically below the mass superfluid
transition (G0 ∼ r−ηn ), while correlations of F⊥ decay algebraically
below the spin superfluid transition (G⊥ ∼ r−ηs ). Red lines are fits.
(b) and (c) Transverse (circles) and longitudinal (unfilled squares)
components of limk→0 χm,m′ (k). Superfluid drag ρ0,1 (ρ−1,1) appears
below Tn (Ts ). The analytic zero-temperature χL

m,m′ (0) is indicated by
filled squares. (Results are for q = 0.03μ ≈ 0.15q0, N = 256.)

the normal fluid response [50–52]. The mass superfluid den-
sity is then ρn = limk→0[χL(k) − χT (k)] (see Appendix D
of Ref. [50] for details [53]). We extend this procedure to
determine the Fz spin superfluid density ρs by considering
the response to a “spin dependent” moving boundary, where
the m = ±1 boundaries move in opposite directions and the
m = 0 boundary is stationary (in experiments, this could be
engineered via spin-dependent light fields [54]). We then re-
place J by Jz = (h̄/M ) Im (

∑
m,m′ ψ†

m( fz )mm′∇ψm′ ) in Eq. (3).
In Fig. 1 we plot the mass and spin superfluid densities

determined from Eq. (3). Clearly evident are the two distinct
BKT temperatures Tn and Ts associated with the onset of mass
and spin superfluidity, respectively. Below the mass (spin)
BKT temperature, two-point correlations of ψ0 (F⊥) change
from decaying exponentially to decaying algebraically,

G0(r) = 〈ψ0(0)†ψ0(r)〉
〈ψ0(0)†ψ0(0)〉 ∼ r−ηn (T � Tn),

G⊥(r) = 〈F⊥(0) · F⊥(r)〉
〈F⊥(0) · F⊥(0)〉 ∼ r−ηs (T � Ts);

(4)

see inset in Fig. 1(a). The mass (spin) superfluid densi-
ties estimated from the decay exponents ηn (ηs), via ρn,s =
MkBT/2π h̄2ηn,s [30], show excellent agreement with those
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determined from Eq. (3); see Fig. 1. Precisely at the respective
BKT temperatures the exponents take on a universal value
of 1/4 [31]; hence we identify Tn and Ts in Fig. 1 as the
temperatures where ηn,s = 1/4.

Superfluid drag. We can also examine the more general
response functions

χm,m′ (k) = M

kBT

∫
d2re−ik·r〈Jm(0)Jm′ (r)〉, (5)

with Jm = (h̄/M ) Im(ψ†
m∇ψm). Note that χm,m′ = χm′,m and,

due to symmetry under m = 1 ↔ m = −1, χm,m′ = χ−m,−m′ .
Defining ρm,m′ ≡ limk→0[χL

m,m′ (k) − χT
m,m′ (k)], with χT

m,m′

(χL
m,m′ ) being the transverse (longitudinal) components of

χm,m′ , the mass and spin superfluid densities can be decom-
posed as ρn = ∑

m,m′ ρm,m′ and ρs = ∑
m,m′ mm′ρm,m′ . We find

that mass superfluidity is primarily determined from ρ0,0 at
the mass transition; see Fig. 1(a). The transverse and longitu-
dinal components of the four independent χm,m′ are shown in
Figs. 1(b) and 1(c). Off-diagonal contributions ρm,m′ �=m indi-
cate “superfluid drag” between components m and m′ [55];
see Fig. 1(c). In other multicomponent systems, superfluid
drag occurs via current-current coupling and is known as the
Andreev-Bashkin effect [55,56], whereas in the spin-1 system
it occurs due to inherent intercomponent interactions [38–40].

The zero-temperature χL
m,m′ (0) can be obtained analyt-

ically as follows. Beginning with a stationary, uniform
system, we impart current (nmh̄km/M )x̂ into spin compo-
nent m (with nm = |ψm|2). Due to intercomponent interac-
tions, this will induce currents (nm′ h̄km′/M )x̂ in components
m′ �= m. We obtain the km′ �=m/km by minimizing the ad-
ditional kinetic energy δE = (h̄2/2M )

∑
m′ �=m nm′k2

m′ subject
to the constraint k1 + k−1 − 2k0 = 0 imposed by minimiza-
tion of the spin-interaction energy. Defining a wave number
nmk ≡ ∑

m′ nm′km′ and comparing with the relation nm =∑
m′ χL

m,m′ (0), we surmise χL
m,m′ (0) = nm′km′/k, where km′/k

has an implicit dependence on m. This is confirmed in
Figs. 1(b) and 1(c).

Topological properties and confinement. In the easy-plane
phase the system supports two topologically distinct vortices,
associated with the U(1) and SO(2) symmetries, respectively.
The destruction of mass superfluidity coincides with a pro-
liferation of free ψ0 vortices [see Fig. 2(a)], consistent with
the finding that ρn ≈ ρ0,0 close to the mass BKT transition
(Fig. 1). The destruction of spin superfluidity coincides with
a proliferation of free F⊥ vortices; see Fig. 2(a). Since ψ0 is
coherent at this temperature, these circulations can be identi-
fied as PCVs, rather than Mermin-Ho vortices [57–59]. (Free
vortices are identified by convolving the relevant field with a
Gaussian filter before detecting divergences in the vorticity
field. We choose a filter of width 5

√
5xμ, which is on the

order of the core size of a cold PCV [60], with
√

5xμ ≈
h̄/

√
2M|gs|n being the approximate spin healing length.)

A single F⊥ vortex consists of equal and opposite phase
windings of ψ1ψ

∗
0 and ψ−1ψ

∗
0 bound by the spin-exchange en-

ergy 2gs Re ψ1ψ−1ψ
∗
0 ψ∗

0 [57,61]. This spin-exchange energy
increases linearly with separation between the ψ±1ψ

∗
0 vortices

[62], analogous to confinement in quantum chromodynam-
ics [63–65]. We find that the coherence between ψ1ψ

∗
0 and

ψ∗
−1ψ0, measured by 〈cos(θ1 + θ−1 − 2θ0)〉 (with θm being

FIG. 2. (a) Right axis: Free F⊥ vortices proliferate for T > Ts

(red circles), which can be identified as PCVs for T < Tn. Free
ψ0 vortices proliferate for T > Tn (black circles). Free ψ1ψ−1ψ

∗
0 ψ∗

0

vortices proliferate for T � 0.3 (blue circles), suggesting deconfine-
ment of PCVs, analogous to a color plasma. Left axis: Coherence
between ψ1ψ

∗
0 and ψ∗

−1ψ0, measured by 〈cos(θ1 + θ−1 − 2θ0 )〉 (gray
dashed line), decreases with increasing temperature, along with a
decrease in the “coupling strength” 〈|ψ1ψ−1||ψ0|2〉 (gray dotted
line). (b) Profiles of θ1 + θ−1 − 2θ0 at two temperatures [inverted
triangles in (a)]. Unfilled (filled) circles denote positive (negative)
free ψ1ψ−1ψ

∗
0 ψ∗

0 circulations. (Results are for q = 0.03μ, N = 256.)

the phase of ψm), decreases with increasing temperature; see
Fig. 2(a). Furthermore, there is a proliferation of free vortices
in the quantity ψ1ψ−1ψ

∗
0 ψ∗

0 for T � 0.3 [see Figs. 2(a) and
2(b)], indicating spatial separation of ψ1ψ

∗
0 and ψ−1ψ

∗
0 vor-

tices. This suggests possible PCV deconfinement, analogous
to deconfinement in a color plasma. In such a plasma, this is
enabled by a decrease in the strong-force coupling strength
with increasing temperature [66,67]. Analogously, the spin-
exchange “coupling strength” 〈|ψ1ψ−1||ψ0|2〉 decreases with
increasing temperature; see Fig. 2(a). Ignoring fluctuations in
|ψ0| and n, this coupling strength is ∝ √

n2 − F 2
z and hence

diminishes with increasing fluctuations of Fz [68].
Spin and mass superfluid phase diagram. The depen-

dence of Tn and Ts on q/μ is shown in Fig. 3(a). The
linear dependence of Ts on q follows from evaluating the
zero point of the free energy F = E − T S of a single PCV,
which gives Ts ∝ 1 − q/q0 [16,69]. Here, S = 2kB ln L and
E = K

2

∫ L
ξs

r−2 d2r = πK ln(L/ξs) are the entropy and energy,
respectively, of a single free (but confined) PCV, with L be-
ing the system size and K ≈ h̄2(1 − q/q0)μ/2gnM being the
spin-wave stiffness. Applying the same free-energy argument
to vortices in the m = 0 component would give Tn ∝ 1 +
q/q0. While this qualitatively captures the increase in Tn with
q/q0, the linear behavior holds only for large q/q0. The spin
superfluid transition extrapolates to zero at q = q0. At these
low temperatures we expect ordering behavior to be affected
by both quantum and thermal fluctuations [70–72].

At q = 0 the order parameter manifold is SO(3) [2,32],
combining the symmetry of the full spin vector F =
(Fx, Fy, Fz ) and gauge symmetry into a single manifold, with
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FIG. 3. (a) (T , q) phase diagram showing mass and spin super-
fluid transitions (solid black lines). The color map gives the mass
and spin superfluid densities. The spin BKT temperature decreases
linearly with increasing q, approaching zero as q → q0 (gray dashed
line is ∝ 1 − q/q0 with q0 = 2|gs|μ/gn = 0.2μ). Results are for
N = 256. (b) At q = 0, the mass fluid response χT (k) (solid lines)
exhibits a system size dependence. For comparison, χT (k) at q =
0.01μ (dashed lines) converge for increasing N . (c) Correlations of
total spin, showing a crossover from exponential to algebraic decay
at T ≈ 0.3 [system sizes as in (b)]. Correlations decay close to r−1/2

at the crossover temperature. A sampling time of 2.5 × 106 h̄/μ is
used for the N = 512 results in (b) and (c) to avoid autocorrelation.

vortices fundamentally distinct from U(1) systems [32]. The
nature of superfluidity and the potential for BKT transitions in
SO(3) systems is not well understood [25,33–37]. We find that
the mass fluid response χT (k) exhibits a system size depen-
dence for long wavelengths; see Fig. 3(b). This suggests the
absence of a q = 0 mass BKT transition in the thermodynamic
limit, consistent with the conclusion of Ref. [25]. Despite this,
we still see a crossover from exponential to algebraic decay in
correlations of total spin,

GF(r) = 〈F(0) · F(r)〉
〈F(0) · F(0)〉 ; (6)

see Fig. 3(c). The crossover temperature T ≈ 0.3 slowly de-
creases with increasing system size and hence may go to
zero in the thermodynamic limit. In the finite-sized systems
explored here, GF(r) decays close to r−1/2 at the crossover
temperature, rather than as r−1/4 typical for U(1) systems.

This is similar to the scaling of low-temperature correlations
in a finite-sized ferromagnetic Heisenberg model in 2D [73].
Importantly, though, the order parameter manifold of the
Heisenberg model is S2, not SO(3), and hence does not sup-
port vortices [74]. A crossover in the behavior of correlations
around a well-defined temperature has been identified in a
Heisenberg antiferromagnet on a triangular lattice, which also
has an SO(3) order parameter manifold [36,37,75].

Discussion. In this Research Letter we identified two BKT
transitions in the easy-plane phase of a ferromagnetic spin-1
Bose gas. We characterized the transitions in terms of relevant
vortices and inter- and intracomponent fluid responses, and
identified possible deconfinement of PCVs above the spin
superfluid transition. At q = 0 the fluid response exhibits a
system size dependence; however, correlations of total spin
still exhibit a crossover from exponential to algebraic decay.
It would be interesting to analyze this behavior for vanishingly
small q and how this depends on system size. Extending our
work, one could explore the role of nonzero axial magneti-
zation, which adjusts the relative density of the m = ±1 spin
components and modifies the nature of the PCVs [60]. One
could also explore the role of transverse trapping [76], which
may affect the mass and spin superfluidities differently.

Our work opens up the possibility of exploring tempera-
ture quenches across the spin BKT transition and studying
nonequilibrium processes such as Kibble-Zurek scaling and
coarsening dynamics. Comparisons with the extensive work
on zero-temperature quenches to the easy-plane phase [6–17],
particularly close to q0, could illuminate the role of quantum
versus thermal fluctuations in the symmetry breaking and
nonequilibrium dynamics [70–72]. We have shown that the
m = ±1 spin components decohere for increasing temper-
ature, indicating states beyond the low-temperature U(1) ×
SO(2) manifold. For very high temperatures we expect
restoration to the full SU(3) manifold; our work paves the way
to explore how such a phase emerges.

Acknowledgments. A.J.G. acknowledges Tom Billam for
useful discussions. This research was supported by the Aus-
tralian Research Council Centre of Excellence for Engineered
Quantum Systems (EQUS, CE170100009). This research was
partially supported by the Australian Research Council Centre
of Excellence in Future Low-Energy Electronics Technologies
(project number CE170100039) and funded by the Australian
Government. P.B.B. acknowledges support from the Marsden
Fund of the Royal Society of New Zealand. X.Y. acknowl-
edges support from the National Natural Science Foundation
of China (Grant No. 12175215), the National Key Research
and Development Program of China (Grant No. 2022YFA
1405300), and NSAF (Grant No. U1930403). We acknowl-
edge the use of New Zealand eScience Infrastructure (NeSI)
high-performance computing facilities.

[1] Y. Kawaguchi and M. Ueda, Spinor Bose–Einstein condensates,
Phys. Rep. 520, 253 (2012).

[2] D. M. Stamper-Kurn and M. Ueda, Spinor Bose gases: Symme-
tries, magnetism, and quantum dynamics, Rev. Mod. Phys. 85,
1191 (2013).

[3] J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P.
Chikkatur, and W. Ketterle, Spin domains in ground-state Bose-
Einstein condensates, Nature (London) 396, 345 (1998).

[4] W. Zhang, S. Yi, and L. You, Mean field ground state of a spin-1
condensate in a magnetic field, New J. Phys. 5, 77 (2003).

L012045-4

https://doi.org/10.1016/j.physrep.2012.07.005
https://doi.org/10.1103/RevModPhys.85.1191
https://doi.org/10.1038/24567
https://doi.org/10.1088/1367-2630/5/1/377


BEREZINSKII-KOSTERLITZ-THOULESS TRANSITIONS … PHYSICAL REVIEW RESEARCH 5, L012045 (2023)

[5] K. Murata, H. Saito, and M. Ueda, Broken-axisymmetry phase
of a spin-1 ferromagnetic Bose-Einstein condensate, Phys. Rev.
A 75, 013607 (2007).

[6] L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore,
and D. M. Stamper-Kurn, Spontaneous symmetry breaking in
a quenched ferromagnetic spinor Bose–Einstein condensate,
Nature (London) 443, 312 (2006).

[7] S. R. Leslie, J. Guzman, M. Vengalattore, J. D. Sau, M. L.
Cohen, and D. M. Stamper-Kurn, Amplification of fluctuations
in a spinor Bose–Einstein condensate, Phys. Rev. A 79, 043631
(2009).

[8] H. Saito and M. Ueda, Spontaneous magnetization and structure
formation in a spin-1 ferromagnetic Bose–Einstein condensate,
Phys. Rev. A 72, 023610 (2005).

[9] R. Barnett, A. Polkovnikov, and M. Vengalattore, Prether-
malization in quenched spinor condensates, Phys. Rev. A 84,
023606 (2011).

[10] H. Saito, Y. Kawaguchi, and M. Ueda, Topological defect
formation in a quenched ferromagnetic Bose–Einstein conden-
sates, Phys. Rev. A 75, 013621 (2007).

[11] A. Lamacraft, Quantum Quenches in a Spinor Condensate,
Phys. Rev. Lett. 98, 160404 (2007).

[12] B. Damski and W. H. Zurek, Dynamics of a Quantum Phase
Transition in a Ferromagnetic Bose-Einstein Condensate, Phys.
Rev. Lett. 99, 130402 (2007).

[13] M. Anquez, B. A. Robbins, H. M. Bharath, M. Boguslawski,
T. M. Hoang, and M. S. Chapman, Quantum Kibble-Zurek
Mechanism in a Spin-1 Bose-Einstein Condensate, Phys. Rev.
Lett. 116, 155301 (2016).

[14] L. A. Williamson and P. B. Blakie, Universal Coarsening Dy-
namics of a Quenched Ferromagnetic Spin-1 Condensate, Phys.
Rev. Lett. 116, 025301 (2016).

[15] L. A. Williamson and P. B. Blakie, Coarsening and thermaliza-
tion properties of a quenched ferromagnetic spin-1 condensate,
Phys. Rev. A 94, 023608 (2016).

[16] L. A. Williamson and P. B. Blakie, Anomalous phase ordering
of a quenched ferromagnetic superfluid, SciPost Phys. 7, 029
(2019).

[17] M. Prüfer, P. Kunkel, H. Strobel, S. Lannig, D. Linnemann,
C.-M. Schmied, J. Berges, T. Gasenzer, and M. K. Oberthaler,
Observation of universal dynamics in a spinor Bose gas far from
equilibrium, Nature (London) 563, 217 (2018).

[18] S. Mukerjee, C. Xu, and J. E. Moore, Topological Defects and
the Superfluid Transition of the s = 1 Spinor Condensate in
Two Dimensions, Phys. Rev. Lett. 97, 120406 (2006).

[19] A. J. A. James and A. Lamacraft, Phase Diagram of Two-
Dimensional Polar Condensates in a Magnetic Field, Phys. Rev.
Lett. 106, 140402 (2011).

[20] M. Kobayashi, M. Eto, and M. Nitta, Berezinskii-Kosterlitz-
Thouless Transition of Two-Component Bose Mixtures with
Intercomponent Josephson Coupling, Phys. Rev. Lett. 123,
075303 (2019).

[21] S. S. Natu and E. J. Mueller, Pairing, ferromagnetism, and
condensation of a normal spin-1 Bose gas, Phys. Rev. A 84,
053625 (2011).

[22] Y. Kawaguchi, N. T. Phuc, and P. B. Blakie, Finite-temperature
phase diagram of a spin-1 Bose gas, Phys. Rev. A 85, 053611
(2012).

[23] K. Kis-Szabó, P. Szépfalusy, and G. Szirmai, Static prop-
erties and spin dynamics of the ferromagnetic spin-1

Bose gas in a magnetic field, Phys. Rev. A 72, 023617
(2005).

[24] Q. Gu and R. A. Klemm, Ferromagnetic phase transition and
Bose-Einstein condensation in spinor Bose gases, Phys. Rev. A
68, 031604(R) (2003).

[25] M. Kobayashi, Berezinskii–Kosterlitz–Thouless transition of
spin-1 spinor Bose gases in the presence of the quadratic Zee-
man effect, J. Phys. Soc. Jpn. 88, 094001 (2019).

[26] E. B. Sonin, Spin and mass superfluidity in a ferromagnetic
spin-1 Bose-Einstein condensate, Phys. Rev. B 97, 224517
(2018).

[27] N. D. Mermin and H. Wagner, Absence of Ferromagnetism
or Antiferromagnetism in One- or Two-Dimensional Isotropic
Heisenberg Models, Phys. Rev. Lett. 17, 1133 (1966).

[28] P. C. Hohenberg, Existence of Long-Range Order in One and
Two Dimensions, Phys. Rev. 158, 383 (1967).

[29] V. L. Berezinskii, Destruction of long-range order in one-
dimensional and two-dimensional systems possessing a con-
tinuous symmetry group. II. Quantum systems, J. Exp. Theor.
Phys. 34, 610 (1972).

[30] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and
phase transitions in two-dimensional systems, J. Phys. C: Solid
State Phys. 6, 1181 (1973).

[31] D. R. Nelson and J. M. Kosterlitz, Universal Jump in the Super-
fluid Density of Two-Dimensional Superfluids, Phys. Rev. Lett.
39, 1201 (1977).

[32] T.-L. Ho, Spinor Bose Condensates in Optical Traps, Phys. Rev.
Lett. 81, 742 (1998).

[33] H. Kawamura and S. Miyashita, Phase transition of the
two-dimensional Heisenberg antiferromagnet on the triangular
lattice, J. Phys. Soc. Jpn. 53, 4138 (1984).

[34] H. Kawamura, A. Yamamoto, and T. Okubo, Z2-Vortex ordering
of the triangular-lattice Heisenberg antiferromagnet, J. Phys.
Soc. Jpn. 79, 023701 (2010).

[35] H. Kawamura and M. Kikuchi, Free-vortex formation and
topological phase transitions of two-dimensional spin systems,
Phys. Rev. B 47, 1134 (1993).

[36] M. Wintel, H. U. Everts, and W. Apel, The Heisenberg an-
tiferromagnet on a triangular lattice: topological excitations,
Europhys. Lett. 25, 711 (1994).

[37] M. Wintel, H. U. Everts, and W. Apel, Monte Carlo simulation
of the Heisenberg antiferromagnet on a triangular lattice: Topo-
logical excitations, Phys. Rev. B 52, 13480 (1995).

[38] D. V. Fil and S. I. Shevchenko, Drag of superfluid current in
bilayer Bose systems, Low Temp. Phys. 30, 770 (2004).

[39] D. V. Fil and S. I. Shevchenko, Nondissipative drag of superflow
in a two-component Bose gas, Phys. Rev. A 72, 013616 (2005).

[40] F. Carlini and S. Stringari, Spin drag and fast response in a
quantum mixture of atomic gases, Phys. Rev. A 104, 023301
(2021).

[41] M. Prüfer, D. Spitz, S. Lannig, H. Strobel, J. Berges, and M. K.
Oberthaler, Condensation and thermalization of an easy-plane
ferromagnet in a spinor Bose gas, Nat. Phys. 18, 1459 (2022).

[42] C. Gardiner, J. Anglin, and T. Fudge, The stochastic Gross-
Pitaevskii equation, J. Phys. B: At. Mol. Opt. Phys. 35, 1555
(2002).

[43] C. Gardiner and M. Davis, The stochastic Gross-Pitaevskii
equation: II, J. Phys. B: At. Mol. Opt. Phys. 36, 4731 (2003).

[44] A. S. Bradley, C. W. Gardiner, and M. J. Davis, Bose-
Einstein condensation from a rotating thermal cloud: Vortex

L012045-5

https://doi.org/10.1103/PhysRevA.75.013607
https://doi.org/10.1038/nature05094
https://doi.org/10.1103/PhysRevA.79.043631
https://doi.org/10.1103/PhysRevA.72.023610
https://doi.org/10.1103/PhysRevA.84.023606
https://doi.org/10.1103/PhysRevA.75.013621
https://doi.org/10.1103/PhysRevLett.98.160404
https://doi.org/10.1103/PhysRevLett.99.130402
https://doi.org/10.1103/PhysRevLett.116.155301
https://doi.org/10.1103/PhysRevLett.116.025301
https://doi.org/10.1103/PhysRevA.94.023608
https://doi.org/10.21468/SciPostPhys.7.3.029
https://doi.org/10.1038/s41586-018-0659-0
https://doi.org/10.1103/PhysRevLett.97.120406
https://doi.org/10.1103/PhysRevLett.106.140402
https://doi.org/10.1103/PhysRevLett.123.075303
https://doi.org/10.1103/PhysRevA.84.053625
https://doi.org/10.1103/PhysRevA.85.053611
https://doi.org/10.1103/PhysRevA.72.023617
https://doi.org/10.1103/PhysRevA.68.031604
https://doi.org/10.7566/JPSJ.88.094001
https://doi.org/10.1103/PhysRevB.97.224517
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1103/PhysRevLett.39.1201
https://doi.org/10.1103/PhysRevLett.81.742
https://doi.org/10.1143/JPSJ.53.4138
https://doi.org/10.1143/JPSJ.79.023701
https://doi.org/10.1103/PhysRevB.47.1134
https://doi.org/10.1209/0295-5075/25/9/013
https://doi.org/10.1103/PhysRevB.52.13480
https://doi.org/10.1063/1.1808194
https://doi.org/10.1103/PhysRevA.72.013616
https://doi.org/10.1103/PhysRevA.104.023301
https://doi.org/10.1038/s41567-022-01779-6
https://doi.org/10.1088/0953-4075/35/6/310
https://doi.org/10.1088/0953-4075/36/23/010


ANDREW P. C. UNDERWOOD et al. PHYSICAL REVIEW RESEARCH 5, L012045 (2023)

nucleation and lattice formation, Phys. Rev. A 77, 033616
(2008).

[45] A. S. Bradley and P. B. Blakie, Stochastic projected Gross-
Pitaevskii equation for spinor and multicomponent condensates,
Phys. Rev. A 90, 023631 (2014).

[46] P. B. Blakie, A. S. Bradley, M. J. Davis, R. J. Ballagh, and
C. W. Gardiner, Dynamics and statistical mechanics of ultra-
cold Bose gases using c-field techniques, Adv. Phys. 57, 363
(2008).

[47] N. Prokof’ev, O. Ruebenacker, and B. Svistunov, Critical Point
of a Weakly Interacting Two-Dimensional Bose Gas, Phys. Rev.
Lett. 87, 270402 (2001).

[48] N. Prokof’ev and B. Svistunov, Two-dimensional weakly in-
teracting Bose gas in the fluctuation region, Phys. Rev. A 66,
043608 (2002).

[49] The correspondence between Fz spin current and transverse spin
coherence follows from noting that gradients of transverse spin
angle give rise to an Fz current [77], or more formally since fz

is the generator of transverse spin rotations.
[50] C. J. Foster, P. B. Blakie, and M. J. Davis, Vortex pairing

in two-dimensional Bose gases, Phys. Rev. A 81, 023623
(2010).

[51] E. L. Pollock and D. M. Ceperley, Path-integral computation of
superfluid densities, Phys. Rev. B 36, 8343 (1987).

[52] G. Baym, The microscopic description of superfluidity, in
Mathematical Methods in Solid State and Superfluid Theory:
Scottish Universities’ Summer School, edited by R. C. Clark
and G. H. Derrick (Springer, Boston, 1968), pp. 121–156.

[53] We absorb a factor of kBT into the definition of χ .
[54] F. Schmidt, D. Mayer, M. Hohmann, T. Lausch, F. Kindermann,

and A. Widera, Precision measurement of the 87Rb tune-out
wavelength in the hyperfine ground state f = 1 at 790 nm,
Phys. Rev. A 93, 022507 (2016).

[55] J. Nespolo, G. E. Astrakharchik, and A. Recati, Andreev–
Bashkin effect in superfluid cold gases mixtures, New J. Phys.
19, 125005 (2017).

[56] A. F. Andreev and E. P. Bashkin, Three-velocity hydrodynamics
of superfluid solutions, Sov. Phys. JETP 42, 164 (1976).

[57] T. Isoshima, K. Machida, and T. Ohmi, Quantum vortex in a
spinor Bose-Einstein condensate, J. Phys. Soc. Jpn. 70, 1604
(2001).

[58] U. A. Khawaja and H. T. C. Stoof, Skyrmion physics in Bose-
Einstein ferromagnets, Phys. Rev. A 64, 043612 (2001).

[59] T. Mizushima, K. Machida, and T. Kita, Mermin-Ho Vortex in
Ferromagnetic Spinor Bose-Einstein Condensates, Phys. Rev.
Lett. 89, 030401 (2002).

[60] L. A. Williamson and P. B. Blakie, Damped point-vortex model
for polar-core spin vortices in a ferromagnetic spin-1 Bose-
Einstein condensate, Phys. Rev. Res. 3, 013154 (2021).

[61] A. M. Turner, Mass of a Spin Vortex in a Bose-Einstein Con-
densate, Phys. Rev. Lett. 103, 080603 (2009).

[62] L. A. Williamson and P. B. Blakie, Dynamics of polar-core spin
vortices in a ferromagnetic spin-1 Bose–Einstein condensate,
Phys. Rev. A 94, 063615 (2016).

[63] D. T. Son and M. A. Stephanov, Domain walls of relative phase
in two-component Bose-Einstein condensates, Phys. Rev. A 65,
063621 (2002).

[64] M. Tylutki, L. P. Pitaevskii, A. Recati, and S. Stringari, Con-
finement and precession of vortex pairs in coherently coupled
Bose-Einstein condensates, Phys. Rev. A 93, 043623 (2016).

[65] M. Eto and M. Nitta, Confinement of half-quantized vortices
in coherently coupled Bose-Einstein condensates: Simulating
quark confinement in a QCD-like theory, Phys. Rev. A 97,
023613 (2018).

[66] P. Braun-Munzinger and J. Stachel, The quest for the quark–
gluon plasma, Nature (London) 448, 302 (2007).

[67] R. Pasechnik and M. Šumbera, Phenomenological review on
quark-gluon plasma: Concepts vs. observations, Universe 3, 7
(2017).

[68] Note that in the quadratic regime, fluctuations of Fz increase
with increasing transverse spin disorder, since both are affected
by the same Bogoliubov mode [78].

[69] J. M. Kosterlitz and D. J. Thouless, Long range order and
metastability in two dimensional solids and superfluids. (Ap-
plication of dislocation theory), J. Phys. C: Solid State Phys. 5,
L124 (1972).

[70] S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Continu-
ous quantum phase transitions, Rev. Mod. Phys. 69, 315 (1997).

[71] M. Vojta, Quantum phase transitions, Rep. Prog. Phys. 66, 2069
(2003).

[72] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge
University Press, Cambridge, 2011).

[73] O. Kapikranian, B. Berche, and Y. Holovatch, Quasi-long-range
ordering in a finite-size 2D classical Heisenberg model, J. Phys.
A: Math. Theor. 40, 3741 (2007).

[74] H. Toda, Composition Methods in Homotopy Groups of Spheres,
Annals of Mathematics Studies (Princeton University Press,
Princeton, 1962), Vol. 49.

[75] I. S. Popov, P. V. Prudnikov, A. N. Ignatenko, and A. A.
Katanin, Universal Berezinskii-Kosterlitz-Thouless dynamic
scaling in the intermediate time range in frustrated Heisen-
berg antiferromagnets on a triangular lattice, Phys. Rev. B 95,
134437 (2017).

[76] N. A. Keepfer, I.-K. Liu, F. Dalfovo, and N. P. Proukakis, Phase
transition dimensionality crossover from two to three dimen-
sions in a trapped ultracold atomic Bose gas, Phys. Rev. Res. 4,
033130 (2022).

[77] E. Yukawa and M. Ueda, Hydrodynamic description of spin-1
Bose–Einstein condensates, Phys. Rev. A 86, 063614 (2012).

[78] L. M. Symes, D. Baillie, and P. B. Blakie, Static structure
factors for a spin-1 Bose–Einstein condensate, Phys. Rev. A 89,
053628 (2014).

L012045-6

https://doi.org/10.1103/PhysRevA.77.033616
https://doi.org/10.1103/PhysRevA.90.023631
https://doi.org/10.1080/00018730802564254
https://doi.org/10.1103/PhysRevLett.87.270402
https://doi.org/10.1103/PhysRevA.66.043608
https://doi.org/10.1103/PhysRevA.81.023623
https://doi.org/10.1103/PhysRevB.36.8343
https://doi.org/10.1103/PhysRevA.93.022507
https://doi.org/10.1088/1367-2630/aa93a0
https://doi.org/10.1143/JPSJ.70.1604
https://doi.org/10.1103/PhysRevA.64.043612
https://doi.org/10.1103/PhysRevLett.89.030401
https://doi.org/10.1103/PhysRevResearch.3.013154
https://doi.org/10.1103/PhysRevLett.103.080603
https://doi.org/10.1103/PhysRevA.94.063615
https://doi.org/10.1103/PhysRevA.65.063621
https://doi.org/10.1103/PhysRevA.93.043623
https://doi.org/10.1103/PhysRevA.97.023613
https://doi.org/10.1038/nature06080
https://doi.org/10.3390/universe3010007
https://doi.org/10.1088/0022-3719/5/11/002
https://doi.org/10.1103/RevModPhys.69.315
https://doi.org/10.1088/0034-4885/66/12/R01
https://doi.org/10.1088/1751-8113/40/14/001
https://doi.org/10.1103/PhysRevB.95.134437
https://doi.org/10.1103/PhysRevResearch.4.033130
https://doi.org/10.1103/PhysRevA.86.063614
https://doi.org/10.1103/PhysRevA.89.053628

